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Abstract
Background—Cerebrospinal fluid (CSF) and structural magnetic resonance imaging (MRI) show
patterns of change in Alzheimer’s disease (AD) that precede dementia. The Alzheimer’s Disease
Neuroimaging Initiative (ADNI) studied normal controls (NC), subjects with mild cognitive
impairment (MCI) and AD to identify patterns of biomarkers to aid in early diagnosis and effective
treatment of AD.

Methods—222 NC underwent baseline MRI and clinical examination at baseline and at least one
follow-up. 112 also provided CSF at baseline. Unsupervised clustering based on initial CSF and MRI
measures was used to identify clusters of participants with similar profiles. Repeated measures
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regression modeling assessed the relationship of individual measures, and of cluster membership, to
cognitive change over three years.

Results—Most individuals showed little cognitive change. Individual biomarkers had limited
predictive value for cognitive decline, but membership in the cluster with the most extreme profile
was associated with more rapid decline in ADAS-COG.

Conclusions—Subtypes among NC based on multiple biomarkers may represent the earliest stages
of subclinical cognitive decline and AD.

Keywords
Alzheimer’s disease; Dementia; Early diagnosis; Cerebrospinal fluid; Tau protein; Amyloid beta-
protein; Structural magnetic resonance imaging; Hippocampal volume; Cognition; Clustering;
Normal controls

1. Introduction
Alzheimer’s disease (AD) is a neurocognitive disorder currently estimated to affect some five
million people in the United States and more than 25 million worldwide (Evans et al., 1990,
Hebert et al., 2003, Brookmeyer et al., 2007, Harvey et al. 2003). Mild cognitive impairment
(MCI) has gained recognition as an intermediate clinical category between normal cognitive
function and AD, with a greatly increased risk of onset of AD (Bennett 2002, Petersen 2009).
AD is characterized not only by cognitive decline, but also by underlying neurobiological
changes that likely precede the diagnosis of AD by a considerable period, during MCI and
possibly even earlier, before measurable clinical impairment. The process is hypothesized to
begin with amyloid deposition, followed by cortical atrophy and decreased metabolism, with
effects only gradually becoming apparent in decreased cognitive performance and function
(Jack et al. 2010). Identification of early markers of disease would be of great interest to
facilitate early diagnosis, improved clinical trials for prevention by targeting individuals at
greatest risk, and, ultimately, effective treatment before widespread irreversible
neurodegeneration (Clark 2008).

A large number of potential markers have been proposed, including volumetric measures based
on MRI, CSF biomarkers, FDG PET and others (Hampel 2007, Shaw 2007). Cortical atrophy,
for example, is evident on structural magnetic resonance imaging (MRI) not only in AD but
also to some extent in people with mild cognitive impairment (MCI) (Nestor 2008, Morra
2009) and in normal elderly prior to the onset of MCI (Carlson 2008). Between-person
differences in cerebrospinal fluid (CSF) protein levels have also been reported to be associated
with AD and MCI (Maddalena 2003, Clark 2008, Shaw 2009). White matter hyperintensity
(WMH) has been reported to be increased in patients with AD, suggesting that vascular lesions
may also play a role in the neurodegenerative process (Barber 1999). Alternatively, WMH may
be a vascular pathology contributing to cognitive impairment in an additive or even
multiplicative manner. Homocysteine, a risk factor for vascular damage, has also been
hypothesized as a possible risk factor for dementia (Smith 2008). Most studies of markers have
focused on AD and MCI, as the clinical decline is most evident in these groups and association
of candidate markers with clinical benchmarks is more readily established. An earlier
biomarker horizon, however, would be of great scientific interest and have substantial clinical
relevance.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI), jointly funded by NIH,
pharmaceutical partners and the Alzheimer’s Association, is a multi-site research initiative
whose aim is to identify biomarkers which would allow the pathological changes of AD to be
diagnosed earlier, well before the clinical criteria for dementia are met, and to be tracked more
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precisely. The goal is to provide earlier diagnosis and better assessment of disease progression
and response to therapy. The ADNI participants included normal controls (NC) with detailed
standardized assessment of many potential candidate biomarkers and longitudinal follow-up
of cognitive outcomes for up to 3 years. We examined a set of imaging and cerebrospinal fluid
measures previously proposed in the literature as candidate markers for early diagnosis, and
assessed their distribution in normal controls and their relationship to cognitive outcomes over
the follow-up period. Our hypothesis was that despite cognitive homogeneity at baseline in the
NC subjects, there would be underlying biological heterogeneity in candidate markers,
reflecting the earliest detectable changes in the brain. These biological differences would be
correlated with each other in a structured way, leading to the ability to construct subgroups
based on markers alone, and such subgroups would subsequently have different cognitive
trajectories.

2. Methods and material
2.1. The Alzheimer’s Disease Neuroimaging Initiative

Data used in the preparation of this article were obtained from the ADNI database
(www.loni.ucla.edu\ADNI). The ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the
Food and Drug Administration (FDA), private pharmaceutical companies and non-profit
organizations, as a $60 million, 5-year public-private partnership. The research plan called for
recruiting 800 adults, ages 55 to 90: approximately 200 healthy elderly controls, 400 subjects
with mild cognitive impairment (MCI), and 200 subjects with mild but probable AD. Subjects
are followed longitudinally for up to three years, with MRI scans, complete cognitive testing,
and blood/urine samples collected at six-month intervals, depending on baseline diagnosis. In
addition, subsets of the subjects undergo FDG-PET scans and cerebral spinal fluid (CSF)
collection and testing (Mueller 2005a, 2005b).

2.2. Subjects
The individuals studied were recruited between August 17, 2005 and September 4, 2007 as
ADNI participants and were identified at baseline clinical evaluation as cognitively normal.
NC, MCI and AD participants were frequency-matched by age-group to a common target age
profile. NC participants underwent cognitive testing and clinical examination by a physician
at baseline and every six months for the first year and then annually for the next two years.
MRI scans (1.5 Tesla) were performed in each subject
(http://www.loni.ucla.edu/ADNI/Research/Cores/index.shtml) at baseline, repeated at 6, 12,
24 and 36 months. Approximately half the participants also provided CSF at the baseline and
m12 visits. Additional details are given in (Petersen 2010). This study was approved by the
Institutional Review Boards of all of the participating institutions. Informed written consent
was obtained from all participants at each site. A detailed description of the study design and
inclusion criteria is available at http://clinicaltrials.gov/show/NCT00106899. Data used in this
analysis were downloaded from the ADNI database (www.loni.ucla.edu/ADNI) on September
27, 2009. Analysis focused on NC but the MCI and AD group were described at baseline for
comparison purposes.

2.3. Measures
Biomarker summary measures for cluster analysis were selected using a list initially specified
by researchers from the ADNI Imaging and Biomarker Cores at the time of grant submission,
for core hypothesis tests. MRI summary measures were calculated by the Anders Dale Lab at
UC San Diego and normalized by their measure of intra-cranial volume (ICV) (Fennema-
Notestine 2009). Summary measures used were cerebral volume, hippocampal volume,
entorhinal cortex thickness, and ventricle volume. White matter hyperintensities (WMH) were
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detected by Charles DeCarli and the Imaging of Dementia and Aging lab at UC Davis based
on coregistered T1-, T2-, and PD-weighted images using an automated protocol described
previously (Schwarz 2009). Total WMH volume was used as the primary summary; it was also
standardized by ICV. CSF samples were obtained by the individual centers, then banked and
batch-processed using a standardized protocol, under the direction of Drs. Leslie Shaw and
John Trojanowski of the ADNI Biomarker Core at the University of Pennsylvania School of
Medicine (Shaw 2008). CSF measures at baseline included Aβ1–42, total tau protein (t-tau),
tau protein phosphorylated at the 181 threonine position (P-tau181), and the ratios t-tau/
Aβ1–42 and P-tau181/Aβ1–42 as previously described (Shaw, et al 2009). Apolipoprotein E
genotype was determined and serum homocysteine assayed using a validated enzyme
immunoassay methodology by the ADNI Biomarker Core. Two cognitive performance tests
were considered for measurement of longitudinal change: the Rey Auditory-Verbal Learning
Test (RAVLT) total of five trials, and the Alzheimer’s Disease Assessment Scale-cognitive
subsection (ADAS-cog), selected because some NC showed modest changes in these scales.
Higher values of RAVLT and lower values of ADAS-cog correspond to better performance.

2.4 Statistical analysis
All demographic, clinical and marker data were first summarized descriptively (means,
standard deviations, graphical summaries). Quantitative marker data (Imaging, CSF and
serum) were standardized by subtracting the NC mean and dividing by the standard deviation
(SD) before inclusion in regression models and clustering, to facilitate comparisons across
markers and analyses. As a comparison for the utility of clusters as predictors, univariate and
multivariate mixed models for longitudinal data were used to model changes in RAVLT and
ADAS-cog over time using candidate biomarkers as predictors (Laird 1982). The annualized
rate of change was the model-estimated slope, in units of cognitive test score change per year.
Main effects of each predictor estimated the difference in cognitive score at baseline, and
interaction terms between predictor and time estimated the effect of a one-unit increase in
predictor on the annualized rate of change in cognitive test score. Random effects were included
for slope and intercept, and an unstructured correlation matrix was specified for errors. All
models also controlled for education effects on cognitive test score and change. Variables in
multivariate models were removed step-wise based on the P-value of the variable’s slope
component. Univariate P values were reported without adjustment for multiple comparisons,
because the goal was not variable selection, but a reference comparison for the utility of any
specific, individual biomarker compared to cluster membership.

Risk groups (clusters) based on baseline levels of CSF and serum biomarkers and MRI
summaries were created by unsupervised hierarchical clustering, without reference to baseline
cognitive test scores or to longitudinal trajectories using the function hclust in R. In this
agglomerative approach, each individual begins as a cluster of one person. Clusters are then
iteratively combined based on dissimilarity. The calculation of dissimilarity relies on
maximizing or minimizing an objective function and a metric for distance between individuals.
Many options exist for objective functions and distance metrics; we explored seven different
objective function methods (Wards’ method, single linkage, complete linkage, average,
Mcquitty’s method, median and centroid [REFS to be added]) and six different distance metrics
(Euclidean, supremum norm, Manhattan, Canberra, binary, and Minkowski). Some
combinations of these have a tendency to produce clusters containing a very small number of
individuals, essentially isolating individual outliers. These methods are not useful in this
context because the resulting sample sizes are too small to allow for further exploration. We
restricted consideration to methods that had at least 5 individuals per cluster. Our primary
approach used Ward’s method, which is defined as minimal increase in the error sum of squares
after combining clusters (Ward 1963). Error sum of squares was calculated as the sum of the
squared Euclidean distances of each cluster member to the cluster center. Similarity across
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clustering methods was assessed by Rand’s statistic, a measure of agreement between two
partitions, with 1 representing perfect agreement and 0 corresponding to equal amounts of
concordance and discordance (Rand 1971). We also examined descriptively the degree of
agreement between methods on individuals belonging to the group with “unusual” profiles
compared to the typical NC. The choice of the number of clusters (k) was based on a
combination of observed visual separation, plots of the log within-cluster dissimilarity against
k, and restrictions due to sample size. We chose k = 3 based on these considerations. Although
we are forming subgroups, we hypothesize that these subgroups represent a categorization of
an unobserved continuum. Thus, for a larger sample size, a reasonable choice for k may be
well beyond 3, Secondary analyses examined whether the effect of cluster membership could
be accounted for by ApoE genotype or by age. Preliminary analyses examined conversions
from NC to MCI but found too few conversions to allow formal statistical analysis. Both
regression models and clustering algorithms used a complete-case approach for biomarkers,
excluding any individual missing one or more of the biomarkers in that analysis, and regression
models treated missing cognitive scores at scheduled visits as missing at random. Statistical
analyses were carried out using the R package (R 2009) and SAS/STAT® software (SAS
Institute 2004).

3. Results
3.1. Normal control participant characteristics

Baseline MRI were available for 222 NC and CSF biomarker data for 112 NC. However, not
all image summary measures were available for all images (range: 192–222). In comparison
with ADNI MCI and AD participants, the NC were similar in age and education but had fewer
males and fewer participants with one or more ApoE4 alleles (Table 1). As expected, given
ADNI’s design to yield three clearly differentiated groups, the NC had substantially higher
RAVLT scores and lower (better) ADAS-cog scores at baseline; only about 5% of the NC
group had scores as bad as the average MCI participant at baseline. Imaging and CSF
biomarkers, however, showed substantial overlap between groups; the 25% of the NC group
with the worst baseline measurement for almost all biomarkers was at or beyond the baseline
median of the MCI group (Petersen 2010). Means on summaries of MRI showed smaller
regional and global volumes, thinner entorhinal cortex, and larger ventricles for AD than MCI,
and for MCI than NC. However, the MCI mean was typically just one standard deviation worse
than the NC mean. CSF biomarker mean levels for participants who had baseline lumbar
puncture were consistent with previously reported patterns with higher tau protein and lower
amyloid beta associated with greater cognitive impairment as captured by clinical diagnosis.
Considerable variability within the diagnostic groups led to substantial overlap across the
groups.

The NC showed little change in clinical status during the first 36 months of follow-up. Only
10 converted to MCI during this period, and 1 of these 10 subsequently to AD. These NC had
a mean of 4.4 (SD=0.7) observations per person of ADAS-cog and a mean of 4.3 (0.8)
observations of RAVLT. For most participants, there was little change either in ADAS-cog
score (Figure 1) or in RAVLT performance (Figure 2), as would be expected in normal controls.
Random effects models for RAVLT and ADAS-cog showed significant between-person
variance in initial cognitive test scores (random intercept) and rate of change (random slope),
indicating unexplained heterogeneity in trajectories and supporting exploration of baseline
imaging summaries and fluid biomarkers as possible predictors of early cognitive decline.

3.2 Imaging and CSF measures as predictors of cognitive decline
We fitted mixed models for possible predictors of cognitive decline, separately with RAVLT
and ADAS-cog trajectories as the outcome. Each imaging or fluid biomarker predictor,
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standardized as described above was first considered individually in a model adjusted for
education, and the association of a one standard deviation (SD) higher level of the biomarker
at baseline with cognitive score at baseline and with annualized rate of change in cognitive
score was estimated using models with random effects for intercept and slope (Table 2).
Baseline test scores were significantly correlated in univariate models with baseline levels of
many MRI and CSF markers. Higher (worse) initial ADAS-cog scores were associated with
lower cortical volume at baseline as measured by hippocampal volume (0.41 points better for
each SD larger, P=0.02), entorhinal cortex (0.7 points better for every SD thicker, P<0.001),
and ventricular volume (0.52 points worse for every SD larger, P=0.003). CSF biomarker
differences at baseline were also associated with worse initial performance on the ADAS-cog;
a one SD lower CSF Aβ1–42 (P=0.017) predicted about a half-point worse ADAS-cog, as did
a one SD higher P-tau181/Aβ1–42 ratio (P=0.027). Higher (better) initial RAVLT scores were
associated with larger cortical volume, whether measured by a one SD increase in cerebral
volume (1.34 point higher score, P=0.026), hippocampal volume (1.62 point better, P=0.007),
or entorhinal thickness (2.20 points better, P<0.001). A one SD increase in ventricular volume
was associated with initial RAVLT scores almost two points worse (P=0.001). Higher
homocysteine levels at baseline were also associated with significantly worse initial RAVLT
score (1.85 points worse for a one SD higher level, P=0.001.) A one SD higher P-tau181/
Aβ1–42 ratio was also associated with a 1.5 point lower baseline RAVLT score (P=0.041).

Baseline imaging and biomarker scores, though, had little predictive impact on ADAS-cog or
RAVLT change, assuming cognitive test score changes are linear over the period of
observation. A one SD higher homocysteine level was associated with a 0.16 point per year
faster worsening in ADAS-cog performance (P=0.047), while a one SD smaller hippocampus
was associated with about the same magnitude of difference in rate of ADAS-cog decline
(P=0.046). A one SD higher P-tau181 or P-tau181/Aβ1–42 ratio was associated with about a 0.2
point faster annual worsening of ADAS-cog. These effects are modest; it would take about 5
years at this rate to account for a single additional point worse on the ADAS-cog. Adjusting
P-values in Table 2 for multiple comparisons, as would be done for selection of best predictors,
would further reduce the evidence for utility of individual biomarkers as predictors of cognitive
baseline or decline.

In multivariate models adjusted for education, no individual baseline measure of cortical
volume or CSF remained a significant predictor of cognitive decline, either for the ADAS-cog
or the RAVLT.

These analyses found little evidence of associations between either the individual standardized
imaging and biomarker measures of this study or weighted sums of the measures and
subsequent cognitive decline in NC, over a period of up to 3 years. These results served as a
comparison for analyses which focused on an effort to identify individuals with a distinctive
profile of biomarkers that separated them out from typical NC, without reference to their
cognitive outcomes, and then to assess the behavior of cognitive trajectories for these
subgroups.

3.3. Cluster analysis of NC using baseline imaging and biomarker measures
Cluster analysis of the NC using the eleven imaging and biomarker measures (96 complete
cases) identified three distinct clusters, of size 32, 54 and 10. The first cluster was relatively
compact, while the third cluster was well separated in multidimensional space even when
individual measurements might fall in the normal range (Figure 3, projection from 11
dimensions to 3, projection chosen to separate cluster centers for best visualization of cluster
locations). The second cluster was intermediate, but closer to the first, “healthier” cluster. We
calculated the center (11-dimensional point representing the average across all people in the
cluster for each marker) for each of the three clusters and for the MCI and AD groups (Table
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3). Note that the MCI and AD data were not used to develop the clusters among the NC, but
are included for comparison. Because all of the markers were standardized using the NC mean
and standard deviation, components of the centers are in units of NC SD. The center for Cluster
3, the atypical group, is 1.5–2.5 SD away from the normal mean for all of the baseline CSF
biomarkers. The average person in this cluster has a smaller cortical volume than the compact,
“healthier” Cluster 1 but not as small as a typical individual in Cluster 2. Overall, Cluster 3
looks very close to the AD group for CSF and closer to MCI than to normal for the MRI
variables (Figure 4). We also calculated Euclidean distances for the centers of each of the three
clusters to the MCI and AD groups. Cluster 3, the “atypical” cluster, was closer to the MCI
and AD than to either of the other two NC clusters (2.6 and 2.8 SD versus 4.8 and 5.6 SD).
Cluster 2 was equidistant from Cluster 1, the “typical” normal group, and MCI (2.7SD). Cluster
1 was furthest from AD (6.1 SD). The MCI and AD groups were closer together than any other
two groups (1.7 SD).

Alternative clustering techniques generally led to similar cluster assignments, particularly with
regard to the atypical cluster (Cluster 3). Among methods that did not result in clusters with
too few individuals, the results were fairly consistent with the results from Ward’s method, as
measured by Rand’s statistic (average 0.64, range = [0.45, 1]) and by the tendency to locate
the same atypical cluster (over half kept at least 9 of the 10 members of the atypical cluster
together, most of these locating exactly the same cluster of 10). Using just MRI summary
measures and omitting CSF biomarkers approximately doubled the available sample size but
led to less clear separation between clusters, consistent with hypotheses that changes in amyloid
levels precede volumetric change (Petersen 2009, Jack 2010).

We fitted mixed effects models to assess the predictive value of cluster membership at baseline
on subsequent cognitive change (Table 4). Members of Cluster 3, the profile farthest from a
typical NC, had baseline scores 2 points worse on average than the typical individuals in Cluster
1 for the ADAS-cog (P=0.021) and 9 points worse on average for the RAVLT (P=0.002). The
atypical baseline marker profile of Cluster 3 was also accompanied by a faster rate of worsening
on the ADAS-cog (1.25 points worse per year, P<0.001). The rate of decline for RAVLT, while
of similar magnitude, was not statistically significant (P=0.17). A permutation test was
performed to determine the likelihood of a different clustering with groups of these sizes
resulting in an equal or smaller P-value for the cluster variable indicating decline in ADAS-
cog (P = 0.0025). Out of 5000 random clusterings, only 21 (less than 1%) resulted in a P-value
≤ 0.0025.

Further characterization of the three clusters found that 50% of the members of Cluster 3 had
at least one ApoE4 allele, while 25% and 22% of the members of Clusters 1 and 2 were E4+.
However, the association of cluster membership with worse baseline performance and more
rapid deterioration of ADAS-cog performance was not accounted for by ApoE genotype or by
participant age; results were not materially changed by including in the model the effects of
these factors on baseline cognition and rate of change. Cluster size and composition were
sensitive at the margins to choice of measures included and algorithms used but were overall
quite robust.

Among the 96 people assigned to clusters, only 7 people converted to MCI, 2 in Cluster 3
(20%), 4 in Cluster 2 ( 8%) and 1 in Cluster 1 ( 3%). These numbers, while too small for
statistical analysis, indicate the importance of additional follow-up of the NC.

4. Discussion
Our analyses in a large, well-characterized cohort of normal controls found heterogeneity in
imaging summary measures and fluid biomarker summaries, indicating that the biomarker
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profile could not be encompassed by a single, compact, well-defined set of boundaries. Instead,
the patterns were suggestive of several distinct clusters of individuals, even though these
individuals were cognitively intact at baseline and showed very little clinical progression over
three years of follow-up. Regression models suggested that baseline levels of some measures
of brain size and CSF biomarkers are associated with cross-sectional differences in cognitive
performance, and that increased P-tau181 and the P-tau181/Aβ1–42 ratio may foreshadow
slightly more rapid declines in ADAS-cog. The effects, however, were modest, and not
improved in multivariate regression analysis. Cluster analysis identified three distinct groups
of individuals, based solely on their baseline imaging and biomarker measures without
reference to cognitive status or change. One group in particular, comprising about 10% of the
NC group, was well separated from the bulk of the NC and lay closer to the centers of the MCI
and AD groups, even when some individual marker measurements might be closer to the center
for typical NC. This subgroup had strikingly lower baseline scores on the RAVLT, significantly
worse scores on the ADAS-cog, and a significantly more rapid deterioration on the ADAS-
cog than the typical NC. Membership in this cluster was associated with annual cognitive
decline approximately 5 times as rapid as that predicted for a person one standard deviation
worse than average on the strongest individual marker. A second group, centered between the
atypical group and the more typical NC group, showed structural MRI profiles closer to the
MCI group and had somewhat worse baseline performance but showed little difference in
cognitive trajectory compared to typical NC. The division into distinct clusters was robust
across several clustering algorithms, with the same people consistently identified as a distinct
group whose center placed them closer to the profile of MCI and AD. As a complementary
approach, unsupervised regression trees were used to generate a proximity matrix which was
then plotted on multidimensional scaling axes and colored by cluster membership. The plot
showed almost no mixing of clusters, supporting the clusters identified with agglomerative
clustering despite the fact that methodologies have almost nothing in common. This suggests
that the clusters are not simply an artifact of the clustering process and may instead represent
meaningful structure in the data.

Our findings are consistent with previous work suggesting P-tau181, Aβ1–42, and their ratio as
among the measures most closely reflecting early preclinical neurobiological changes
[Stomrud et al. 2007, Shaw et al. 2009]. We also found evidence for correlation between brain
atrophy measures and cross-sectional measures of cognitive performance, even in this very
high-functioning cohort. None of these measures, however, had substantial predictive power
for future cognitive decline, either taken individually or as linear combinations. Little previous
work has explored the multi-dimensional structure of imaging and CSF biomarkers in clinically
normal older people. A recent study (Fagan 2009) assessed correlations between CSF measures
and normalized whole brain volume in cognitively normal elderly subjects and found that
Abeta, but not Tau or P-tau181, correlated inversely with whole-brain volume in elderly control
subjects, while Tau and P-tau181 correlated in very mild and mild AD. Such findings have
suggested a hypothetical model of the sequence of biomarker changes in the neurobiological
process leading to AD, with amyloid changes occurring very early, followed by tau pathology,
volumetric and metabolic decline, and with a very gradual onset of measurable cognitive
decline, reaching the diagnosis of dementia only very late in the cascade (Jack, 2010). Our
analyses offer additional support for this conceptual model. We identified a subgroup of normal
controls, based solely on biomarker profiles, who were notable primarily for amyloid-related
CSF abnormalities. Not only were people in this group much closer to the AD group in their
CSF profile, but they also had a striking pattern of ADAS-cog decline over 2–3 years, despite
being clinically well within the normal range to start. Figure 4 suggests strong similarity to the
conceptual model proposed in Jack. Clustering based just on MRI measures failed to isolate
such a distinctive subgroup. Our findings are consistent with Cluster 3 representing a group of
people who have already progressed so far in amyloid deposition that they are starting to
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experience the earliest signs of clinical decline, even though their scores remain, for the most
part, within the wider normal range and do not yet verge on dementia.

Methods looking at best classification strategies to predict conversion among NC are not yet
applicable in ADNI, as there are so few conversions. We are not aware of any work with data
mining or other dimension-reduction strategies based on rate of cognitive change as an
outcome. Our study represents a first attempt to seek structure based strictly on the imaging
and fluid biomarker measures, and to map the observed heterogeneity to distinct subgroups.

One limitation of our approach is that the CSF markers were available only for half the
participants, thus reducing the sample size available for clustering. This, in turn, led to a fairly
small though stable “atypical” cluster of about 10% of the NC with CSF. The remaining
participants split with every clustering algorithm we examined, with some uncertainty in
locating the border between a compact, “typical” group and a second group leaning toward the
“atypical” group. A larger sample size might have allowed better definition of the margins, as
well as the variables most important for identifying the “atypical” cluster. A second limitation
is that length of follow-up and the generally healthy nature of this cohort led to only a few
conversions to MCI, precluding our assessment of the predictive value of the cluster for change
in clinical status. A third limitation is that we used only a fraction of the many potential
biomarkers, especially from the imaging summaries, and we included 5 participants with some
imaging quality control problems whose effect on our findings appeared minimal in the primary
analysis. Our selection was based on previous literature, but may have omitted variables with
better prognostic power in the ADNI cohort. A fourth limitation is the approach to
standardization of the imaging variables. Dividing by ICV may diminish differences between
individuals or groups, although the cluster definitions were more dependent on the CSF
biomarkers. Finally, we have not used ADNI’s FDG PET or PiB imaging data because the
number of participants with complete data on the MRI, CSF and PET imaging data would be
too small for analysis.

Our approach has several notable strengths. First, the ADNI data offer one of the largest,
uniformly ascertained databases available, with standardized protocols not only for data
collection but also for image processing and biomarker specimen assays.

Second, our approach makes use of 36 months of follow-up with standardized cognitive testing.
Third, our clustering strategy was “unsupervised”, that is, based on the imaging and biomarker
data without reference to cognitive endpoints or diagnostic categories, so that we address
directly the question of whether a strikingly unusual profile on these measures may foreshadow
clinical decline, without letting the outcome define the profile of interest. Notably, a recent
study on ADNI CSF biomarkers used another unsupervised learning approach that identified
nearly the same CSF Aβ cut point as Shaw et al 2009 wherein this cut point was established
in subjects with autopsy confirmed diagnoses of AD thereby demonstrating the power of
unsupervised analytical approaches (de Meyer et al, 2010). Supervised techniques such as
regression trees or discriminant analysis offer a complementary approach, focused on
identifying subgroups of clinical interest based on their outcome, but would require cross-
validation, potentially problematic in our sample of under 100 NC with little clinical change
as yet. In comparison to univariate or multivariate regression models, our approach takes
advantage of the correlated relationship among the biomarkers, rather than being limited by
this interrelationship. This strength of the clustering approach may account for the
improvement in our ability to detect associations with future cognitive change, compared to
the more traditional univariate and multivariate regression models.

Our findings indicate that not just individual abnormalities, but a distinctive pattern of imaging
and biomarker deviations from typical healthy older adults may be an early warning sign of
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neurobiological pathology. Additional follow-up would help to establish the prognostic value
for longer-term cognitive decline and conversion to MCI and eventually to AD. A larger
sample, with CSF on all participants, would help to confirm the cluster pattern for our “atypical”
group and better define the boundary between the other two clusters. In addition, the
recruitment of early MCI participants, as currently underway in the recently funded ADNI-GO
grant, will offer an opportunity to test whether our atypical group have a profile similar to the
earliest stages of clinically-identified impairment. Longitudinal analysis of the imaging and
biomarker measures can also address whether the distance of the atypical cluster relative to the
center for typical NC is increasing over time, and whether the location of the intermediate
cluster shifts toward the atypical cluster’s baseline location over time.

5. Conclusions
A pattern of imaging and biomarker deviations can identify a subgroup of normal controls
distinct from typical cognitively normal older participants. This subgroup, defined based
strictly on imaging and biomarkers, had substantially worse cognitive performance at baseline
and a more rapid rate of deterioration on the ADAS-cog than the typical NC. Additional follow-
up and analysis is warranted to investigate the long-term clinical implications and to
characterize the imaging and biomarker trajectories of subgroups over time.
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Figure 1.
Longitudinal trajectories of ADAS-COG scores for a random sample of 50 ADNI normal
controls. The average longitudinal trajectory for each of the three clusters is also presented.
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Figure 2.
Longitudinal trajectories of RAVLT scores for a random sample of 50 ADNI normal controls.
The average longitudinal trajectory for each of the three clusters is also presented.
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Figure 3.
Three-dimensional representation of cluster assignments for 96 ADNI normal controls, based
on unsupervised clustering using eleven baseline MRI and CSF markers and serum
homocysteine, without use of clinical data to define clusters. This representation is shown on
three axes of the original 11-dimensional data space, chosen to maximize separation of cluster
centers for clearest visualization on paper of the cluster locations.

Nettiksimmons et al. Page 15

Neurobiol Aging. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Difference for each biomarker of cluster means from the mean for all ADNI normal controls,
standardized by normal control standard deviation, compared to distances for ADNI MCI and
AD groups. Sign of standardized differences was reversed for all variables except Aβ1–42 and
ventricular volume so that high values (top of figure) represent worse biomarker measurements.
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Table 1

Demographic, clinical, imaging and biomarker characteristics of ADNI participants at baseline, comparing
Normal Control (NC), Mild Cognitive Impairment (MCI), and Alzheimer’s Disease (AD) participants. All
participants with baseline data were included, but not all participants had data on each measure.

Variables NC MCI AD P value

Demographic Mean (SD) Mean (SD) Mean (SD)

 N1 222 382 181

 Age 76.0 (5.0) 74.8 (7.4) 75.1 (7.6) 0.12

 Percent male 52% 64.00% 53.00% 0.005

 Education (years) 16.1 (2.9) 15.6 (3.1) 14.8 (3.1) < 0.001

 Percent Apoe4+ 27% 54% 67% < 0.001

Clinical

 RAVLT score 43.5 (8.9) 30.8 (9.1) 23.3 (7.5) < 0.001

 ADAS-cog score 6.2 (2.9) 11.6 (4.5) 18.5 (6.4) < 0.001

Imaging

 Cerebral volume2 0.685
(0.025)

0.671
(0.027)

0.659
(0.026)

< 0.001

 Ventricle volume2 0.026
(0.012)

0.031
(0.014)

0.036
(0.016)

< 0.001

 Hippocampal volume2 0.0050
(0.0005)

0.0044
(0.0007)

0.0040
(0.0007)

< 0.001

 Entorhinal cortex
thickness

6.50 (0.60) 5.85 (0.93) 5.14 (0.88) < 0.001

 White matter
hyperintensity

2.65 (2.48) 2.63 (2.47) 3.92 (7.32) < 0.001

Serum Biomarker

 Homocysteine3 9.93 (2.88) 10.6 (2.90) 10.6 (3.16) 0.02

CSF biomarkers

 CSF sample size 112 189 98

 Aβ1–42
4 206 (55) 164 (55) 143 (41) < 0.001

 t-tau4 69 (28) 102 (54) 119 (56) < 0.001

 P-tau181 4 25 (14) 35 (17) 41 (19) < 0.001

 t-tau/Aβ1–42 0.4 (0.25) 0.7 (0.56) 0.9 (0.48) < 0.001

 P-tau181/Aβ1–42 0.1 (0.12) 0.3 (0.17) 0.3 (0.18) < 0.001

1
Sample sizes are based on subjects with at least one clinical follow-up assessment. Means and standard deviations are based on participants with

data at baseline, so calculations for imaging and serum biomarker measures may be based on fewer subjects.

2
Presented as fraction of ICV.

3
Presented as µmol/L

4
Presented in pg/mL
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