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Abstract
The prediction of individuals with mild cognitive impairment (MCI) destined to develop Alzheimer's
disease (AD) is of increasing clinical importance. In this study, using baseline T1-weighted MRI
scans of 324 MCI individuals from two cohorts and automated software tools, we employed factor
analyses and Cox proportional hazards models to identify a set of neuroanatomic measures that best
predicted the time to progress from MCI to AD. For comparison, cerebrospinal fluid (CSF)
assessments of cellular pathology and positron emission tomography (PET) measures of metabolic
activity were additionally examined. By three years follow-up, 60 MCI individuals from the first
cohort and 58 MCI individuals from the second cohort had progressed to a diagnosis of AD. Cox
models on the first cohort demonstrated significant effects for the medial temporal factor [Hazards
Ratio (HR) =0.43{95% Confidence Interval (CI), 0.32-0.55}, p < 0.0001], the fronto-parietoccipital
factor [HR=0.59{95% CI, 0.48-0.80}, p < 0.001], and the lateral temporal factor [HR=0.67 {95%
CI, 0.52-0.87}, p < 0.01]. When applied to the second cohort, these Cox models showed significant
effects for the medial temporal factor [HR=0.44 {0.32-0.61}, p < 0.001] and lateral temporal factor
[HR=0.49 {0.38-0.62}, p < 0.001]. In a combined Cox model, consisting of individual CSF, PET,
and MRI measures that best predicted disease progression, only the medial temporal factor [HR=0.53
{95% CI, 0.34-0.81}, p < 0.001] demonstrated a significant effect. These findings illustrate that
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automated MRI measures of the medial temporal cortex accurately and reliably predict time to disease
progression, outperform cellular and metabolic measures as predictors of clinical decline, and can
potentially serve as a predictive marker for AD.
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INTRODUCTION
Predicting the time to progress from mild cognitive impairment (MCI) to clinical Alzheimer's
disease (AD) is of increasing importance as therapeutic interventions for the prevention or
delay of dementia onset are developed. Structural MRI provides visualization of the
macroscopic tissue atrophy that results from the cellular changes underlying AD and as such,
offers one potential, noninvasive method for early detection and prediction of AD.

A number of prior structural MRI studies have employed either manual region of interest (ROI)
(Jack et al., 1999; Killiany et al., 2002; Devanand et al., 2007; Fleisher et al., 2008) or automated
whole brain approaches (Whitwell et al., 2007, 2008; Karas et al., 2008) to identify those MCI
individuals at greatest risk for AD. Though these methods offer several advantages, manual
ROI methods have limited clinical utility since they do not allow for the timely analysis of
regions across the entire brain or in large datasets while a number of whole brain approaches
cannot evaluate the disease state in a single individual. More recent ROI and whole brain studies
have demonstrated that automated MRI-based computational measures can successfully
discriminate those MCI individuals who progress to AD from those MCI individuals who do
not progress (Bakkour et al., 2009; Querbes et al., 2009; Vemuri et al., 2009; Misra et al.,
2009). However, only a handful of studies have attempted to examine the time to progress from
MCI to AD and the majority of these have utilized manual ROI approaches (Jack et al.,
1999; Devanand et al., 2007; Desikan et al., 2009a).

Advances in image analysis algorithms have led to the development of structural MRI-based
software tools that can automatically parcellate the entire brain into anatomic regions and
quantify the tissue properties in these regions for a single individual (Fischl et al., 2002; Desikan
et al., 2006, 2009b). In this study, we investigated the feasibility of using these automated MRI-
based software tools as a predictive marker for AD. Using baseline MRI scans from 162 MCI
individuals, we employed factor analyses and Cox proportional hazards models to identify a
set of neuroanatomic regions that best predicted the time to progress from MCI to AD. We
then examined the predictive consistency of these automated MRI measures on a second cohort
of 162 MCI individuals. For comparison, we additionally evaluated cerebrospinal fluid (CSF)
assessments of cellular pathology and positron emission tomography (PET) measures of
metabolic activity.

METHODS
Overview

All participants were selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI)
database (www.loni.ucla.edu/ADNI). The ADNI is a large multi-site collaborative effort
launched in 2003 by the National Institute on Aging, the National Institute of Biomedical
Imaging and Bioengineering, the Food and Drug Administration, private pharmaceutical
companies and non-profit organizations as a public-private partnership aimed at testing
whether serial MRI, PET, other biological markers and clinical and neuropsychological
assessment can be combined to measure the progression of MCI and early AD. The Principal
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Investigator of this initiative is Michael Weiner, MD, and ADNI is the result of many co-
investigators from a broad range of academic institutions and private corporations, with
subjects recruited from over 50 sites across the US and Canada. For more information, please
see http://www.adni-info.org.

Clinical Assessments and Group Characteristics
The institutional review boards of all participating institutions approved the procedures for this
study. Written informed consent was obtained from all participants or surrogates. Each
participant was selected using eligibility criteria that are described in detail elsewhere
(http://www.adniinfo.org/index.php?option=com_content&task=view&id=9&Itemid=43).
The degree of clinical severity for each participant was evaluated by an annual semi-structured
interview. This interview generates both an overall Clinical Dementia Rating (CDR) score and
a measure known as the CDR Sum of Boxes (CDR-SB) (Morris 1993). Experienced clinicians
conducted independent semi-structured interviews with the participant and a knowledgeable
collateral source, which included a set of questions regarding the functional status of the
participant, along with a standardized neurologic, psychiatric, and health examination. The
Mini-Mental State Examination (MMSE) (Folstein et al., 1975) and a complete
neuropsychological battery were also conducted.

Participants were selected from the ADNI database if they were clinically classified as the
amnestic subtype of MCI, based on the revised MCI criteria (Petersen 2004). These included
individuals with MMSE scores between 24 and 30, a subjective memory complaint verified
by an informant, objective memory loss as measured by education adjusted performance on
the Logical Memory II subscale (delayed paragraph recall) of the Wechsler Memory Scale-
Revised (Wechsler 1987), a CDR of 0.5, absence of significant levels of impairment in other
cognitive domains, essentially preserved activities of daily living, and an absence of dementia.
From a total of over 400 MCI individuals available from the ADNI database, 324 individuals
with the amnestic subtype of MCI were selected. For the purposes of the present study, this
larger sample was randomly split (using a random number generator employing a uniform
distribution) into two equal samples (training and validation cohorts). No statistical differences
in demographic variables were noted between the two samples.

Cohort 1 – Training Cohort
At baseline, 162 MCI individuals were examined. At follow-up (mean follow-up time of 1.89),
60 of these individuals met clinical criteria for probable AD (MCI-Converters) (McKhann et
al., 1984) while 102 remained mildly impaired (MCI-Nonconverters). Of those mildly impaired
at follow-up, 46 had CDR-SB scores that increased but their impairments had not progressed
to the point where they received a diagnosis of AD, 32 had CDR-SB scores that remained stable
and 24 had CDR-SB scores that declined. Approximately 54% of these mildly impaired
subjects (n=55) had a CDRSB of 2 or higher, and approximately 46% (n=47) had a CDR-SB
score of 0.5-1.5. The mean age, educational status, CDR-SB scores, Mini-Mental State Exam
(MMSE) scores, gender distribution, percent APOE-ε4, and follow-up time are shown in Table
1.

Cohort 2 – Validation Cohort
At baseline, 162 MCI individuals were examined. At follow-up (mean follow-up time of 1.90),
58 of these individuals met clinical criteria for probable AD (MCI-Converters) (McKhann et
al., 1984) while 104 remained mildly impaired (MCI-Nonconverters). Of those mildly impaired
at follow-up, 52 had CDR-SB scores that increased but their impairments had not progressed
to the point where they received a diagnosis of AD, 23 had CDR-SB scores that remained stable
and 29 had CDR-SB scores that declined. Approximately 42% of these mildly impaired
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subjects (n=44) had a CDR-SB of 2 or higher, and approximately 58% (n=60) had a CDR-SB
score of 0.5-1.5.

MRI Image Acquisition
All ADNI MRI scans were acquired at multiple sites using either a GE, Siemens, or Philips
1.5T system. Multiple high-resolution T1- weighted volumetric MP-RAGE scans were
collected for each subject and the raw DICOM images were downloaded from the public ADNI
site (http://www.loni.ucla.edu/ADNI/Data/index.shtml). Parameter values vary depending on
scanning site and can be found at http://www.loni.ucla.edu/ADNI/Research/Cores/.

Automated Image Analysis Procedures
All MRI scans were processed, with little to no manual intervention, using the FreeSurfer
software package, freely available at http://surfer.nmr.mgh.harvard.edu. A single, raw
MPRAGE MRI acquisition for each participant was downloaded from the ADNI database and
normalized for intensity inhomogeneities to create an image volume with high contrast-to-
noise (Dale et al., 1999). This volume was used to locate the gray/white matter boundary (white
matter surface) (Fischl et al., 1999a) and this in turn, was then used to locate the gray/CSF
boundary (gray matter surface) (Fischl and Dale 2000). Cortical thickness measurements were
then obtained by calculating the distance between the gray and the white matter surfaces at
each point (per hemisphere) across the entire cortical mantle (Fischl and Dale 2000). This
cortical thickness measurement technique has been previously validated via histological (Rosas
et al., 2002) as well as manual measurements from MRI (Salat et al., 2004). The reliability of
these cortical thickness measures as well as the other image analysis procedures presented here
has been demonstrated across different scanner manufacturers and upgrades, varying contrast
to noise ratio, and the number of MPRAGE MRI acquisitions used (Han et al., 2006; Fennema-
Notestine et al., 2007; Jovicich et al., 2009).

The neocortex of the brain on the MRI scans was then automatically subdivided into 32 gyral-
based ROIs (per hemisphere, total of 64 neocortical measures). To accomplish this, a
registration procedure was used that aligns the cortical folding patterns (Fischl et al., 1999b)
and probabilistically assigns every point on the cortical surface to one of the 32 ROIs (Desikan
et al., 2006). In addition, two non-neocortical regions of the brain, namely the amygdala and
the hippocampus, were automatically delineated using an algorithm that examines variations
in voxel intensities and spatial relationships to classify non-neocortical regions on MRI scans
(Fischl et al., 2002).

The anatomic accuracy of the gray and white matter surfaces as well as each of the individual
ROIs was carefully reviewed by a trained neuroanatomist (RSD), with particular attention to
the medial temporal lobe where non-brain tissue, such as dura mater and temporal bone, often
needs to be excluded. Of note, none of the herein presented 324 datasets required any manual
editing. All of the MRI scans were processed on a Linux cluster with 128 nodes, each with a
two quad-core Xeon 5472 CPU (Intel Corporation, Santa Clara, CA, USA) and 32GB of RAM.
Processing time for each MRI scan was approximately 11-14 hours. This cluster allows for the
processing of 1024 MRI scans simultaneously and all 324 MRI scans utilized in the present
study were processed in one day.

In total, 34 neocortical and non-necortical ROIs were used in this study. For all of the analyses
performed here, the mean thickness (only neocortical regions) and the volume (only non-
neocortical regions) of the right and the left hemispheres, for each ROI, were added together.
In order to account for differences in head size, the total volume for each ROI was corrected
using a previously validated estimate of the total intracranial volume (eTIV) (Buckner et al.,
2004).
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Cerebrospinal Fluid Measures
From the current ADNI sample, a number of individuals (total n = 168, training cohort n = 85,
validation cohort n = 83) underwent lumbar puncture for CSF biomarker evaluation. Methods
for CSF acquisition and biomarker measurement have been reported previously for this sample
(Shaw et al., 2009). In brief, CSF was collected and stored at −80°C at the University of
Pennsylvania ADNI Biomarker Core Laboratory. Amyloid beta fibrils from peptides 1-42
(Aβ1-42), total tau (t-tau), and phosphorylated tau (p-tau) were measured using the multiplex
xMAP Luminex platform (Luminex Corp, Austin TX) with Innogenetics (INNOBIA AlzBio3,
Ghent, Belgium) immunoassay kit–based reagents.

Positron Emission Tomography Measures
From the current ADNI sample, a number of individuals (total n = 153, training cohort n = 76,
validation cohort n = 77) underwent PET imaging with the metabolic tracer [18F]
fluorodeoxyglucose (FDG-PET). Methods for FDG-PET data collection and analysis using
ROIs have been reported previously for this sample (Jagust et al., 2009). In brief, FDG-PET
data were first intensity normalized to a reference ROI that was comprised of the averaged
pons and cerebellar vermis. For the FDG-PET analyses, ROIs were defined using coordinates
from the Montreal Neurological Institute atlas. Each individual's PET scan was then spatially
normalized to the SPM5 PET template, and mean FDG counts were extracted from each ROI.
These ROI mean counts were then averaged to form a single “composite” FDG ROI that was
the variable used in all FDG-PET analyses. For the purposes of the present study, we used
ROIs from bilateral inferior temporal and angular gyri as well as posterior cingulate and
precuneus cortices since prior studies have demonstrated significant differences between AD
individuals and normal elderly controls in these regions (for details see Jagust et al., 2009). All
FDG ROI values used in the present study were downloaded from the public ADNI site
(http://www.loni.ucla.edu/ADNI/Data/index.shtml).

Statistical Analysis
Data reduction was conducted on the training cohort ROI measures using factor analysis. First,
a correlation matrix was generated using Pearson's r to determine the correlation coefficient
between the individual ROI measures. Those measures with very strong relationships (r >.80)
were removed from further analyses (Pett et al., 2003). Next, the factors along with their loading
coefficients and the cumulative variance of the factors were extracted from the analysis. We
applied a minimum eigenvalue criterion of 1.0 together with the examination of a scree plot to
determine how many factors to retain and these were rotated (varimax) to maximize the
relationship between variables. The factor loadings derived from the training cohort ROI
measures were then applied to the validation cohort ROI measures.

The automated MRI-derived factors, along with the PET and CSF measures, were further
analyzed using Cox proportional hazards models. These analyses tested whether specific
predictors (e.g., medial temporal factor) are associated with time to a diagnosis of AD. In these
models, the hazard ratio indicates the change in risk per one unit change in the predictor. For
instance, if the hazard ratio is 0.43 for the medial temporal factor, each 1 SD decrease in the
volume and thickness of this factor increases risk by 57%.

The primary focus of these survival analyses was time from study entry to the endpoint of
interest, which was the diagnosis of AD. All proportional hazards models included age,
education, gender, and APOE-ε4 carrier status as covariates. For the training cohort, we entered
the automated MRI-derived factors into a multivariate Cox model to determine which of these
measures best predicted the time to diagnosis. Then, for the validation cohort, we entered only
those neuroanatomic factors that were the best predictors in the training cohort data into a
second proportional hazards model and compared the respective hazard ratios derived from
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the training and validation cohorts for each of these measures. In order to determine the
prediction accuracy of these neuroanatomic factors, we calculated the area under the curve
(AUC), sensitivity, specificity, positive and negative predictive values, and positive and
negative likelihood ratios individually for the training and validation cohorts.

In an additional set of analyses, we entered the individual CSF biomarkers and FDG-ROIs into
separate Cox models to determine if these measures predicted time to diagnosis. Given the
small number of combined available measurement for the CSF and PET measures (total MCI
= 78, MCI-Converters = 30, MCI-Nonconverters = 48), we pooled together data from the
training and validation cohorts for these proportional hazards analyses. Prediction accuracies
for the combined CSF and PET measures that best predicted time to event were calculated as
described above. Individual CSF and PET measures significant at the < 0.05 alpha level were
combined with those automated MRI-derived factors that best predicted time to event and
entered into a final Cox model to determine which individual measures, in combination, best
predicted time to AD diagnosis. For each of the multivariate Cox models, we descriptively
evaluated the proportional hazards assumption by checking whether the negative log of survival
probabilities associated with higher levels of each independent variable were constant multiples
of those of the lower levels, across the entire range of event time. In addition we tested
interaction terms that included the log of time to further verify the assumption of proportional
hazards.

RESULTS
The factor analysis on the training cohort ROI measures first revealed that none of the measures
demonstrated a Pearson's r of greater than 0.8 and therefore all ROI measures were included
for further analyses. Four factors were extracted after rotation and confirmed using scree plots.
The total explained variance for these factors was 73.11%. These four factors included: 1) the
medial temporal factor, consisting primarily of the amygdala (Factor Loading (FL) = 0.84),
hippocampus (FL = 0.78), entorhinal cortex (FL = 0.76), temporal pole (FL = 0.68), and
parahippocampal gyrus (FL = 0.62), 2) the fronto-parietoccipital factor, consisting primarily
of the superior parietal gyrus (FL = 0.87), cuneus cortex (FL = 0.77), caudal middle frontal
gyrus (FL = 0.77), inferior parietal cortex (FL = 0.73) and lateral occipital cortex (FL = 0.73),
3) the fronto-cingulate factor, consisting primarily of the rostral anterior (FL = 0.78) and caudal
anterior (FL = 0.74) portions of the cingulate cortex and the medial (FL = 0.73) and lateral (FL
= 0.66) portions of the orbital frontal cortex, and 4) the lateral temporal factor, consisting
primarily of the middle temporal gyrus (FL = 0.69), inferior temporal gyrus (FL = 0.69), banks
of the superior temporal sulcus (FL = 0.62) and superior temporal gyrus (FL = 0.54). Figures
1 and 2 anatomically illustrate the factors used in this study.

For the training cohort, the multivariate proportional hazards model for the automated MRI-
derived factors demonstrated significant effects for the medial temporal factor [Hazards Ratio
(HR) =0.43{95% Confidence Interval (CI), 0.32-0.55}, p < 0.0001], the fronto-parietoccipital
factor [HR=0.59{95% CI, 0.48-0.80}, p < 0.001], and the lateral temporal factor [HR=0.67
{95% CI, 0.52-0.87}, p < 0.01]. For the validation cohort, the multivariate proportional hazards
model showed significant effects for the medial temporal factor [HR=0.44 {0.32-0.61}, p <
0.001] and lateral temporal factor [HR=0.49 {0.38-0.62}, p < 0.001]. The prediction accuracy
for training cohort was AUC = 0.82, sensitivity = 74%, specificity = 84%, positive predictive
value = 77%, negative predictive value = 82%, positive likelihood ratio = 4.65, negative
likelihood ratio = 0.30. The prediction accuracy for the validation cohort was AUC = 0.84,
sensitivity = 87%, specificity = 66%, positive predictive value = 60%, negative predictive value
= 82%, positive likelihood ratio = 2.53, negative likelihood ratio = 0.39.
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The additional CSF and FDG-ROI multivariate proportional hazards models demonstrated
significant effects for Aβ1-42 [HR=0.99 {95% CI, 0.98-0.99}, p < 0.05] and metabolic
measurements from the inferior temporal cortex [HR=0.002 {95% CI, 0.00-0.19}, p < 0.01.
The prediction accuracy of these two measures was AUC = 0.70, sensitivity = 93%, specificity
= 48%, positive predictive value = 53%, negative predictive value = 92%, positive likelihood
ratio = 1.78, negative likelihood ratio = 0.13. The final multivariate Cox model demonstrated
that only the medial temporal factor [HR=0.53 {95% CI, 0.34-0.81}, p < 0.001] represented
the best measure to predict time to progress from MCI to AD. The lateral temporal factor
[HR=0.83 {95% CI, 0.47-1.40}, p > 0.1], Aβ1-42 [HR=0.99 {95% CI, 0.98-1.00}, p > 0.1] and
metabolic measurements from the inferior temporal cortex [HR=0.24 {95% CI, 0.00-35.2}, p
> 0.1] did not demonstrate significant effects. The addition of the neuroanatomic factors
significantly improved (p < 0.001) the prediction accuracy compared to CSF and FDG-ROI
measures alone (AUC = 0.83, sensitivity = 90%, specificity = 69%, positive predictive value
= 64%, negative predictive value = 92%, positive likelihood ratio = 2.90, negative likelihood
ratio = 0.32. In order to ensure that the results presented here were not subject to sample size
related issues, we evaluated the four neuroanatomic factors as predictors in an independent
Cox model using only those MCI individuals with CSF and PET measures (total MCI = 78,
MCI-Converters = 30, MCI-Nonconverters = 48) and found that for this smaller sub-sample,
the medial temporal factor continued to demonstrate significant effects [HR=0.40 {95% CI,
0.19-0.58}, p < 0.01].

The probability of progressing from MCI to AD based on the value of the medial temporal
factor (volume and thickness), derived from the training and validation cohorts, is illustrated
using predicted survival plots based on the multivariate Cox models (Figure 3). Based on these
models, by 3 years from baseline, an MCI individual with a medial temporal factor value at
the MCI average has a 44% to 52% probability of progressing to AD. In comparison, by 3
years from baseline, an MCI individual with a medial temporal factor value 1 SD below the
MCI average has a 74 to 85% probability of progressing to AD and an MCI individual with a
medial temporal factor value 1 SD above the MCI average has a 22 to 28% probability of
progressing to AD.

DISCUSSION
These results demonstrate that automated MRI measurements of medial temporal cortex
thickness and volume successfully predict the time to progress from MCI to AD, demonstrate
robust reliability and consistency across multiple cohorts, and outperform CSF and PET
measures as predictors of clinical disease progression. Taken together, these findings indicate
the importance of using automated MRI-based software tools as a predictive marker for
Alzheimer's disease.

Automated MRI measures can successfully quantify the risk associated with progressing to
AD. Amongst MCI individuals, atrophy of the medial temporal factor regions (consisting
primarily of entorhinal cortex thickness, hippocampal volume, amygdala volume, temporal
pole thickness, and parahippocampal gyrus thickness) was associated with a greater than 50%
risk increase in the training and validation cohorts. Based on these multivariate models, by 3
years from baseline, MCI individuals with significant atrophy of the medial temporal factor
regions (1 SD below the MCI average) are three times as likely to progress to AD, compared
to MCI individuals with preserved medial temporal factor regions (1 SD above the MCI
average). These time to progress risk assessments are consistent with prior structural MRI
studies of MCI progression utilizing the hippocampus and entorhinal cortex (Jack et al.,
1999; Apostolova et al., 2006; Devanand et al., 2007; Kantarci et al., 2009; Desikan et al.,
2009a) and demonstrate that limbic and pro-isocortical regions, such as the amygdala and
temporal pole, are additionally important as predictors for the earliest stages of AD.
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The results presented here indicate that unbiased dimension reduction approaches, such as
factor analyses, can be utilized on a large number of automated MRI measures to derive a set
of neuroanatomic factors that can successfully predict the time to progress from MCI to AD.
The fact that the regions of the 1) medial temporal, 2) frontal parietal, 3) lateral temporal, and
4) frontal cingulate cortices combined together to form individual factors is consistent with the
hierarchical pathology of AD (Arnold et al., 1991; Braak and Braak 1991; Kemper 1994) and
suggests the potential of using automated MRI measures for the in vivo staging of Alzheimer's
pathology. As disease predictors, though the value of the hazard ratios were comparable in
magnitude, the narrow confidence intervals for the individual neuroanatomic factors, compared
with the wide confidence intervals for the individual ROIs (data not presented), indicates that
factor based automated MRI assessments are more precise than individual ROIs for quantifying
the risk associated with disease progression.

The results from the multivariate proportional hazards models further illustrate that the training
cohort derived medial temporal factor loadings are highly consistent and reproducible. In
predicting the time to progress from MCI to AD, the hazard ratio for the medial temporal factor
was similar across the training and validation cohorts indicating the reliability of this measure
across multiple MCI cohorts. In contrast, the hazard ratio for the lateral temporal factor was
different across the training and validation cohorts suggesting that for disease prediction this
measure is not as reliable as the medial temporal factor. Furthermore, when the medial temporal
factor regions were used for estimating survival, a similar number of MCI individuals from
the training and validation cohorts progressed to AD at 1, 2, and 3 years from baseline. This
shows that the training cohort derived medial temporal factor loading values are clinically
applicable and can be used for predicting disease progression in populations other than that
from which the training cohort were drawn.

As a predictor of clinical disease progression, atrophy of the medial temporal cortex
outperforms cellular measures of pathology and metabolic assessments of the cerebral cortex.
Though CSF-based Aβ1-42 and PET-based metabolic measurements from the inferior temporal
cortex individually predicted progression to AD, when combined with the neuroanatomic
factors, these measures could not predict clinical decline as successfully as the medial temporal
factor. These findings are in accordance with prior MCI studies demonstrating better disease
prediction with structural neuroimaging markers than either CSF (Vemuri et al., 2009) or PET
measures (Walhovd et al., 2009), although a recent meta-analysis did find that PET is a slightly
better disease predictor than MRI (Yuan et al., 2009). Given the high negative predictive value
of 92% and the low negative likelihood ratio of 0.13, these findings suggest the potential for
using CSF and PET measures as a potential screening tool. However, given the comparable
AUC and positive predictive value for the combined CSF, PET and MRI measures compared
to the MRI measures alone (both for the training and validation cohorts), our results suggest
that further studies are needed to determine whether the diagnostic benefits of using multiple
modalities outweigh the costs.

Why do morphometric measures of atrophy better predict disease progression than cellular or
metabolic markers of pathology? One explanation may involve the temporal evolution of the
AD disease process where Aβ and metabolic changes precede gray matter disturbances (Jack
et al., 2010; Frisoni et al., 2010). Recent studies have shown that amyloid deposition is present
before the onset of cognitive decline (Sperling et al., 2009) and potentially contributes to
metabolic and network-wide disruptions within cerebral cortical regions (Buckner et al.,
2005, 2009; Hedden et al., 2009). As such, Aβ and FDG-PET measures are likely more useful
earlier in the disease process, possibly as a screening tool, than as a late predictive marker of
MCI progression. Another explanation could be that automated MRI-based measures are a
more stable indicator of long term neuronal injury than CSF or FDG-PET markers. Structural
MRI measures are not subject to diurnal variation, unlike proteins measured from the
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cerebrospinal fluid (De Leon et al., 2002) and likely reflect neuronal loss better than metabolic
measures, which largely indicate fluctuations in synaptic activity and action potential
propagation (Attwell and Laughlin 2001).

The methods described here can be implemented in a clinical setting as a predictive marker for
AD. Using these software tools a single volumetric baseline T1-weighted MRI scan can be
completely processed, with minimal manual intervention. The factor loadings presented here
can then be applied to the final output values of entorhinal cortex thickness, hippocampal
volume, amygdala volume, temporal pole thickness, and parahippocampal gyrus thickness to
quantify the 1, 2 and 3 year probability of a single individual progressing from MCI to AD.

The present study has limitations. This study was conducted on a carefully examined cohort
of MCI individuals selected using criteria for inclusion in clinical trials. As such, these results
need to be validated on a larger, community-based, volunteer cohort that would be more
representative of a clinical setting. A second limitation is the relatively short follow-up times,
which could have resulted in including individuals with a greater degree of impairment thus
increasing the likelihood of finding significant differences. Prior work from our group has
shown that MRI measures can successfully predict progression to AD in milder MCI
individuals with longer follow-up times (greater than five years) (Desikan et al., 2009a).
Considered together, these results suggest that MRI measures have significant value as a
predictive marker both in the early and later stages of disease progression. Another concern is
that the smaller sample size of MCI individuals with PET and CSF measures may contribute
to decreased power and non-significant effects for these two measures compared with the
medial temporal factor. In an independent Cox model using only those MCI individuals with
PET and CSF measures, the medial temporal factor continued to demonstrate a significant
effect, comparable in magnitude (Hazards Ratio of 0.40) to the risk noted in the larger training
(Hazards Ratio of 0.43) and validation cohorts (Hazards Ratio of 0.44) indicating that the main
findings from this study are likely not subject to sample size related issues.

The early identification and prediction of those cognitively impaired individuals destined to
develop Alzheimer's disease is of significant importance as therapies for altering the course of
the illness or delaying dementia onset are developed. The results from this study demonstrate
that automated MRI-based neuroanatomic measures can identify individuals in the earliest
stages of the disease process and have promise in the clinical setting as a biomarker for tracking
Alzheimer's disease progression.
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Figure 1.
Multivariate Cox model results for the four neuroanatomic factors derived from the training
cohort displayed on the gray matter surface (only one hemisphere is shown) in (a) lateral and
(b) medial views, and (c) in the coronal view of a T1-weighted MRI image. These factors
include the 1) medial temporal factor (individual ROIs illustrated in red), 2) fronto-
parietoccipital factor (individual ROIs illustrated in orange), 3) lateral temporal factor
(individual ROIs illustrated in bright yellow), and 4) fronto-cingulate factor (individual ROIs
illustrated in faded yellow). The color scale at the bottom illustrates the magnitude of risk
(hazard ratio) associated with progressing from MCI to AD, with faded yellow indicating
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regions with the lowest risk and red indicating regions with the highest risk (please see text for
specific hazard ratios for each of the factors).
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Figure 2.
T1-weighted MRI images in the coronal view showing marked differences in the medial
temporal lobe, specifically hippocampal volume and entorhinal cortex thickness, for a
representative (a) MCI-Converter and (b) MCI-Nonconverter. The red overlay shows the gray/
CSF boundary and the white overlay shows the gray/white matter boundary and the distance
between these surfaces represents the cortical thickness.
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Figure 3.
Predicted survival plots estimating the probability of progressing from MCI to AD in the
training (a) and validation (b) cohorts based on the value of the medial temporal factor (volume
and thickness), shown at the mean (red lines) and one standard deviation above (green lines)
and below (blue lines) the mean.
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Table 1

Descriptive statistical information for the participants in the study (means listed with standard deviations in
parentheses).

Training Cohort Validation Cohort

Diagnostic
Group

MCI-
Converters

MCI-
Nonconverters

MCI-
Converters

MCI-
Nonconverters

Sample
Size

60 102 58 104

Age 75.73
(6.86)

74.27
(7.47)

74.95
(7.21)

75.58
(7.22)

Percent
Female

42% 34% 40% 32%

MMSE 26.58
(1.83)

27.49
(1.73)

26.68
(1.70)

27.04
(1.71)

CDR-SB 1.85
(0.93)

1.53
(0.87)

1.83
(1.05)

1.46
(0.79)

Percent
APOE-ε4

65% 50% 67% 48%

Follow-up
Time

(years)

1.44
(0.60)

1.89
(0.66)

1.50
(0.68)

1.90
(0.62)
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