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Abstract
Predicting which individuals will progress to Alzheimer’s disease (AD) is important in both
clinical and research settings. We used brain Event-Related Potentials (ERPs) obtained in a
perceptual/cognitive paradigm with various processing demands to predict which individual Mild
Cognitive Impairment (MCI) subjects will develop AD versus which will not. ERP components,
including P3, memory “storage” component, and other earlier and later components, were
identified and measured by Principal Components Analysis. When measured for particular task
conditions, a weighted set of eight ERP component_conditions performed well in discriminant
analysis at predicting later AD progression with good accuracy, sensitivity, and specificity. The
predictions for most individuals (79%) had high posterior probabilities and were accurate (88%).
This method, supported by a cross-validation where the prediction accuracy was 70–78%, features
the posterior probability for each individual as a method of determining the likelihood of
progression to AD. Empirically obtained prediction accuracies rose to 94% when the computed
posterior probabilities for individuals were 0.90 or higher (which was found for 40% of our MCI
sample).
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1. Introduction
There is a pressing need for a reliable method of early detection in the study and treatment
of Alzheimer’s disease (AD), an age-related neurological illness with early cognitive and
behavioral disruption particularly in the domain of memory. Specifically, the discovery of a
biological marker for early detection of AD is vital. Brain Event-Related Potentials (ERPs)
may have the power to predict AD progression in individuals with impaired mental
functioning that does not reach the severity of clinically defined AD, a disorder known as
Mild Cognitive Impairment (MCI) (Petersen et al, 1999; Petersen et al., 2001). Amnestic
MCI is defined as memory difficulties without impairment in other cognitive domains or
impact on activities of daily living and is considered a transitional state between normal
aging and AD (Petersen, 2004). Because not all patients with MCI progress to AD, this
group is of great interest for research on predicting individuals who progress versus those
who do not. Brayne (2007) discussed the need for early detection and prediction and
lamented that research results refer to groups, not individuals. Our research has developed
methods with cognitive ERPs that are sufficiently robust to predict MCI individuals who
will develop AD with associated probability of progression for each individual.

Brain ERP components related to memory (Düzel et al., 1999; Farah et al., 1988; Missonnier
et al., 2003; Missonnier et al., 2004), vision (Beglieter et al., 1993; Beglieter et al., 1995;
Friedman et al., 1981), and stimulus expectations (Donchin, 1981; Hagen et al., 2006) may
be useful in understanding the cognitive deterioration seen in some MCI patients as they
progress to AD. ERP components have been used to discriminate between normal aging and
AD (Chapman et al., 2007), and it has been reported that ERPs may have important
predictive power in measuring degeneration from MCI to AD (Missonnier et al., 2005;
Missonnier et al., 2007; Olichney et al., 2002; Olichney et al., 2008). In this article, an ERP
component structure that was previously identified and measured by Principal Components
Analysis (PCA) and tested to be discriminatory of AD from normal aging (Chapman et al.,
2007) was applied to MCI subjects to determine if ERP measures can be combined in a
formal weighted fashion to predict progression to AD in MCI individuals.

The method and results presented in this paper generate and feature the posterior
probabilities of group membership for each individual, a facet of predicting AD progression
that we have not seen explored. Although it is often convenient to consider a diagnosis to be
a binary decision between the existence of a disease in a patient or not, this may not capture
the progressive nature of a dementia such as Alzheimer’s disease. The posterior probability
can be used to indicate the likelihood of an individual developing AD (as demonstrated
here) and perhaps might represent a measure of progression from a healthy, stable state to a
demented state. Knowing with a probability which individuals will develop AD at a later
date would allow early therapeutic and pharmacologic interventions.

2. Methods
2.1 Study subjects

We used 43 elderly individuals diagnosed with Mild Cognitive Impairment (MCI) (Table 1).
These subjects were recruited from the Geriatric Neurology and Psychiatry Clinic at the
University of Rochester and other affiliated University of Rochester clinics. All MCI
subjects were evaluated by memory-disorders physicians and met current consensus criteria
for the amnestic subtype of MCI (“a-MCI”) (Petersen et al., 1999;Petersen et al.,
2001;Petersen, 2004). (In this article, we will use the term “MCI” to refer to amnestic MCI).
Each MCI subject was subsequently determined to either have progressed to clinically
defined AD (through the NINCDS-ADRDA criteria (McKhann et al., 1984) and DSM-IV-
TR criteria for Dementia of the Alzheimer’s Type (Diagnostic and Statistical Manual of
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Mental Disorders-Fourth Edition, Text Revision;American Psychiatric Association, 2000))
or to have remained stable with regard to cognitive state. These independent determinations
were made through clinical follow-ups at a later date by the same memory-disorders
physicians, who were blind to our study data. Those who progressed were given the typical
clinical assessment of “probable” AD (but referred to here as AD for brevity’s sake). The
clinical diagnosis of MCI and AD was based on a detailed patient history, relevant physical
and neurological examinations and laboratory findings, and imaging studies routinely
performed as part of the clinical assessment of dementia (Petersen et al., 2001). Separate
cognitive testing was performed by the memory-disorders physicians to assist with their
diagnosis; these tests included the Mini Mental State Examination (MMSE) (Folstein et al.,
1975), a clock face drawing, the Auditory Verbal Learning Test (Rey, 1964;Taylor, 1959),
and a category fluency task (animal naming).

In order to match the terminology of the medical community, we will use the term
“Progress” to indicate the disease is progressing. Of the 43 MCI patients, 15 were
subsequently diagnosed with AD (the Progress to AD group, or Progress group) and 28 were
not (the Stable group). The median number of years between the initial diagnosis of MCI
and the subsequent diagnosis of AD was 0.9 (min=0.3, max=3.9, SD=1.1) for the Progress
group. For the Stable group, the median number of years between the initial MCI diagnosis
and the most recent clinical work-up was 2.07 (min=0.3, max=4.8, SD=1.2). Although the
time between our baseline ERP data collection and clinical follow-up was short for some
subjects, we included as many participants with follow-up information as possible to boost
the sample size used in our analysis understanding that some members of the Stable group
may not have been given enough time to progress to AD. The gender, age, education, and
MMSE demographics for each group appear in Table 1. There were no significant group or
gender differences for age and education. In the Progress group, 7 of the 15 individuals were
taking cholinesterase inhibitors and/or memantine at the time of testing. In the Stable group,
11 of the 28 individuals were taking these medications. The proportions taking these
medications were not significantly different between these groups (Fisher’s Exact Test, χ2

(1, N = 43) = 0.78, p=0.52).

Exclusion criteria for all groups included clinical (or imaging) evidence of stroke,
Parkinson’s disease, HIV/AIDS, and reversible dementias, as well as treatment with
benzodiazepines, antipsychotic, or antiepileptic medications. As an additional inclusion
criterion, all subjects had a previously administered score of 21 or higher on the MMSE (this
criterion included AD subjects recruited for this and other research; the MCI subjects used
in this study had mean MMSE scores of 25 or 27 (Progress or Stable) as shown in Table 1).
Our study received IRB approval from the University of Rochester Research Subjects
Review Board, and informed consent was obtained from each subject.

2.2 Neuropsychological assessment
In addition to the cognitive testing performed by the memory-disorders physicians who
routinely evaluated our subjects, we administered a neuropsychological test battery to the
MCI participants when the ERP data was collected as part of our experimental paradigm.
We designed the battery to produce a comprehensive sample of cognitive processes. Among
others, the tests included measures of memory retrieval and retention, generative fluency,
executive function, visuospatial abilities, and attributes of mood and daily living. The results
of these neuropsychological tests appear in Table 2. Only five measures reached statistical
significance at p<0.01, which was selected as a more conservative threshold than 0.05 yet
one that is less strict than the Bonferroni adjustment. All five measures were memory
measures, and only one of these measures relates to executive function (the Hopkins Verbal
Learning Test Discrimination Index). All other measures of executive function were not
significantly different between the groups. There was no significant difference between the
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two MCI subgroups in comorbid depressive symptoms (as shown through the Geriatric
Depression Scale) or in impact of disease on daily activities (indicated by the Blessed
Dementia Scale). In general, the mean scores for the Geriatric Depression Scale for each
group were considered “normal” for depressive symptoms (Hickie and Snowdon, 1987).

The neuropsychological assessment shown in Table 2 was not used by the memory-
disorders physicians in their diagnosis of the MCI patients. Their diagnostic decisions were
made completely independent of any data collected in our laboratory. While the two MCI
subgroups performed slightly differently, no MCI subject reached the diagnostic criteria for
AD. Additionally, on average the subjects of each group did not score 1.5 SD below the
normative mean on tests of other cognitive domains aside from memory, a criterion offered
by Petersen (2004) as indicative of amnestic MCI-like impairment. In examining each
individual’s neuropsychological test results, four subjects may have had impairments in
domains secondary to memory (cognitive domains as defined by the NINCDS-ADRDA
criteria). One member of the Progress group had impairment in the language domain and
three individuals had impairments with problem-solving (one member of the Progress group
and two members of the Stable group). However, even if some of the subjects had clinically
undiagnosed multiple-domain amnestic MCI, Petersen (2004) indicated that the pattern of
progression in both single-domain and multiple-domain amnestic MCI tends to lead to AD
(when other factors, such as a vascular or mood component, are excluded, as was done by
the memory-disorders physicians).

The neuropsychological assessment is reported here to help characterize the MCI group in
this sample. Detailed analyses of these data are not reported here because this paper is
focused on ERP measures.

2.3 The Number-Letter paradigm
Subjects completed a Number-Letter paradigm which employed a visual task with memory
and other cognitive demands. Memory storage of the first relevant stimulus was required in
order to compare it with the second relevant stimulus. Thus, in order to complete the task,
the subjects discriminated between stimuli relevant and irrelevant to the task. Two numbers
and two letters were flashed individually in random order at intervals of 750 ms preceded
and followed by a filled square comparable in size to the numbers and letters. All visual
stimuli were white presented briefly (∼20 ms) on a dark background. On a number-relevant
block of trials, the participant compared the two numbers in each trial for numerical order,
the letters being irrelevant to the task. On another block of trials, the numbers were
irrelevant and the task involved comparing the two letters for alphabetic order. At the end of
each trial, the participant said “Forward”, “Backward”, or “Same” to indicate the order of
the two relevant stimuli. The numbers (1 to 6) and letters (A to F) were randomly chosen,
and the sequences of numbers and letters in the four temporal intratrial positions were
randomized (constraint of two numbers and two letters per trial). Every participant was
shown a randomized sequence of trials. One block of 102 number-relevant and one block of
102 letter-relevant trials were completed by each subject. Subjects were provided practice
trials before these experimental blocks began.

Our MCI subjects were able to perform the task with strong success. The Progress group on
average answered correctly on 95.1% (SD = 3.7%) of the trials, and the Stable group
performed at 96.1% (SD = 3.9%). Both groups were similar to like-age, cognitively normal
Controls (96.0%, SD = 2.6%).
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2.4 EEG recording
Scalp electrodes (O1, O2, OZ, T3, T4, T5, T6, P3, P4, PZ, C3, C4, CZ, F3, F4, and EOG
with reference to linked earlobes) recorded electrical brain activity while the participant
performed the Number-Letter task. To begin with a simpler model developed for clinical
purposes, we will limit our report in this case to analysis of ERPs at CZ. Picton et al. (2000)
wrote in their guidelines that ERPs can be adequately examined for clinical purposes using a
single recording channel. Collecting ERP functions at a distance from their discrete brain
sources is facilitated by volume conduction in a conducting medium, measures that are
based on electrical potential differences between electrodes, and dipole orientations of the
sources. Keeping the number of measures entering a discriminant analysis low relative to the
number of observations (individuals) is important for not capitalizing on chance in the
development of a discriminant function. This is a major methodological reason for limiting
the electrodes in this analysis. The central midline site (CZ) is featured here because it
provides a good view of many ERP components of interest (Chapman, 1969; Chapman,
1974; Chapman and McCrary, 1979) with the same paradigm used here. Moreover, we have
disentangled and measured partially overlapping ERP components based on a formal
analysis (PCA) that yielded eight ERP components from this site with similar subjects
(Chapman et al., 2007) and successfully used these measures in discriminating AD and
Control individuals.

Frequency bandpass of the Grass amplifiers was 0.1 to 100 Hz. Beginning 30 ms before
each stimulus presentation, 155 digital samples were obtained at 5 ms intervals.
Subsequently, the digital data were digitally filtered to pass frequencies below 60 Hz, and
artifact criteria were applied to the CZ and EOG channels to exclude those 750 ms epochs
whose voltage range exceeded 200 µV or whose baseline exceeded ±250 µV (baseline was
mean of 30 ms pre-stimulus). The ERPs were based on correct trials and data not rejected
for artifacts. Mean artifact rejection rate for all MCI subjects was 6.4% (SD = 13.8%).

2.5 Statistical analysis
Event-Related Potentials: Principal Components Analysis—ERPs were derived
for each subject from the EEG vectors (155 time points) by averaging each vector separately
for each of the stimulus conditions in this experimental design. Kayser and Tenke (2005)
discuss the difficulty in visually identifying and quantifying the ERP components “even
after thorough inspection of the waveforms”. In our study, ERP components were identified
and measured by Principal Components Analysis (PCA) with Varimax rotation which
allows the variations due to experimental conditions and individual differences in the data to
define the ERP components. While some have expressed concerns about PCA in ERP
component analysis, the major misgivings focus upon misallocation of variance. Picton et al.
(2000) have stated that misallocation of variance is a problem general to any analysis of
ERP data where components overlap. Several simulation studies revisited the problem of
misallocation of variance by modeling the component prototypes introduced by Wood and
McCarthy (1984) using new perspectives and comparisons not previously considered
(Achim and Marcantoni, 1997; Beauducel and Debener, 2003; Chapman and McCrary,
1995; Dien, 1998). For reviews of recent developments using PCA, see Kayser and Tenke
(2005) and Dien et al. (2005). For instance, Chapman and McCrary (1995) noted that the
misallocation of variance, or component leakage, is likely due to correlated prototypes rather
than their overlap and may spread from components producing a large effect size to
neighboring components that yield a much smaller effect size. That paper also demonstrated
that when the original component prototypes were slightly altered, there was no leakage
among the PCA components; however, a peak amplitude measure resulted in a perfect 100%
misallocation of variance. Moreover, when the PCA scores are used as predictors in
discriminant analyses for purposes of classification (as is done here), they are linearly
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combined in discriminant functions and any spreading of effects to other components should
be automatically adjusted by the weights being developed to maximize the discrimination
between classes (groups).

We previously performed the PCA using a correlation matrix of the 155 time points on 48
individuals: 12 with clinically diagnosed AD, 12 MCI individuals, 12 elderly Controls, and
12 young subjects. This set of varying groups all completed the same Number-Letter task
under the same experimental and recording conditions, and these subjects and their ERP
data were used in a previous study to discriminate between AD and normal cognition using
ERP components (for more information, see Chapman et al., 2007). This set of groups was
used to create components that would be more generalizable to a wider array of individuals
(John et al., 1993). Of the 12 MCI subjects used in developing this component solution, only
4 appear in the MCI dataset of this paper. Deriving a component solution from a narrow set
of similar individuals has been shown to limit the range in the variables and attenuate
correlations among variables that can result in falsely low estimates of component loadings
(Fabrigar et al., 1999). Thus we included a wide variety of individuals in developing our
ERP component solution (Chapman et al., 2007). In addition to the technical reasons given
for including individuals from diverse groups, it is desirable to have established a method of
measuring the ERP components that does not require doing a complete PCA for each new
subject, but rather simply applying the “component loadings” that were already developed.

Eight components were retained by Kaiser’s Eigenvalue > 1 rule (accounting for 95% of the
variance). The components included well-known components, such as C415, which is often
called parietally-loaded P3 (Chapman, 1965; Chapman and Bragdon, 1964; Chapman et al.,
1978; Chapman et al., 1981; Donchin, 1981), contingent negative variation (CNV) (Walter
et al., 1964), and memory “storage” component C250 (Chapman et al., 1978; Chapman et
al., 1981), as well as other early and late components. Part of the PCA output (the
component loadings) represented the temporal waveforms of each ERP component
(Chapman et al., 2007). Here the ERP component scores (mean zero and variance one) of
the 43 MCI individuals were measured using the component structure developed in that
previous PCA analysis. We mathematically generated component scores given the ERPs for
each subject’s experimental conditions (component_conditions). The SAS 9.1.3 procedures
FACTOR and SCORE were used to generate the component solution and calculate
component scores for the MCI groups (SAS OnlineDoc 9.1.3).

For this report, only measures for relevant and irrelevant conditions averaged over all the
other conditions were analyzed in the discriminant analyses. The intratrial positions and the
stimulus conditions of each component were averaged separately for relevant and irrelevant
stimulus conditions resulting in 16 ERP component_conditions (8 ERP components
obtained for relevant and irrelevant stimuli) for each subject. The blank conditions (the first
and last epochs of each trial where the subject saw the square stimuli) were omitted from
further analysis. Unlike our previous work (Chapman et al., 2007), the
component_conditions were further averaged over the trial number (odd, even). This was
done to increase the sample size of each ERP component_condition and reduce noise.

Discriminant Analyses—The component_conditions for each MCI subject were used to
predict the individuals who would develop AD at a later date and those who would remain
stable. This was completed through another multivariate procedure: discriminant analysis
based on Bayesian posterior distributions (Ingelfinger et al., 1983). The linear discriminant
function is comprised of the sum of the scores of the selected component_conditions, and
each component_condition was weighted by its best contribution in differentiating the
subject groups (Progress vs. Stable). First, a stepwise discriminant procedure selected the
component_conditions best able to differentiate between the two subject groups (PROC
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STEPDISC of SAS; see below). This was done by first selecting the component_condition
that best discriminates. The next component_condition was then chosen after the
discriminatory effect of the first one was removed. This process continued until there was no
important improvement in the discriminability of the function. After selecting the predictor
variables, discriminant functions, created from the groups’ ERP component scores of the
chosen component_conditions (Table 3 and Table 4), were used in a second procedure to
classify each MCI individual as either a member of the Progress group or the Stable group.
This classification was dependant on from which group that individual had the smaller
generalized squared distance (PROC DISCRIM of SAS; see below).

In addition, a one-left-out cross-validation was computed to assess classification of subjects
that had not contributed to the development of the discriminant functions. The cross-
validation uses two distinct samples (development and validation). When each individual
serves as validation, that individual does not contribute to the development of the
coefficients in the discriminant equation. Thus, a new discriminant function is developed for
and tested on every subject individually. This validation method has been shown to achieve
a nearly unbiased estimate (Hora and Wilcox, 1982; Lachenbruch, 1975), and when all
predictors are forced into the equation, bias is eliminated (Tabachnick and Fidell, 2001). We
used the stepwise procedure only to select the variables to use, and these variables remained
fixed in the discriminant procedure and cross-validation procedure where all were forced to
enter. Additionally, we chose this method considering sample size limitations and our desire
to use as much data as possible in the development of the discriminant function (Johnson
and Wichern, 2002). This jackknifed classification validation makes good use of a limited
number of individuals in that all but one of them contribute to the development, and the
larger sample size (n-1 compared to n/2 in a split-half approach) enhances the stability of the
solution. This solution stability coupled with elimination of bias in classification makes for a
better approach given a limited, fixed sample size. Hora and Wilcox (1982) indicated that
the one-left-out method is a “superior alternative” to a split-half method, which has an
unfortunate effect of reducing the effective sample size.

Discriminant analysis also provides the posterior probability of group membership for each
subject, which adds a key quantitative context when analyzing binary predictions for
individuals. The accuracy of these predictions based on ERP data was assessed by
comparing with the later clinical outcome for each subject. We also calculated the sensitivity
and specificity of the group classifications.

Discriminant analysis was used because the procedure not only can develop classification
(discriminant) functions, but it also computes the posterior probability of group membership
for each individual as an integral part of the computation. The STEPDISC and DISCRIM
procedures of SAS 9.1.3 (SAS OnlineDoc 9.1.3) were used to conduct the discriminant
analyses. To evaluate the statistical significance of our classification results, we applied a
one-tailed Fisher’s Exact Test with an alpha level of 0.05. This test is appropriate because
each individual is placed in a cell in a 2×2 contingency table: ERP test classification of
Progress or Stable by clinical diagnosis of Progress or Stable. We would not consider the
ERP predictions successful if they were significantly in the wrong direction, so a one-tailed
rejection region is appropriate. As was performed on the neuropsychological data, p values
calculated from the Fisher’s Exact Tests on classification results were corrected with a
Bonferroni adjustment for multiple comparisons (Shaffer, 1995).
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3. Results
3.1 Group mean ERPs to relevant and irrelevant stimuli

For illustrative purposes, the ERPs of the Progress and Stable groups were averaged
separately for the relevant and irrelevant stimulus conditions. These mean ERPs were
visually compared to those from a group with clinically diagnosed AD and those from a
group of like-age Controls judged by memory-disorders physicians to have normal cognitive
function (Figure 1). The ADs and Controls are the same subjects who contributed to the
PCA component solution (Chapman et al., 2007). Although all the MCI individuals were in
the same clinical diagnostic group at the time their ERPs were recorded, those that later
would progress to AD showed obviously different average ERP waveforms than those who
would remain stable. The differences in ERP amplitude between the relevant and irrelevant
conditions were much smaller for the Progress group (which was similar to the AD group,
plotted above) than the Stable group (which was similar to the Control group, plotted
below).

Although Figure 1 represents the observed ERPs, these will mirror virtual ERPs for the
relevant and irrelevant conditions. Since 95% of the variance of the PCA dataset was
accounted for by the eight components retained, the virtual ERPs built from these eight
components with the appropriate component scores for the experimental conditions (Table
3) will very closely approximate the observed ERPs. Examples like this were shown in
Chapman et al., 1979 for the same paradigm where 96% of the variance of the PCA dataset
was accounted for by eight ERP components. Looking at these overall average waveforms
may lead to interpretation without benefit of knowing the underlying components. However,
we present them in Figure 1 to offer an overall impression that the ERP waveforms may be
different between the Progress and Stable groups under our experimental conditions as well
as different from AD and Control groups. We take account of the variability within groups
after measuring the ERP components and using their amplitudes (component scores) (Table
3).

3.2 Predicting MCI individuals who progress to AD (discriminant analyses)
To predict which MCI individuals will progress to AD and which will not, we used
discriminant analysis to derive and apply a weighted combination of ERP component scores.
The temporal waveforms of the five ERP components used in the discriminant analysis are
shown in Figure 2. The group mean component scores for the relevant and irrelevant
stimulus conditions for each of the eight components are listed in Table 3, and Table 4A
contains the group-derived discriminant functions for the eight selected
component_conditions. Little credence should be placed in the meaning of the particular
coefficients found for the sample unless all important variables are known to be included in
the analysis or are known to be uncorrelated with the variables already included (Ahlgren,
1986). We show them here because they were used in the discriminant functions as the
weights to be multiplied by the ERP component_condition scores of an individual and as a
set were assessed to have favorable, statistically significant classification success (Table
4B). Furthermore, they may be used as a tool in analyzing additional data. It should also be
noted that an examination of the univariate group mean component scores listed in Table 3
may not reveal the relative contributions of the components selected in the multivariate set
with the greatest discriminability between the groups because the stepwise discriminant
procedure takes the correlations among the component scores into account during its
analysis.

The discriminant functions were individually applied to the component scores of the 43 MCI
subjects to classify each subject into the Progress or Stable group with an associated
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posterior probability. Of the 15 MCI individuals in the Progress group, our ERP test
measures correctly predicted 12 would later develop AD (Table 4B). The discriminant
analysis also correctly predicted 22 of the 28 subjects in the Stable group would not progress
to AD. Overall, 34 of 43 individuals were correctly classified, a prediction accuracy of 79%
(Fisher’s Exact Test, χ2 (1, n = 43) = 13.8, p=0.0009). The sensitivity (the number of MCIs
who were correctly predicted to progress to AD out of the total number that did progress to
AD) and the specificity (the number of MCIs correctly predicted to remain stable out of the
total number that did remain stable) were 0.80 and 0.79, respectively. Thus, the ERP
components were able to detect progression to AD and differentiate between progression
and stability with good success. Also, it is possible that, given more time, some members of
the Stable group might develop AD. If the six stable individuals who were predicted to
progress to AD in fact develop it later, then the accuracy, sensitivity, and specificity would
increase.

All four subjects with possible multiple-domain amnestic MCI received correct predictions
from our ERP method (two to progress and two to remain stable). Thus this basis of
prediction may apply to both single-domain and multiple-domain amnestic MCI, though
further study is necessary to confirm this.

It was important to determine how confident (probable) these predictions were. In addition
to the decision of group membership (will progress to AD or will remain stable) for each
participant, the posterior probability of membership in either group was also provided by the
discriminant procedure (for an example, see Chapman et al., 2007). This added a
quantitative context to the binary predictive decision by supplying a measurement of
likelihood that the group into which the subject was placed by our ERP measures was the
correct one. The obtained prediction accuracy (percent of subjects correctly classified) for
each posterior probability bin was plotted (Figure 3). Subjects were placed in posterior
probability bins by their probability of belonging to the group in which the discriminant
function placed them (and placement was determined by the group for which the posterior
probability was greater than 0.50). First, the obtained prediction accuracy does dramatically
rise with posterior probability. Most (34) of the 43 subjects lie in highly confident posterior
probability bins (0.70 – 1.00). Additionally, half of the 34 subjects lie in the highest
confidence bin (0.90 – 1.00), where the obtained prediction accuracy was 94%. Even in the
slightly less confident bins, the prediction accuracy remains very good (81%–84%). Only in
the lowest bins (which contain only 9 subjects) does the accuracy greatly decrease to near
50%. These bins (0.50 – 0.59 and 0.60 – 0.69) could be considered “too close to call”. The
remaining 79% of individuals were correctly predicted with 88% accuracy. Thus, with this
method of using the posterior probabilities, most of the subjects have correct predictions,
and the confidence in those predictions is high.

In addition, a cross-validation was performed. The cross-validation created discriminant
functions for each individual using the data of all other subjects in the MCI group and then
used those functions to classify the individual as a member of either the Progress or Stable
groups. Thus, 43 separate pairs of discriminant functions were calculated. The mean
discriminant coefficients for each component_condition for each group are shown in Table
5. Two aspects of these results should be noted: first, the variabilities (standard deviations)
of the coefficients were low. Second, the mean coefficients in the cross-validation were
extremely similar to those in the development function (Table 4A); in all cases, the
development coefficients lie well within one standard deviation from the mean cross-
validation coefficients. This suggested that the cross-validation was testing essentially the
same discriminant functions as those created using the development set. Therefore, the
cross-validation tested an independent sample (each of the 43 subjects, classified one at a
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time) with a relatively stable discriminant function that was derived for each individual
without using that individual’s data.

The cross-validation produced slightly lower classification results: 30 of 43 individuals were
correctly predicted, resulting in 70% prediction accuracy (Table 6A, using a cut point of
0.50). Given that some subjects with low posterior probabilities of group membership may
not have confident predictions and are perhaps “too close to call” (suggesting a cut point of
0.70 for classification), we analyzed the posterior probabilities provided by the cross-
validation using only the probable predictions (probable progression and probable stability).
The results were improved; disregarding the lowest two probability bins, 25 of the 32
individuals had 78% prediction accuracy in the cross-validation (Table 6B). This suggests
that few MCI subjects would be in the “too close to call” category and many (74%) would
belong to the probable category.

Additionally, a bootstrapping validation approach was performed where the 43 subjects
were randomly sorted without replacement into a 15 subject pseudo-Progress group and a 28
subject pseudo-Stable group irrespective of their clinical diagnoses. The two randomized
groups were then classified using the discriminant function developed from the eight ERP
component_conditions (Table 4A). An average accuracy, sensitivity, and specificity for the
development results of 25 iterations of these randomized groups were calculated. The extent
to which our original development results (79% accuracy, 0.80 sensitivity, 0.79 specificity)
were outliers in this distribution of classification results with pseudo groups is a measure of
our discriminant functions’ validity and generalizability relative to a random sampling of
subjects. The discriminations of the 25 random samples produced a mean (SD) accuracy of
53.4% (6.8%), a mean sensitivity of 0.42 (0.09), and a mean specificity of 0.58 (0.05). The
accuracy obtained in our development results was more than 3.5 SDs above the mean
random accuracy. Likewise, our development sensitivity and specificity were more than 4.0
SDs above the mean random sensitivity and specificity.

For a neuropsychological comparison to the ERP measures, we used each subject’s
individual MMSE score in a discriminant analysis to determine how well this ubiquitous test
of general cognitive ability can predict outcomes. Of the 43 subjects, 28 were predicted
correctly (65%, a result that was not statistically significant at the 0.05 level). The sensitivity
and specificity dropped to .60 and .68, respectively. Clearly the ERP measures performed
better than the MMSE as predictors of individual MCI progression to AD.

While discriminant analysis could be performed more simplistically using a single
component_condition, we discovered this produced worse results. In analyzing each of the
eight selected component_conditions in separate discriminant analyses where each variable
was used individually to classify the 43 MCI subjects, on average, they performed no better
than chance (mean(SD) accuracy = 55.0% (6.66%); sensitivity = 0.55 (0.09); specificity =
0.55 (0.06)). The best single component_condition was C185_Rel, which only reached an
accuracy of 67%. This was still 12% lower than what the linear combination of these
components achieved (Table 4B).

4. Discussion
4.1 ERP components as predictive biomarkers of AD

The ERP components performed with good accuracy, sensitivity, and specificity at
predicting which MCI individuals would later develop AD and which would not. Our
method benefits from several advantages. First, using a perceptual/cognitive paradigm with
memory processing demands (encoding, retrieval) allows assessment of brain functioning
related to cognitive processes believed to be affected by AD. This task contains built-in
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control stimuli (the irrelevant stimuli), and it also manipulates the expectancy of a relevant
stimulus. In addition to previous work with this paradigm (Chapman et al., 2007), this study
suggests that analyzing ERPs collected at CZ provides a good initial view (due to volume
conduction) of the cognitive processes that may be affected by the deterioration seen in early
AD and MCI. Second, ERPs have a temporal resolution that is fast enough to maintain pace
with neural processing. In analyzing the ERPs, employing a formal multivariate procedure
(PCA) is a third advantage as it permits a data-driven approach to measuring ERP
components. Fourth, discriminant analysis combines ERP component_conditions in a
weighted manner to predict progression to AD in MCI individuals with good success.

Our results are related to some of those reported in the literature. Missonnier et al., 2007 and
Olichney et al., 2008 present prediction accuracies for their study of MCI progression with
ERPs in the 80–90% range, which roughly agrees with our findings. Additionally, Jelic et al.
(2000) used quantitative EEG markers and frequency bands to predict progression to AD
with 85% success. Prichep et al. (2006) also reached 86% success in predicting conversion
to AD over a longer time (seven years) using quantitative EEG, although only seven of their
study group developed AD. Validation of these varied results is warranted.

Finally, another advantage of our method is the posterior probabilities associated with the
binary prediction for each individual, which add a quantitative measure of confidence in that
prediction. We have not often found these measures used or discussed in the literature on
predicting MCI progression in individuals. Featuring the posterior probabilities is important
for several reasons. It allows a determination of which subjects may be “too close to call”
(e.g., the determination of a cut point of group membership for classification); these
subjects, because of their low posterior probabilities (near chance), should be considered
indeterminate in their diagnosis. For example, when removing the “too close to call”
participants from the cross-validation analysis by adjusting the cut point to 0.70, diagnoses
became more realistic as only the probable predictions remained. This is particularly true of
the Stable individuals who lie in the “too close to call” range. Seven of the nine individuals
in this range for the development set were Stable subjects who may not have been given
enough time to progress to clinically defined AD.

Although it is convenient to consider the prediction outcomes to be binary (either the subject
developed AD or did not), the posterior probabilities can be considered to measure disease
progression. In this case, they create a continuum of progression to AD and an individual is
directly placed along this continuum by the discriminant function according to his or her
probability of group membership. We believe evaluating the posterior probabilities as we
have done is a novel approach that adds value to study of MCI progression to AD because it
allows the physician or researcher to both identify the probable predictions in a group of
individuals and perhaps measure the stage of progression for each individual. This could aid
a physician in determining the appropriateness of treatment, and it could benefit researchers
in selecting participants for their projects about whom they can be confident about the
subjects’ group membership.

In general, as is supported in the present work, having separable ERP components permits
differential weighting through a formal, data driven procedure that arrived at good
classification success for discriminating individuals who progress to AD from those who
have not. ERP responses to irrelevant stimuli, as well as to relevant, stimuli were important
to discriminating stable MCI individuals from progressive MCI individuals. C185_Rel was
our strongest ERP measure for predicting MCI individuals who will progress versus those
who remain stable. This relatively early ERP component (maximum near 185 ms
poststimulus, Figure 2) is more positive in response to visual stimuli that are relevant to the
task. Its amplitude tended to be more positive in MCI individuals who later progress than in
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MCI individuals who remain stable (Table 3). The larger amplitude in MCI individuals who
progress may be indicative of a compensatory stimulus processing effect. Another early ERP
component to both relevant and irrelevant stimuli with discriminatory power was C250,
peaking at 250 ms poststimulus. C250 is an ERP component that we previously discovered
in this Number-Letter paradigm and called the memory “storage” component, because it has
larger amplitudes when a stimulus is stored in short-term memory as subsequently assessed
by a behavioral memory probe technique (Chapman et al., 1978;Chapman et al., 1981). The
C415 component, with a positive maximum at 415 ms poststimulus, has been shown with
this type of paradigm to be larger in response to stimuli that are task relevant in normal
adults and parietally loaded (Chapman, 1965;Chapman and Bragdon, 1964;Chapman et al.,
1978;Chapman et al., 1981). Those MCI who progress tended to have less positive C415 to
relevant stimuli than the stable MCI individuals (Table 3), implying that difficulty in
differentiating and processing relevant and irrelevant stimuli, or possibly context-updating
(Donchin, 1981), may be indicative of AD-like cognitive decline.

There are limitations to our present work that require further research. Clinical follow-ups
were conducted approximately one to two years after the initial diagnosis and collection of
our ERP data. More time is required to determine how accurate the predictions could be and
how far in advance a prediction might hold. One might argue that some of the individuals
clinically diagnosed as MCI were really early AD at baseline (though not recognized by the
memory-disorders physicians). However, even if that were true, it is clear that all of those
later clinically diagnosed as AD (the Progress group) had sufficient clinical deterioration to
have had their diagnoses changed and thus would satisfy a “deterioration” criterion that
marks the Progress individuals as different from the Stable individuals at follow-up. Our
present data lack the statistical power to determine the influence of time on our results,
though work by others (Jelic et al., 2000) suggests inclusion of time in prediction models
does not improve predictive accuracy. Our discrimination results warrant further, direct
validation with a greater number of subjects. Additionally, the model we present here is
effective but likely could be improved further by adding additional or more refined
variables. While we believe this is an important first step, we have started with a relatively
sparse model with a desire to limit the number of variables in the discriminant analyses in
order not to overreach the degrees of freedom. Systematic latency differences in ERP
components could appear in the PCA component structure (discussed in Chapman and
McCrary, 1995). Spatial information provided by additional electrodes would be of interest
when larger samples are available. Finally, how our ERP biomarkers relate to other
predictors of MCI progression to AD (including neuropsychological test performance)
remains to be determined. Further work is necessary to determine the additive value of ERP
measures in a clinical setting, but there are several reasons that these measures might
improve MCI and AD assessment. First, ERPs more directly measure brain functions than
neuropsychological testing and anatomical brain scanning. Second, ERPs have a high
temporal resolution (milliseconds). ERPs also can measure underlying processes in a
noninvasive, less costly manner. Studying brain responses in this way may reveal
information that behavioral and some other biologic measures cannot. Finally, measures to
irrelevant stimuli are easier to obtain and are shown in the present work to be important to
classifying AD.

5. Conclusion
We believe this is the first report that utilizes formal multivariate analyses to measure
separable ERP components obtained while individuals perform a task and to combine these
ERP measures in a weighted and cross-validated way to predict with associated probabilities
which MCI individuals will progress to AD in the future and which will remain stable. In
addition to a binary prediction for each individual, the associated posterior probability offers
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a quantitative context that allows an estimation of confidence. This estimation was validated
by the empirically obtained prediction accuracies rising to 94% when the computed
posterior probabilities for individuals was 0.90 or higher (which was found for 40% of our
MCI sample). Such a quantitative biomarker warrants greater study and could be useful to
early treatment, as well as to elucidating understanding the progression from MCI to AD.
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Figure 1.
The mean brain ERPs to relevant and irrelevant stimuli for the AD(n=12), MCI
(Progress(n=15) and Stable(n=28)), and like-age Control(n=12) groups. The ERP data for
the MCI individuals were collected approximately 1–2 years before clinical follow-up where
progression to AD or stability was determined. For demographic information concerning the
ADs and the like-age Controls, see Chapman et al., 2007. The ERPs here were recorded at
CZ with reference to linked earlobes. The ERPS shown are from relevant and irrelevant
stimulus conditions averaged over all other conditions. For underlying ERP components, see
Figure 2 for temporal waveforms (loadings) and Table 3 for group mean component scores.
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Figure 2.
Temporal waveforms of the ERP components selected by the stepwise discriminant
procedure for their predictive power of progression to AD in MCI. Each component is offset
here with its baseline shown as a dashed line. In these component waveforms, the metric has
been restored by multiplying the loading at each time point by the standard deviation of the
data set at the corresponding time point (Chapman and McCrary, 1995). The amplitudes
depicted are for a component score of 1.0. The five components appear (top to bottom) in
the order they were selected by the discriminant procedure. The discriminant procedure
actually selected component_conditions (these were ERP components scores under either
relevant or irrelevant stimulus conditions; for more information, see Table 3 and Table 4).
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Figure 3.
The prediction accuracy for, and number of subjects in, each posterior probability bin based
on the development set. Prediction accuracy is the percent of MCI individuals correctly
predicted to progress to AD or remain stable. Each of the 43 MCI individuals was placed in
a bin by the probability of group membership calculated through the discriminant function
(placement was determined by the probability greater than 0.50). The number of subjects is
given below the x-axis (e.g. 16/17 = 16 of 17 subjects were correctly classified in this
posterior probability bin). Disregarding the bins with low probability (those that were “too
close to call”), the prediction accuracy and number of subjects data show 79% of the
subjects were predicted with high confidence (in the 0.70 – 1.0 bins) and 88% of these
predictions were correct.
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Table 1

Subject demographics. Values appear as mean (SD). The age and education information is in number of years.
There was no significant group effect, gender effect, or group by gender interaction for the age and education
demographics. Three subjects did not have MMSE scores, and two of those subjects also did not provide
education information.

Group Gender Age Education MMSE1

Mild Cognitive Impairment (MCI) (n=43)

  Progress (n=15) 3 Females, 12 Males 76.7 (5.2) 15.7(2.1) 25.0(3.2)

  Stable (n=28) 15 Females, 13 Males 74.8 (8.8) 14.2 (2.6) 27.1 (2.5)

1
MMSE = Mini-Mental State Examination (Folstein et al., 1975).
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Table 2

MCI Progress and MCI Stable group means (SDs) for each of the neuropsychological tests.

Group Mean Scores

Test Measure Progress (n=13)* Stable (n=27)* p Value†

Rey-Osterrieth Complex Figure (Rey, 1941; Osterrieth, 1944)

Copy Score 26.8(7.4) 30.8(3.9) NS

Immediate Recall Score 4.3(5.2) 10.6(6.8) <0.01

Delayed Recall Score 5.2(5.5) 9.5(7.2) NS

Mini-Mental State Examination (Folstein et al., 1975)

Score 25.0(3.2) 27.1(2.5) NS

WMS-III Digit Span (Wechsler, 1997)

Forward Score 6.3(1.1) 6.3(1.0) NS

Backward Score 4.8(1.0) 5.0(1.3) NS

Letter-Number Sequencing 4.5(1.3) 5.0(1.3) NS

Geriatric Depression Scale (Yesevage et al., 1983)

Score 7.2(7.7) 6.5(4.6) NS

WMS-R Logical Memory I (Wechsler, 1945; Wechsler, 1987)

Total Recall Score 23.2(11.5) 34.7(10.7) <0.01

WMS-R Logical Memory II (Wechsler, 1945; Wechsler, 1987)

Total Recall Score 9.2(10.8) 17.6(9.9) NS

Recognition Score 20.9(5.3) 24.1(3.9) NS

Clock Drawing Test (Tuokko et al., 1992)

Score 18.5(1.3) 18.6(2.3) NS

North American National Adult Reading Test (Grober and Sliwinski, 1991)

Score 38.2(7.2) 37.3(8.3) NS

Stroop Test (Golden, 1978)

Color-Word Score 26.6(10.8) 27.3(9.3) NS

Brief Visuospatial Memory Test-Revised (Benedict and Groninger, 1995)

Total Recall Score 7.5(5.2) 12.7(7.7) NS

Delayed Recall Score 2.1(2.1) 4.5(3.4) NS

Discrimination Index 4.6(1.6) 4.4(1.3) NS

Controlled Oral Word Association Test (Benton and Hamsher, 1976)

Total Score (F, A, S) 34.5(17.2) 37.6(12.4) NS

Category Fluency (Benton and Hamsher, 1976)

Score (animal naming) 13.4(5.7) 16.5(5.3) NS

Blessed Dementia Scale (Blessed et al., 1968)

Score 1.8(1.8) 1.3(1.4) NS

Hopkins Verbal Learning Test (Brandt, 1991)

Total Recall Score 17.1(5.9) 23.0(5.2) <0.01

Delayed Recall Score 2.9(4.0) 6.3(3.2) <0.01

Discrimination Index 6.7(3.6) 9.5(2.1) <0.01

Boston Naming Test (Kaplan et al., 1978; Mack et al., 1992)
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Group Mean Scores

Test Measure Progress (n=13)* Stable (n=27)* p Value†

Score (15 item maximum) 13.8(1.2) 14.3(0.8) NS

Standardized Road-Map Test of Direction (Money, 1976)

Score 26.7(7.4) 25.6(7.3) NS

Trail Making Test (Reitan, 1958)

Trail A Score (in seconds) 52.8(22.3) 40.6(12.4) NS

Trail B Score (in seconds) 182.3(118.9) 109.0(54.7) NS

*
Two members of the Progress group and one member of the Stable group did not complete the neuropsychological battery, leaving 40 MCI

individuals contributing to the group means reported.

†
In order to maintain a significance level of 0.05 for the entire family of neuropsychological tests, the Bonferroni adjustment would result in p <

0.002 for each individual test; using this, no test reached statistical significance at this level. Because the Bonferroni is often considered too
conservative, a two-tailed p level < 0.01 was selected. NS = not significant.
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Table 3

Mean component scores (SD) for the eight ERP components for the relevant and irrelevant stimulus
conditions for the Progress and Stable groups. The component scores were based on mean zero and variance
one.

ERP Component Scores (Group Mean and SD)

ERP Component Progress (n=15) Stable (n=28)

Stimulus Conditions Stimulus Conditions

Relevant Irrelevant Relevant Irrelevant

C1: Slow Wave −0.24(0.73) −0.50(0.75) −0.43(0.84) −0.67(0.57)

C2: CNV −0.49(0.95) −0.29(0.62) −0.71(0.62) −0.34(0.92)

C3: C415 “P3” −0.54(0.64) −0.74(0.63) −0.19(0.66) −0.76(0.67)

C4: C250 “Memory Storage” −0.39(0.82) −0.41(0.77) −0.32(0.46) −0.41(0.65)

C5:C140 0.10(0.72) 0.04(0.72) 0.06(0.67) 0.03(0.68)

C6: C540 0.23(0.89) 0.04(0.57) 0.11(0.87) 0.02(0.84)

C7: C325 −0.20(0.47) −0.18(0.40) −0.37(0.89) −0.12(0.49)

C8:C185 0.68(1.10) 0.46(0.96) 0.19(0.60) −0.02(0.73)
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Table 5

Cross-validation: mean linear discriminant function coefficients (SD) using ERP measures for classifying MCI
individuals into Progress to AD and Stable groups. Variable names: 3-digit numbers indicate latency (ms) of
the ERP component waveform maxima; Rel or Irr indicate relevant or irrelevant stimulus conditions that
evoked the ERP.

Variable Progress Stable

(n=15) (n=28)

Constant −1.54(0.31) −1.25(0.09)

C185_Rel 1.46(0.15) −0.36 (0.07)

C540_Rel 1.49(0.19) −1.49(0.20)

C415_Rel −1.62(0.23) 1.84(0.32)

C415_Irr −0.39(0.31) −3.34(0.27)

C250_Irr 2.09 (0.70) −3.05 (0.45)

C250_Rel −2.92 (0.84) 1.88(0.39)

C325_Irr −1.25(0.28) 1.04(0.18)

C540_Irr 0.04 (0.24) 0.90(0.16)

Note. Means and standard deviations of the coefficients were calculated from the cross-validation where each subject was omitted from creating the
discriminant functions. Thus, 43 sets of discriminant coefficients were the data underlying these numbers.
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