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ABSTRACT

Here we describe a novel microarray platform that
integrates all functions needed to perform any
array-based experiment in a compact instrument on
the researcher's laboratory benchtop. Oligonucle-
otide probes are synthesized in situ via a light-
activated process within the channels of a three-
dimensional micro¯uidic reaction carrier. Arrays
can be designed and produced within hours accord-
ing to the user's requirements. They are processed
in a fully automatic work¯ow. We have characterized
this new platform with regard to dynamic range, dis-
crimination power, reproducibility and accuracy of
biological results. The instrument detects sample
RNAs present at a frequency of 1:100 000. Detection
is quantitative over more than two orders of magni-
tude. Experiments on four identical arrays with 6398
features each revealed a mean coef®cient of vari-
ation (CV) value of 0.09 for the 6398 unprocessed
raw intensities indicating high reproducibility. In a
more elaborate experiment targeting 1125 yeast
genes from an unbiased selection, a mean CV of
0.11 on the fold change level was found. Analyzing
the transcriptional response of yeast to osmotic
shock, we found that biological data acquired on
our platform are in good agreement with data from
Affymetrix GeneChips, quantitative real-time PCR
andÐalbeit somewhat less clearlyÐto data from
spotted cDNA arrays obtained from the literature.

INTRODUCTION

Microarrays have become a standard tool in molecular biology
that has revolutionized genomics research. Microarrays are
used extensively for gene expression pro®ling (1,2) in many
applications including the discovery of gene function (3,4),
drug evaluation (4±6), pathway dissection (7), classi®cation of
clinical samples (8±10), exon mapping (11) and investigation
of splicing events (12). Arrays may be produced either by
deposition of presynthesized material (1,13±15) or by in situ
oligonucleotide synthesis (16,17). DNA arrays manufactured
by physical deposition of presynthesized material require
labor-intensive preparation and record-keeping of DNA
probes. In contrast, oligonucleotide arrays synthesized in situ
using a photolithographic method (18) only require DNA
sequence data. However, cost and time spent in generating the
photolithographic masks render this approach as slow and
in¯exible as the deposition methods. Recently, more ¯exible
microarray technologies have been developed. These employ
either ink-jet printing (19) or micromirror devices (20,21) for
in situ synthesis of customized oligonucleotide arrays.
Although these techniques provide full ¯exibility with respect
to the array design, the actual generation of the array and in
some cases even the hybridization and detection steps are
restricted to centralized manufacturer facilities. Again, the
investigator's ¯exibility remains limited. In addition, array
synthesis and subsequent processing steps are not physically
linked and require error-prone manual handling. The geniom
platform described here is the ®rst system to overcome these
restrictions. The investigator gains full control of the complete
work¯ow of any microarray experiment. The technology
integrates microarray production, hybridization and detection
in a compact benchtop unit. Automation of these processes
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and a powerful software interface allow the scientist to design
and perform microarray-based experiments using sequence
information derived from public databases. Microarrays are
generated by in situ oligonucleotide synthesis via a light-
activated process employing a digital micromirror device and
highly ef®cient photochemistry (22,23). Instead of a conven-
tional microscope slide, a truly micro-machined three-
dimensional microstructure bearing four individual channel-
like chambers (arrays) is used as a reaction carrier. This
approach allows one to run several array experiments on a
single carrier since up to four individual microarrays are
generated and may be hybridized sequentially or in parallel. In
contrast to the recently described maskless array synthesizer,
which also uses a micromirror device for in situ oligonucle-
otide synthesis (20), geniom is highly automated and
integrates all functions required to perform an array-based
experiment within a single device on the investigator's
laboratory benchtop. A more detailed description of this
technology is presented by StaÈhler et al. (24) and can also be
found in Supplementary Material Figure 1.

In the study presented here, we characterized the geniom
technology on a technical level with regard to dynamic range,
discrimination power and reproducibility. In addition, we
validated complex biological results acquired on the geniom
platform by comparison with existing technologies and
conventional standards. Analyzing the transcriptional re-
sponse of Saccharomyces cerevisiae to osmotic shock, we
found a good agreement of data obtained on geniom arrays,
Affymetrix GeneChip data, and expression results obtained by
quantitative real-time PCR. Our study also revealed a high
concordance of geniom results and cDNA data from the
literature (25). While the actual fold-change values are less
consistent in this latter comparison, the vast majority of genes
included in our study showed the same trend of regulation in
both assay systems.

MATERIALS AND METHODS

Oligonucleotide arrays

Light-activated in situ oligonucleotide synthesis was per-
formed essentially as described by Singh-Gasson et al. (20)
using a digital micromirror device (Texas Instruments). The
synthesis was performed within the geniom device on an
activated three-dimensional reaction carrier consisting of a
glass-silicon-glass sandwich (DNA processor; see Supple-
mentary Material Fig. 1). Four individually accessible
microchannels (referred to as arrays) etched into the silicon
layer of the DNA processor are connected to the micro¯uidic
system of the geniom device. Using standard DNA synthesis
reagents (Proligo) and 3¢-phosphoramidites carrying a 5¢-
photolabile protective group (22,23), oligonucleotides were
synthesized in parallel in all four translucent arrays of one
reaction carrier. Prior to synthesis, the glass surface was
activated by coating with a spacer. The synthesized probe sets
may be the same or different for all four arrays. Actually, the
time needed for synthesis of standard arrays used in this study
is independent of the number of different probe sets, the probe
sequences and the number of probes synthesized within one
probe set (current limit: 14 000 features per array; corres-
ponding to 4 3 14 000 = 56 000 features per reaction carrier).

However, the probe length substantially in¯uences synthesis
time. According to the conservative protocol used in this
study, the synthesis of four typical 25mer arrays (with 12 880
features each) takes ~15.5 h (including 1.5 h for the ®nal
deprotection step). The yeast probe set (ten 25mer probes per
transcript) was calculated based on the full genome sequence
(retrieved online from http://genome-www.stanford.edu/
Saccharomyces/) using a combination of sequence uniqueness
criteria and rules for selection of oligonucleotides likely to
hybridize with high speci®city and sensitivity. The selection
criteria were essentially as described in Lockhart et al. (2) with
modi®cations for the longer probes used here (25mers instead
of 20mers).

Yeast strain and growth conditions

Saccharomyces cerevisiae, wild-type strain W303-1A, MATa,
ura3-52, trp1D2, leu2-3_112, his3-11, ade2-1, can1-100
(accession no. 20000A; EUROSCARF, Frankfurt a.M.,
Germany) was grown in 240 ml batch cultures at 30°C in
YPD (1% yeast extract, 2% peptone, 2% glucose) to an A600 of
1.0. At this point, cells were collected for determination of
expression pro®les under baseline conditions. Osmotic stress
was applied by adding prewarmed (30°C) 5 M NaCl to a ®nal
concentration of 0.7 M NaCl. Cells were collected 45 min after
the addition of NaCl. Ten milliliters of suspension culture
were chilled on ice, cells were pelleted, washed once with
ice-cold water, frozen in a dry ice/ethanol bath and stored at
±20°C until use.

RNA extraction and preparation for hybridization

Total RNA was extracted from frozen cell pellets using a hot
phenol method (26). Ampli®cation and labeling was achieved
using a modi®cation of the procedure ®rst described by Van
Gelder et al. (27) and Eberwine et al. (28). In brief, 5 mg of
total RNA were used as a starting material and converted into
double-stranded cDNA using an oligo(dT) primer with a 5¢ T7
RNA polymerase promoter sequence and the Superscript II
system for cDNA synthesis (Invitrogen). Double-stranded
cDNA was puri®ed by phenol±chloroform extraction followed
by ethanol precipitation. Using the puri®ed double-stranded
cDNA as a template, in vitro transcription was performed
using T7 RNA Polymerase (T7 Megascript Kit, Ambion) in
the presence of a mixture of unlabeled ATP, CTP, GTP and
UTP and biotin-labeled CTP and UTP [biotin-11-CTP
(PerkinElmer); biotin-16-UTP (Roche)]. Biotinylated cRNA
was puri®ed on an af®nity resin (RNeasy, Qiagen). The cRNA
yield was determined by measuring the light absorbance at
260 nm (1 OD at 260 nm corresponds to 40 mg/ml RNA). Prior
to hybridization, 15 mg of cRNA were fragmented randomly to
an average length of ~100 nt by incubating at 94°C for 35 min
in a 5 ml volume of 40 mM Tris-acetate pH 8.1, 100 mM
potassium acetate and 30 mM magnesium acetate. A detailed
description of the labeling protocol will be provided upon
request. Transcripts of the ampicillinr (ampr), kanamycinr

(kanr) and chloramphenicolr (cmr) resistance genes used for
the determination of the dynamic range were prepared as
follows. Each gene was PCR ampli®ed from a plasmid vector
(ampr from pBR322; cmr from pDNR-LIB; kanr from pLP-
GBKT7) and the PCR product was cloned into pBluescript II
SK (+) (downstream of the T3 polymerase promotor sequence;
between the BamHI and the EcoRI restriction sites). In
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addition, an A(50) sequence was inserted between the EcoRI
and HindIII sites of the same vector (immediately downstream
of the resistance gene). Run-off transcripts [with a 3¢ A(50) tail]
were generated using the T3 Megascript Kit (Ambion) and
1 mg of the HindIII-digested construct as a template. One
microgram of the in vitro transcript was used as a template for
cRNA synthesis as described above. Different amounts of the
biotinylated cRNA were then spiked into the yeast cRNA
samples (prior to fragmentation).

Array hybridization, detection and data analysis

Microarrays were hybridized with 15 mg of fragmented cRNA
in a ®nal volume of 20 ml. Hybridization solutions contained
100 mM MES (pH 6.6), 0.9 M NaCl, 20 mM EDTA and
0.01% (v/v) Tween-20 (referred to as MES-hyb). In addition,
the solutions contained 0.1 mg/ml sonicated herring sperm
DNA (Promega) and 0.5 mg/ml BSA (Sigma). RNA samples
were heated in the hybridization solution to 95°C for 3 min
followed by 45°C for 3 min before being placed in an array
which had been prehybridized for 15 min with 1% (w/v) BSA
in MES-hyb at RT. Hybridizations were carried out at 45°C
for 16 h without agitation. After removing the hybridization
solutions, arrays were ®rst washed with non-stringent buffer
[0.005% (v/v) Triton X-100 in 63 SSPE] for 20 min at 25°C
and subsequently with stringent buffer [0.005% (v/v) Triton
X-100 in 0.53 SSPE] for 20 min at 45°C. After washing, the
hybridized RNA was ¯uorescence-stained by incubating with
10 mg/ml streptavidin±phycoerythrin (Molecular Probes) and
2 mg/ml BSA in 63 SSPE at 25°C for 15 min. Unbound
streptavidin±phycoerythrin was removed by washing with
non-stringent buffer for 20 min at 25°C. Detection and feature
readout were performed using the CCD-based detection
system of the geniom device (Cy3 ®lter set). Processing of
raw data including background correction, array to array
normalization and determination of gene expression levels as
well as calculation of fold-change values were essentially as
described by Zhou and Abagyan (29). All steps were carried
out using the PROP algorithm of the geniom application
software which is based on the MOID algorithm described by
Zhou and Abagyan (29).

Affymetrix GeneChip reference data

Aliquots of the same biotinylated cRNA samples analyzed on
the geniom platform were sent to a service provider. The
samples were hybridized to Affymetrix yeast GeneChips (YG-
S98) according to the protocol in the Affymetrix GeneChip
Expression Manual. Starting from the raw data ®les (.cel ®les),
analysis was performed using both the Affymetrix MAS4
algorithm (at the service provider) and the PROP algorithm (at
febit).

Quantitative PCR

In vitro transcripts [with a 3¢ A(50) tail] of ampr (250 pg), kanr

(25 pg) and cmr (2.5 pg) were spiked into 5 mg of total RNA
from yeast (control and treated). cRNA was prepared as
described above but omitting the biotin labeling. The cRNA
was then converted into cDNA using random hexamer primers
and the Superscript II Kit. Quantitative PCR was performed
using the iCycler iQÔ (Bio-Rad). Reactions contained
~250 pg non-puri®ed cDNA, 300 nM forward and reverse
primers (designed using the DNAMAN software; sequences

will be provided upon request) and 25 ml of 23 QuantiTect
SYBR Green PCR Master Mix (Qiagen) in a ®nal volume of
50 ml. Samples were incubated for 13.5 min at 95°C followed
by 50 cycles of denaturation (30 s at 95°C), annealing (30 s at
62°C) and extension (45 s at 72°C). The data obtained were
normalized using all three spike-in controls. Fold-change
values were calculated taking the PCR ef®ciencies into
account (30,31).

RESULTS

Dynamic range and discrimination power

Spiking experiments were performed to determine the
dynamic range of oligonucleotide arrays processed on the
geniom platform. Biotinylated cRNAs from three prokaryotic
genes (antibiotic resistance genes: ampr, kanr, cmr) were
mixed and spiked into 0.75 mg/ml biotinylated cRNA back-
ground from yeast total RNA at molar ratios of 1:100±
1:100 000. In addition, kanr and cmr cRNAs were spiked at a
molar ratio of 1:10. Using an estimate of 15 000 copies of
mRNA per yeast cell (32±34) a frequency of 1:100 000
corresponds to that of an mRNA present at a density of one
copy per six to seven cells. In 15 mg of cRNA background and
a hybridization volume of 20 ml, a frequency of 1:100 000
corresponds to a concentration of ~22.7 pM and an absolute
amount of 0.45 fmol (approximately 2.7 3 108 molecules or
~0.15 ng) of speci®c RNA. Each combination of dilution and
background was hybridized six times with the exception of the
1:10 ratios which do not re¯ect situations encountered in
normal cells and therefore were hybridized only once. In order
to ensure optimal comparability of the data generated with the
geniom instrument to those from other in situ synthesized
short oligonucleotide arrays that mostly include mismatch
(MM) controls, all samples were hybridized to arrays
containing 16 perfect match (PM)/MM probe pairs (25mers)
for each of 100 randomly chosen yeast genes, and 20 PM/MM
probe pairs (25mers) for each of the three prokaryotic genes,
although the geniom application software does not necessarily
require MM probes for gene expression analysis. The arrays
had been pretested for cross-hybridization. Yeast probes
cross-hybridizing to the spiked-in transcripts as well as probes
designed for these transcripts cross-hybridizing to the yeast
background had been removed.

As indicated in Figure 1, the hybridization intensity is
linearly correlated to the cRNA target concentration in the
range of 1:100 000±1:1000. In the range of 1:1000±1:100, the
signal increases by a factor of approximately six rather than 10
because the probes immobilized on the array are beginning to
saturate. Between 1:100 and 1:10, saturation proceeds and the
hybridization signal only increases by a factor of 1.5. At a
molar ratio of approximately 1:100 000, the critical level for
the discrimination power of the system is reached. While the
presence of the prokaryotic transcripts was detected above the
background in 14 out of 18 experiments at this level (six
replicate hybridizations for each of the three genes), the
remaining four experiments (three times kanr and once ampr)
indicate that a ratio of 1:100 000 is the threshold level for at
least some probe sets. In experiments lacking the complex
cRNA background, the transcripts could be detected at
concentrations corresponding to a ratio of 1:1 000 000 (data
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not shown). The dynamic range of two to three orders of
magnitude and the discrimination power of 1:100 000
measured here for arrays of the geniom platform compare
very well to data obtained with other commercially available
in situ synthesized (35) or spotted (13) oligonucleotide arrays.
For the Affymetrix GeneChips a dynamic range of three to
four orders of magnitude was initially reported (2). However,
these data were obtained using a customized array containing
probe sets with more than 500 PM/MM probe pairs per
transcript. In a more recent study on commercial GeneChips
with 20 PM/MM probe pairs per gene, a linear relationship
between transcript abundance and signal intensity was
observed at ratios of 1:150 000±1:15 000. Linearity ceased
above the 1:15 000 ratio and saturation emerged around the
1:150 level (36).

Reproducibility of raw data

Replicate experiments were performed to determine the
reproducibility of array synthesis, hybridization and technical
readout. Aliquots of the same cRNA sample were hybridized
to four identical arrays and the coef®cient of variation (CV)
for each individual feature was calculated based on the raw
¯uorescence intensities across the four replicates without
applying any data preprocessing steps like background
correction, array-to-array normalization, removal of outliers
or removal of low-intensity spots. Since we expected the CV
to be higher for features with a low intensity and lower for
features with a high intensity we again designed the arrays
with PM/MM probe pairs to obtain a balanced ratio between
high intensity (PM probes) and low intensity features (MM
probes). The four arrays each contained 6398 25mer probes
(corresponding to 3199 PM/MM probe pairs). The probe
sequences were derived from the Affymetrix HuGeneFL and
the Test2 GeneChips. In addition, each array included 154

negative control features where a single `T' mononucleotide
was synthesized instead of a 25mer probe. The arrays were
hybridized to aliquots of a cRNA sample from a pool of total
RNAs (Homo sapiens, Arabidopsis thaliana, Drosophila
melanogaster). This sample may be inappropriate for mean-
ingful biological experiments focusing on the expression of
speci®c genes but is very well suited for experiments with a
technical scope. Due to its high complexity, this sample is
likely to undergo speci®c hybridization, unspeci®c cross-
hybridization (including cross-species hybridization) as well
as extensive target±target interactions and thus will serve as a
good indicator for the reproducibility of the array synthesis
and the hybridization process in particular. For the analysis,
we ®rst performed a pairwise comparison of the four arrays
(Fig. 2A±F). The average Pearson correlation coef®cient
calculated on the raw intensities for all possible combinations
of two arrays was 0.986. To further investigate the
reproducibility of the system on the raw data level, the CV
for each of the 6398 features was calculated across the four
replicates and CVs were plotted as a frequency distribution
(Fig. 2G): 95% of all 6398 values were in the range of 0.03
(2.5th percentile) to 0.19 (97.5th percentile), the median CV
being 0.09. A slightly higher median CV of 0.10 was found
when the analysis was restricted to the 10% of features with
the lowest intensities. These features do not represent the
lowest features within a group consisting of only high-
intensity features but indeed have very low intensities close to
non-speci®c background. This is evident from the comparison
of the average intensity of these features to the local
background and to the negative control spots, where a
single `T' was synthesized instead of a 25mer probe. The
average intensity of the 10% lowest features within the total of
6398 features (value: 911), the average of the local back-
ground of all spots on the array (value: 1198) and the average
intensity for the negative controls (value: 1040) were all in the
same range. Actually, the average of the 10% lowest features
is even slightly lower than the average of the negative controls
and the average of the local background. The latter phenom-
enon is due to the fact that the local backgroundÐat least for
high intensity featuresÐis increased by a `neighborhood'
effect caused by blooming of the hybridization signal. This is
in agreement with a recent study published by Machl et al. that
describes a similar `neighborhood' effect for cDNA arrays
spotted on nylon membranes and hybridized with radioactive
labeled samples (37). Why the average intensity of the
negative control features somewhat exceeds the average
intensity found for the 10% lowest features is less obvious.
A possible explanation could result from the higher negative
charge of a 25mer probe as compared with a single `T'
nucleotide. In this case, the higher density of negative charges
would lead to an increased repulsion of the equally negatively
charged non-cognate targets that might reduce unspeci®c
binding of non-cognate targets at the 25mer features. Another
possible explanation is that steric hindrance for non-speci®c
binding of the streptavidin±phycoerythrin complex to the
glass surface might be higher for a feature with 25mers than
for a feature carrying `T' mononucleotides. This could result
in a slightly higher blocking effect of 25mers as compared
with `T' mononucleotides. In summary, our technical experi-
ments indicate a high reproducibility of geniom arrays on the
raw data level and suggest that the good reproducibility is

Figure 1. Dynamic range of oligonucleotide arrays from the geniom plat-
form. Log±log plot of the normalized hybridization intensity (average of the
20 PM±MM intensity differences for each gene) versus concentration for
three different prokaryotic cRNA targets. The three cRNA targets (ampr,
kanr, cmr) were spiked into labeled yeast cRNA at molar ratios of
1:100 000±1:100 and each dilution was measured six times. kanr and cmr

cRNA was additionally spiked once at a molar ratio of 1:10. The error bars
indicate the standard deviation calculated across the replicates after
elimination of outliers.
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retained when applying geniom arrays to complex biological
expression pro®ling experiments with the majority of features
being in the low intensity range. However, in this case the
average CV value might be slightly higher compared to our
analysis with an unbiased distribution of raw intensity data
across the entire intensity range.

Reproducibility of fold-change and expression level
values

Having demonstrated a high reproducibility for the raw
intensity data, we evaluated the variability of fold-change
values, the ultimate result of standard gene expression
pro®ling experiments. We therefore measured the transcrip-
tional response of 1125 randomly chosen yeast genes to
osmotic shock in four identical experiments on eight arrays. In

contrast to the technical experiments described in the previous
sections, this experiment was designed as a real-world gene
expression pro®ling. As a consequence, the array design,
which included MM controls beforehand, was adapted to our
standard for expression arrays and the MM controls were
omitted. This approach was supported by the geniom appli-
cation software which operates on a algorithm similar to the
MOID principle (29) for gene expression pro®ling experi-
ments and thus does not require MM controls for calculating
expression levels and fold-change values. The eight arrays
used in this study each contained 12 880 features (including all
controls) with ten 25mer PM probes per transcript. Following
hybridization with aliquots of either a control sample or a
treated sample, we ®rst calculated the CV of the 12 880
unprocessed raw intensities across the four arrays hybridized

Figure 2. Reproducibility of the geniom platform on the raw data level. Aliquots of a single cRNA sample from a pool of total RNA (H.sapiens,
D.melanogaster, A.thaliana) have been hybridized to four different arrays with 6398 features each. Raw intensity values (Supplementary Material Table 1)
represent the median of approximately 30 CCD pixels for each feature. No data preprocessing (such as background correction, normalization, elimination of
outliers or removal of low intensity features) was performed. (A±F) Pairwise comparison of raw intensities from the four arrays as scatter plots.
(G) Frequency distribution of CVs. The CV for each of the 6398 features (probes) was calculated across the four replicates and CVs were plotted as a
frequency distribution.
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with the same sample. Mean CV values of 0.12 and 0.10 were
found for the arrays hybridized with the control sample and the
treated sample, respectively. A pairwise comparison of raw
intensity data from the four control arrays in each possible
combination revealed a mean Pearson correlation coef®cient
of 0.984 (min: 0.979; max: 0.993). In an identical analysis
performed on the four arrays, hybridized with the cRNA
sample from osmotically shocked yeast cells, we found a mean
Pearson correlation coef®cient of 0.986 (min: 0.977; max:
0.995). In conclusion, these values con®rm the high
reproducibility of the raw intensity data demonstrated in the
last section and also suggest that the CV of the raw data is
almost the same for arrays designed with PM/MM probe pairs
(last section) and arrays with PM probes only (this section).

We next focused on the reproducibility of fold-change
values obtained from geniom arrays. Fold-change values were
calculated based on background-corrected and normalized
intensities of one control and one treated array. They were
subsequently compared between the four experiments
(Fig. 3A). For this purpose, the CV of the fold-change value
for each of the 1125 genes was calculated across the four
replicates and graphed as a function of the gene's expression

level (Fig. 3B). As expected, the CV was highest for genes
expressed at low levels (low Ek values) and decreased with
rising expression levels (high Ek values). Table 1 shows the
average CV for each of ®ve different classes of 1125 genes
classi®ed according to their expression level. With the
exception of genes expressed at very low levels (Ek < 400),
the average CV value remains below 0.2 throughout all classes
and even drops below 0.1 for highly expressed genes (Table 1).
The probe sets for the three prokaryotic spike-in controls
(ampr, kanr, cmr; see Dynamic range and discrimination
power) produce Ek values of ~350 in the absence of these
transcripts. Ek values below 400 therefore indicate genes
expressed at very low levels or not at all. As shown in
Figure 3B and in Table 1, the distribution of CV values within
a class is considerably wider for classes with genes expressed
at low levels and narrower for classes including highly
expressed genes. For genes with Ek values below 400, for
instance, 95% of CVs fall into the range between 0.05 (2.5th
percentile) and 0.63 (97.5th percentile), whereas for genes
with an Ek level above 5000, the 95% range of the CVs is 0.03
and 0.22. The wider distribution together with the higher
average CV render fold-change values for genes expressed at
low levels less reliable than those of genes expressed at high
levels. This limitation is shared by most if not all array
platforms and is also documented for in situ synthesized
24mer arrays (38) and the Affymetrix GeneChip arrays (39).
The average CV calculated for all 1125 genes irrespective of
the expression levels is 0.11. It is worth noting, however, that
this value is strongly in¯uenced by the selection of genes.
Adding more highly expressed genes would lower this value.
On the contrary, a biased selection of genes expressed at low
level would lead to a considerably higher CV. The selection of
genes included in our study was unbiased and spans the entire
expression range (Table 1). Thus, the average value of 0.11
presented in this study is likely to re¯ect the level of
reproducibility encountered in typical gene expression pro®l-
ing experiments on geniom arrays. In summary, our study
revealed CV values that suggest a high reproducibility of fold-
change values and compare favorably to data from spotted
35mer arrays where an average CV for the fold-change values
of ~0.3 was found (13). In addition, the CV values found on
the geniom platform are signi®cantly lower than those
obtained with 24mer arrays synthesized on microscopic slides
using a maskless photolithographic instrument. For these
arrays, average CVs of the fold-change data typically are in

Figure 3. Reproducibility of the geniom platform on the fold-change level.
The transcriptional response of 1125 yeast genes to osmotic shock was
analyzed in four identical experiments and the fold-change values
(Supplementary Material Table 2A) were compared. (A) Diagram of log2

fold-change values. Each transcript is represented as a line colored accord-
ing to the log2 fold-change value. The color code is given on the left.
(B) CVs of fold-change values. The CV for each of the 1125 genes was
calculated across the four experiments and graphed as a function of the
gene's expression level (Ek value). The gene's expression level represents
the average of the Ek values from the four control arrays. A trend line
representing the moving average of 100 genes is shown.

Table 1. CV of fold-change values as a function of the expression level
(Ek value)a

Classes of Ek

values
Number of
genes

Average
CV

95% of
CVs between

Up to 400 104 0.20 0.05±0.63
400±1000 391 0.12 0.03±0.29
1000±2000 299 0.10 0.02±0.20
2000±5000 185 0.10 0.03±0.21
>5000 146 0.09 0.03±0.22
All genes 1125 0.11 0.03±0.29

aThe CVs were calculated across four replicates (Fig. 3). Genes were
grouped into ®ve different classes according to the average Ek value on the
four control arrays. The range that includes 95% of the CV values of a
certain class was determined by calculating the 2.5th and 97.5th percentiles
on all CVs within this class.
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the range between 0.45 (average for low expressed genes) and
0.29 (average for highly expressed genes) (38). Besides the
fold-change data, the gene expression level is the most
important result of a gene expression pro®ling experiment.
This is particularly true for experiments which determine
relative mRNA levels within a single sample rather than
comparing two or more samples. In the experiment described
above, four arrays were hybridized with aliquots of a yeast
control sample and another four arrays were hybridized with
aliquots of a sample from yeast cells treated with an osmotic
shock. In order to investigate the reproducibility of expression
levels (Ek values) obtained with our platform, we calculated
CVs of the Ek values across the four replicates hybridized with
the same sample for each of the 1125 genes included in the
experiment. In agreement with results of a recent study
performed on Affymetrix GeneChips (40), the CV of the
expression levels was higher for genes expressed at low levels
(low Ek values) and lower for genes expressed at high levels
(high Ek values). As described above, we grouped the genes
into ®ve different classes according to their expression level.
The average CV values calculated for these classes were in the
0.17±0.10 range. As shown in Table 2, a trend towards higher
CVs for genes expressed at low levels and towards lower CVs
for highly expressed genes is evident in the arrays hybridized
with the control sample as well as in the arrays hybridized with
the treated sample. This is a remarkable ®nding because the
same gene may have different Ek levels on the `control' and
the `treated' array: the genes that make up a certain expression
class are not necessarily the same for the control and the
treated sample. We therefore conclude that the high variability
found for genes expressed at low levels is indeed due to
technical parameters and is only slightly in¯uenced by the
individual genes analyzed.

Accuracy of biological results

In an attempt to validate the accuracy of results from the
geniom platform we have analyzed the transcriptional
response of yeast to osmotic shock. The data acquired with
the geniom platform were compared with data from cDNA
arrays published by Rep et al. (25) and to reference data from
Affymetrix GeneChips which were generated as described in
the experimental protocol. Our study comprised 4857 genes
which were all analyzed twice on standard gene expression
arrays containing 10 PM probes per gene (25mers; without
MM controls). Using the same type of arrays we also
measured an additional group of 203 genes in 10 replicates.

These 203 genes were found to be involved in the cellular
response of yeast to osmotic shock in the experiments on
spotted cDNA arrays published by Rep et al. (25). This
selection of genes thus is biased with respect to the expected
fold-change values and is also likely to be biased with respect
to the expected expression level. However, since we were
interested in the accuracy of biological results obtained from
geniom arrays and the regulation of these 203 genes is known
to be the major response of yeast cells to osmotic shock, we
®rst focused the data analysis on these particular genes before
extending it to the total of 4857 genes. Figure 4 shows fold-
change values for these genes compared pair-wise between
geniom arrays, Affymetrix GeneChips and the cDNA arrays
used by Rep et al. (25). As indicated by a Pearson correlation
coef®cient of 0.914 and a Spearman rank correlation coef®-
cient of 0.889, a high conformity was found between the
geniom data and the GeneChip data despite comparing two
completely independent array platforms (Fig. 4A). Note that
the only parameter kept constant on both platforms was the
biological sample. When reducing the complexity by applying
the same analysis algorithm to both the raw intensity values
from the geniom arrays and the raw data from the GeneChips
(as found in the .cel ®le) an even higher similarity was found
and the Pearson correlation coef®cient increased to 0.959
(Fig. 4B). For further analysis, we again focused on the
comparison of independent platforms (Fig. 4A, C and D)
grouping the genes into three different categories. Genes with
fold-change values >1.5 (log2 value: 0.58) were considered to
be upregulated. Genes with fold-change values <±1.5 (log2

value: ±0.58) were considered to be downregulated and genes
with fold-change values between ±1.5 and 1.5 (log2 value:
±0.58 to 0.58) were considered to be unaffected. Based on this
categorization, 184 out of 203 genes showed the same
tendency on Affymetrix and geniom arrays (142 upregulated,
30 downregulated, 12 unchanged). From the remaining genes,
nine were found to be regulated on the Affymetrix GeneChip
but unaffected on the geniom arrays and nine genes behaved
vice versa. Only one gene switched between the upregulated
and the downregulated categories. As indicated by the
correlation coef®cients, the geniom data closely match the
GeneChip data. In addition, they are very similar to the data
obtained with cDNA arrays. A total of 174 out of 203 genes
showed the same tendency in the geniom and the cDNA data
set. A minority of 21 genes switched between unchanged on
the geniom arrays and regulated on the cDNA arrays, one gene
vice versa, and seven genes were found to be regulated in the

Table 2. CVs of expression levels as a function of the expression levela

Classes of Ek values Control Treated
Number of genes Average CV 95% of CVs between Number of genes Average CV 95% of CVs between

<400 104 0.17 0.04±0.38 128 0.15 0.05±0.34
400±1000 391 0.13 0.04±0.30 383 0.12 0.03±0.25

1000±2000 299 0.13 0.05±0.25 274 0.11 0.04±0.21
2000±5000 185 0.14 0.06±0.24 167 0.12 0.06±0.20
>5000 146 0.12 0.05±0.20 173 0.10 0.04±0.18
All genes 1125 0.14 0.05±0.28 1125 0.12 0.04±0.26

aThe CVs were calculated across four arrays hybridized with aliquots of a control sample (control) and another four arrays hybridized with aliquots of a
sample from yeast cells which were harvested after an osmotic shock (treated). The genes were grouped into ®ve different classes according to their mean
expression level on the four arrays. The range that includes 95% of the CV values of a certain class was determined by calculating the 2.5th and 97.5th
percentiles on all CVs within this class.
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opposite sense on both platforms. The conformity between
geniom data and GeneChip data, however, is greater than the
similarity found between the cDNA data and either of the
oligonucleotide arrays (Fig. 4). In general, most genes showed
the same tendency on the spotted cDNA arrays and on both
oligonucleotide array formats. Thus, the major ®ndings
described by Rep et al. (25) could be reproduced on geniom
arrays (Supplementary Material Table 2B). The actual fold-
change values, however, differ signi®cantly between the
cDNA arrays and the oligonucleotide arrays. This is in good
agreement with studies that revealed substantial differences in
the overall performance of cDNA arrays and oligonucleotide
arrays. Generally, spotted cDNA arrays show a higher
sensitivity than short oligonucleotide arrays (19,41).
Conversely, spotted cDNA arrays are known to exhibit
lower speci®city than short oligonucleotide arrays, primarily
because of cross-hybridization of highly homologous tran-
scripts and non-cognate cDNA probes and due to varying
hybridization ef®ciencies of long cDNA probes (42±45). An
additional factor that might contribute to the variance in the
fold-change values observed in our study is the biological
sample itself. The cDNA data were taken from the literature.
Therefore, the total RNA source used for the experiments on

the cDNA arrays was not identical to that used for the geniom
and the Affymetrix oligonucleotide arrays. A recently pub-
lished, extensive study designed as an interlaboratory com-
parison revealed that variations introduced by in vitro
handling steps and variations between replicate cultures in
particular can signi®cantly in¯uence the result of a gene
expression experiment (46). In addition, the labeling proced-
ures differ signi®cantly: the oligonucleotide arrays used in this
study were hybridized to an ampli®ed biotinylated cRNA
sample (synthesized starting from the total RNA, as described
in Materials and Methods) while the cDNA arrays used by Rep
et al. (25) were hybridized with a non ampli®ed, [33P]CTP-
labeled cDNA sample (synthesized from the total RNA via
reverse transcription). Taken together, the ®rst part of our
study focusing on the 203 genes known to be regulated in the
cellular response of yeast to osmotic shock suggests a high
conformity of biological data obtained on geniom arrays and
data aquired on Affymetrix GeneChips. We also found that the
great majority of the 203 genes (86% when applying the
categorization criteria described above) showed the same
tendency on geniom arrays and spotted cDNA arrays. The
signi®cant variation of the actual fold-change values found in
the latter comparison is likely to be caused by differences in

Figure 4. Log±log plots comparing fold-change data from three different array formats. The transcriptional response of 203 yeast genes to osmotic shock was
analyzed on the geniom platform in 10 replicates. The average fold-change values were compared with data from Affymetrix GeneChips and to cDNA array
data from the literature (25) (Supplementary Material Table 2B). Genes that fall into the same category of regulation on the respective platforms are shown in
gray (cut-offs for categorization: fold-change <±0.58, downregulated; fold-change >±0.58 but <0.58, unchanged; fold-change >0.58, upregulated). Genes that
were found to be up- or downregulated on one platform but unchanged on the other are shown in yellow. Genes that behave the opposite way are shown in
red. (A) Comparison of geniom data and MAS4 calculated fold-change values from the Affymetrix GeneChips. (B) Comparison of geniom data and PROP-
calculated fold-change values from the Affymetrix GeneChips. (C) Comparison of geniom data and the cDNA array data from the literature (25).
(D) Comparison of Affymetrix GeneChip data and cDNA array data from the literature (25).
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the general performance of the two array formats and by
differences in the samples used for the experiments on the
respective platforms.

So far, we have restricted our analysis to the 203 genes
known to be involved in the cellular response of yeast to
osmotic shock. Most of these genes are highly regulated and
tend to be expressed at higher levels. They are therefore much
more likely to show the same trends on different platforms
than randomly selected genes. In order to investigate if the
high concordance of geniom and GeneChip data is con®rmed
in experiments with a completely unbiased selection of genes,
we extended the analysis to all 4857 genes included in our
study. We compared the average fold-change values calcu-
lated on the two replicate experiments performed on the
geniom instrument to the fold-change values obtained from
the Affymetrix GeneChips. 3276 (68%) out of 4857 genes fell
into the same category; 1076 genes (22%) were unchanged on
the febit arrays but downregulated or upregulated on the
GeneChips; 436 genes (9%) were unchanged on the
Affymetrix GeneChips but regulated on the geniom arrays
and 69 genes (1%) were found to be regulated in the opposite
sense on both platforms (Supplementary Material Table 2C).
Overall, a mean Pearson correlation coef®cient of 0.742 and
an average Spearman rank correlation coef®cient of 0.759
were calculated on the fold-change level. Taken together,
these data indicate a considerably lower agreement of the

fold-change values for the 4857 randomly selected genes than
for the 203 genes from a biased selection. To address the
question of whether the poor conformity applies to all 4857
genes analyzed or if it is restricted to a certain subgroup of
genes, we re®ned our analysis taking the expression levels into
account. Mills and Gordon (39) investigated false-positive
rates using Affymetrix Mu11KsubA and Mu11KsubB
GeneChips. All genes recognized as increased or decreased
in same-to-same comparisons were de®ned as noise. Most of
these genes were clustered at expression levels below 250
(measured by the average difference between PM and MM of
all PM/MM probe pairs for one transcript). Grundschober et al.
(40) used GeneChip U34 and estimated CVs of triplicate
hybridizations to determine signi®cant fold-changes thresh-
olds. They found the fold-change value to be reliable above a
cut-off expression level of 100. We applied this 100 cut-off as
well as a less stringent cut-off at 50 to our analysis. We
classi®ed the 4857 genes according to their average difference
(expression level) on the GeneChip array (base array) into
`expressed at low level' (below the respective cutoff) and
`expressed at a higher level' (above the respective cut-off).
Then, we analyzed the agreement of the fold-change values
obtained with the GeneChips and the fold-change values
acquired from geniom arrays within these groups. As shown in
Figure 5A and B, we found a substantial correlation between
GeneChip data and geniom data for genes expressed at an

Figure 5. Log±log plots comparing fold-change data from geniom arrays and Affymetrix GeneChips. The transcriptional response of 4857 randomly chosen
yeast genes to osmotic shock was analyzed on geniom arrays in two replicates and the average fold-change values were compared with data from Affymetrix
GeneChips (Supplementary Material Table 2C). For this comparison, the genes were grouped into `expressed at low level' and `expressed at a higher level'
according to their expression level (average difference) on the GeneChip base array. Cut-offs at either 100 or 50 were used for the categorization. (A) Log±
log plot of the 1688 genes with an average difference above a cut-off at 100. (B) Log±log plot of the 2596 genes with an average difference above a cut-off
at 50. (C) Log±log plot of the 3169 genes with an average difference below 100. (D) Log±log plot of the 2261 genes with an average difference below 50.
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elevated level: for genes with an expression level above 100, a
Pearson correlation coef®cient of 0.915 was calculated and,
applying the same categorization criteria as used for the 203
genes, 83% of all genes (1401 out of 1688) showed the same
tendency on both platforms (Fig. 5A). A slightly lower but still
signi®cant conformity was found for genes with an expression
level above the less stringent cut-off at 50: for these genes, the
Pearson correlation coef®cient was 0.890, and 80% of all
genes (2067 out of 2596) showed the same tendency of
regulation (Fig. 5B). In contrast, we found only poor
correlations of fold-change values for the genes with an
expression level lower than the respective cut-offs: for genes
with an expression level lower than 100 (3169 genes) or lower
than 50 (2261 genes) we observed a Pearson correlation
coef®cient of 0.679 and 0.634, respectively (Fig. 5C and D).

From these data we conclude thatÐat least for yeastÐ
fold-change values obtained from geniom arrays are in
good concordance with fold-change values acquired with
Affymetrix GeneChips (with the exception of genes expressed
at very low levels). This is a remarkable ®nding if the context
of the experimental design is considered. The only parameter
kept constant between the two platforms was the biological
sample. All other parameters, including the probe design and
the algorithm used for data analysis, were different for both
platforms. Despite this high correlation found for genes
expressed at elevated levels, our comparison also revealed
substantial differences in the fold-change values obtained with
both platforms with regard to genes expressed at low levels.
This ®nding was not unexpected and is likely to be caused by a
higher variation of fold-change values calculated on low
signal intensities. The fact that calculations based on such low
signal intensities are prone to increased variation is known for
most if not all array formats, including spotted 35mer arrays
(13), in situ synthesized 24mer arrays (38) and GeneChips
(39,40)Ðand was also found for the geniom platform in this
study.

We further demonstrated that geniom data not only match
data acquired with other array formats but also re¯ect the true
gene expression pattern of the biological system analyzed. We
used a non-array reference system and compared the gene
expression data from the geniom platform with those obtained
by quantitative RT±PCR (SYBR Green assay). For this
experiment, a subset of 56 genes from the 203 genes shown
in Figure 4 was selected. The choice was based on the fold-
change distribution in the array experiments, such that the
validated data set spans the entire range of fold-change values
observed. The selection was otherwise unbiased and random.
The quantitative RT±PCR analysis was performed with the
same RNA samples used for the array experiments. Seven out
of the 56 genes were excluded from the analysis due to PCR
ef®ciencies below 1.70. Table 3 compares the fold-change
values of the evaluable genes to the average fold-change
values from the 10 replicate experiments on the geniom
platform described above (Fig. 4). As indicated by the Pearson
correlation coef®cient of 0.966 and the Spearman rank
correlation coef®cient of 0.972, a very high conformity was
found between the two data sets. Due to the lower dynamic
range of oligonucleotide arrays as compared with quantitative
RT±PCR, the fold-change values for highly regulated genes
are compressed on the geniom platform. This phenomenon has
been described before for other spotted (13) or in situ

synthesized (38) oligonucleotide arrays. Despite those differ-
ences in the fold-change values of highly regulated genes, our
study provided evidence that geniom arrays generate accurate
and reliable results and thus enable scientists to address
complex biological questions.

DISCUSSION

This study was designed to validate the geniom technology, a
novel and fully integrated oligonucleotide array platform for
gene expression pro®ling applications. We ®rst focused on the
technical aspects and evaluated the discrimination power, the
dynamic range, and the reproducibility of the system. The
system is able to detect RNAs present at a frequency of
1:100 000. In good agreement with data published for other
oligonucleotide array platforms (13,35,36), detection is quan-
titative over more than two orders of magnitude. The geniom
technology integrates array synthesis, hybridization and
detection in a single benchtop device located in the investi-
gator's laboratory. As quality assurance is a more demanding
issue for benchtop instruments compared with centralized
facilities, special attention was paid to data reproducibility.
Primary experiments on four identical arrays with 6398
features each revealed a mean CV value of 0.09 for the non-
processed raw intensities with an unbiased distribution across
the entire intensity range. In a more elaborate experiment
targeting 1125 randomly chosen yeast genes, we found the CV
for the fold-change values to be substantially in¯uenced by the
expression level. The average CV values range between 0.20
for genes expressed at very low levels and 0.09 for genes
expressed at high levels. The CVs for the expression levels
range between 0.19 (average for genes expressed at very low
levels) and 0.10 (average for genes expressed at high levels).
Taken together, the CV values indicate a good reproducibility
of raw data, fold-change values and expression levels but also
revealed that expression results for genes expressed at low
level are considerably less consistent than those of genes
expressed at higher levels. This phenomenon is common to
most if not all array platforms and is known for the widely
used GeneChip arrays (39,40), in situ synthesized 24mer
arrays (38) and spotted 35mer arrays (13). By extending our
study from inter-array to inter-instrument comparisons we
demonstrated that different individual geniom instruments
perform equally well. For all four instruments included in our
study, the mean CVs for the fold-change values (mean value
across the entire expression range) were in the range of 0.11±
0.18 (data not shown). As a next step, the accuracy of
biological data was demonstrated by comparing the geniom
data from a real-world experiment to reference data obtained
from Affymetrix GeneChips, data from quantitative RT±PCR
and cDNA array data from the literature (25). In this
experiment, we were able to reproduce the major ®ndings of
Rep et al., who investigated the transcriptional response of
yeast to osmotic shock in great detail on cDNA arrays and
generated a list of 203 genes which they identi®ed as the main
responders to the osmotic shock treatment (25). Despite
substantial differences in the actual fold-change values, the
great majority of the 203 genes showed the same tendency of
regulation on the geniom oligonucleotide arrays. By compar-
ing the geniom data for these genes to reference data acquired
on Affymetrix GeneChips we found a high conformity of
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fold-change data. A larger experiment comprising 4857 yeast
genes from a random selection, con®rmed the high correlation
of geniom data and Affymetrix data. Despite a high correlation
of fold-change data for highly expressed genes, however,
substantial differences in the fold-change values were evident
for genes in the low expression level. This was not an
unexpected ®nding and is in good agreement with a higher
variation of fold-change data found for genes expressed at low
levels on both the Affymetrix GeneChips (39) and the geniom
arrays. In an attempt to demonstrate that geniom data not only
match data obtained from other array formats but also re¯ect

the gene expression pattern of the biological system analyzed,
we used quantitative real-time PCR to measure the fold-
change of 56 yeast genes that span the entire expression range.
Due to the lower dynamic range of geniom arrays as compared
with real-time PCR we observed some differences in the fold-
change values of highly regulated genes, re¯ecting the
compression of geniom data in the high-intensity range.
Nevertheless, a Pearson correlation coef®cient of 0.966
clearly indicated a high concordance between the geniom
data and the data obtained by quantitative real-time PCR. In
conclusion, our data suggest that the geniom technology

Table 3. Comparison of fold-change data from geniom arrays and quantitative RT±PCRa

Gene Geniom arrays Quantitative RT±PCR
Average fold-
change

Average fold-
change (log2)

Average fold-
change

Average fold-
change (log2)

YMR175W 111.05 6.80 164.81 7.36
YBR117C 85.37 6.42 2112.88 11.04
YER150W 34.41 5.10 76.91 6.27
YDL223C 29.00 4.86 42.23 5.40
YAL061W 21.70 4.44 23.62 4.56
YDL204W 19.18 4.26 33.15 5.05
YGR248W 19.12 4.26 2.04 4.46
YKL151C 13.54 3.76 10.67 3.42
YHR087W 9.88 3.30 33.58 5.07
YGR066C 8.57 3.10 16.75 4.07
YML054C 7.25 2.86 4.39 2.14
YHR094C 6.44 2.69 8.31 3.05
YML100W 6.35 2.67 7.08 2.82
YLR267W 5.12 2.36 3.06 1.61
YER103W 4.91 2.30 4.32 2.11
YKL150W 4.21 2.07 5.48 2.45
YHR022C 4.02 2.01 5.63 2.49
YLR031W 3.98 1.99 4.36 2.12
YEL039C 3.71 1.89 2.96 1.56
YMR031C 3.06 1.61 1.50 0.59
YCL040W 2.91 1.54 4.25 2.09
YER054C 2.62 1.39 3.18 1.67
YDR533C 2.31 1.21 2.06 1.04
YGR170W 2.27 1.18 1.69 0.76
YJL149W 2.22 1.15 3.30 1.72
YDR100W 2.09 1.06 1.84 0.88
YDR463W 2.08 1.06 1.50 0.58
YLR042C 2.06 1.04 2.13 1.09
YER041W 1.72 0.78 ±1.05 ±0.07
YGR146C 1.54 0.63 1.46 0.55
YMR030W 1.45 0.54 2.11 1.08
YHR086W 1.30 0.38 ±1.09 ±0.12
YDL135C 1.15 0.21 ±1.93 ±0.95
YKL160W ±1.17 ±0.22 ±2.56 ±1.35
YBL002W ±1.18 ±0.24 ±1.53 ±0.61
YGR138C ±1.24 ±0.31 ±2.64 ±1.40
YDR324C ±1.39 ±0.48 ±10.36 ±3.37
YKL109W ±1.84 ±0.88 ±4.99 ±2.32
YER165W ±2.19 ±1.13 ±7.59 ±2.92
YGR155W ±3.04 ±1.61 ±7.15 ±2.84
YGL055W ±3.29 ±1.72 ±10.69 ±3.42
YDL198C ±3.32 ±1.73 ±37.42 ±5.23
YHR128W ±3.68 ±1.88 ±12.13 ±3.60
YJL217W ±3.92 ±1.97 ±7.19 ±2.85
YDL014W ±4.47 ±2.16 ±22.89 ±4.52
YGR060W ±4.55 ±2.19 ±16.32 ±4.03
YKR013W ±4.60 ±2.20 ±1.96 ±0.97
YER052C ±6.24 ±2.64 ±21.92 ±4.45
YGR234W ±8.91 ±3.16 ±33.48 ±5.07

aValues in the geniom columns represent averages from 10 identical experiments (Fig. 4). All fold-change
values can be found in Supplementary Material Table 2B.
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produces reproducible and reliable results and complements
other well established array platforms. Due to its design,
however, it provides a number of new opportunities. The
sequence of each individual probe may be varied on each array
and all that is required to generate a new array is sequence
information. Sequence updates or results from a previously
performed array experiment can be incorporated into new
array designs. The automation ensures convenient handling of
the machine and thus may contribute to a more widespread use
of the complex array technologies.

In this study, we have validated the geniom platform for
gene expression pro®ling experiments. Supported by the small
reaction volumes and the design of the arrays as three-
dimensional microchannels, however, the system is also well
suited for other applications involving enzymatic reactions
such as primer extension, ligation or on-chip PCR.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.

ACKNOWLEDGEMENTS

Part of the work presented here was supported by a grant from
the German BMBF (Bundesministerium fuÈr Bildung und
Forschung, Deutschland) to febit ag.

REFERENCES

1. Schena,M., Shalon,D., Davis,R.W. and Brown,P.O. (1995) Quantitative
monitoring of gene expression patterns with a complementary DNA
microarray. Science, 270, 467±470.

2. Lockhart,D.J., Dong,H., Byrne,M.C., Follettie,M.T., Gallo,M.V.,
Chee,M.S., Mittmann,M., Wang,C., Kobayashi,M., Horton,H. and
Brown,E.L. (1996) Expression monitoring by hybridization to high-
density oligonucleotide arrays. Nat. Biotechnol., 14, 1675±1680.

3. Chu,S., DeRisi,J., Eisen,M., Mulholland,J., Botstein,D., Brown,P.O. and
Herskowitz,I. (1998) The transcriptional program of sporulation in
budding yeast. [Erratum: Science, 282, 5393] Science, 282, 699±705.

4. Hughes,T.R., Marton,M.J., Jones,A.R., Roberts,C.J., Stoughton,R.,
Armour,C.D., Bennett,H.A., Coffey,E., Dai,H., He,Y.D., Kidd,M.J.,
King,A.M., Meyer,M.R., Slade,D., Lum,P.Y., Stepaniants,S.B.,
Shoemaker,D.D., Gachotte,D., Chakraburtty,K., Simon,J., Bard,M. and
Friend,S.H. (2000) Functional discovery via a compendium of expression
pro®les. Cell, 102, 109±126.

5. Gray,N.S., Wodicka,L., Thunnissen,A.M., Norman,T.C., Kwon,S.,
Espinoza,F.H., Morgan,D.O., Barnes,G., LeClerc,S., Meijer,L.,
Kim,S.H., Lockhart,D.J. and Schultz,P.G. (1998) Exploiting chemical
libraries, structure and genomics in the search for kinase inhibitors.
Science, 218, 533±538.

6. Marton,M.J., DeRisi,J.L., Bennett,H.A., Iyer,V.R., Meyer,M.R.,
Roberts,C.J., Stoughton,R., Burchard,J., Slade,D., Dai,H.,
Bassett,D.E.,Jr, Hartwell,L.H., Brown,P.O. and Friend,S.H. (1998) Drug
target validation and identi®cation of secondary drug target effects using
DNA microarrays. Nature Med., 4, 1293±1301.

7. Roberts,C.J., Nelson,B., Marton,M.J., Stoughton,R., Meyer,M.R.,
Bennett,H.A., He,Y.D., Dai,H., Walker,W.L., Hughes,T.R., Tyers,M.,
Boone,C. and Friend,S.H. (2000) Signaling and circuitry of multiple
MAPK pathways revealed by a matrix of global gene expression pro®les.
Science, 287, 873±880.

8. Khan,J., Simon,R., Bittner,M., Chen,Y., Leighton,S.B., Pohida,T.,
Smith,P.D., Jiang,Y., Gooden,G.C., Trent,J.M. and Meltzer,P.S. (1998)
Gene expression pro®ling of alveolar rhabdomyosarcoma with cDNA
microarrays. Cancer Res., 58, 5009±5013.

9. Perou,C.M., Jeffrey,S.S., van de Rijn,M., Rees,C.A., Eisen,M.B.,
Ross,D.T., Pergamenschikov,A., Williams,C.F., Zhu,S.X., Lee,J.C.,
Lashkari,D., Shalon,D., Brown,P.O. and Botstein,D. (1999) Distinctive

gene expression patterns in human mammary epithelial cells and breast
cancers. Proc. Natl Acad. Sci. USA, 96, 9212±9217.

10. Golub,T.R., Slonim,D.K., Tamayo,P., Huard,C., Gaasenbeek,M.,
Mesirov,J.P., Coller,H., Loh,M.L., Downing,J.R., Caligiuri,M.A.,
Bloom®eld,C.D. and Lander,E.S. (1999) Molecular classi®cation of
cancer: class discovery and class prediction by gene expression
monitoring. Science, 286, 531±537.

11. Shoemaker,D.D., Schadt,E.E., Armour,C.D., He,Y.D., Garrett-Engele,P.,
McDonagh,P.D., Loerch,P.M., Leonardson,A., Lum,P.Y., Cavet,G.,
Wu,L.F., Altschuler,S.J., Edwards,S., King,J., Tsang,J.S., Schimmack,G.,
Schelter,J.M., Koch,J., Ziman,M., Marton,M.J., Li,B., Cundiff,P.,
Ward,T., Castle,J., Krolewski,M., Meyer,M.R., Mao,M., Burchard,J.,
Kidd,M.J., Dai,H., Phillips,J.W., Linsley,P.S., Stoughton,R., Scherer,S.
and Boguski,M.S. (2001) Experimental annotation of the human genome
using microarray technology. Nature, 409, 922±927.

12. Hu,G.K., Madore,S.J., Moldover,B., Jatkoe,T., Balaban,D., Thomas,J.
and Wang,Y. (2001) Predicting splice variants from DNA chip
expression data. Genome Res., 11, 1237±1245.

13. Ramakrishnan,R., Dorris,D., Lublinsky,A., Nguyen,A., Domanus,M.,
Prokhorova,A., Gieser,L., Touma,E., Lockner,R., Tata,M., Zhu,X.,
Patterson,M., Shippy,R., Sendera,T.J. and Mazumder,A. (2002) An
assessment of Motorola CodeLinkÔ microarray performance for gene
expression pro®ling applications. Nucleic Acids Res., 30, e30.

14. Yue,H., Eastman,P.S., Wang,B.B., Minor,J., Doctolero,M.H.,
Nuttall,R.L., Stack,R., Becker,J.W., Montgomery,J.R., Vainer,M. and
Johnston,R. (2001) An evaluation of the performance of cDNA
microarrays for detecting changes in global mRNA expression. Nucleic
Acids Res., 29, e41.

15. Guckenberger,M., Kurz,S., Aepinus,C., Theiss,S., Haller,S.,
Leimbach,T., Panzner,U., Weber,J., Paul,H., Unkmeir,A., Frosch,M. and
Dietrich,G. (2002) Analysis of the heat shock response of Neisseria
meningitidis with cDNA- and oligonucleotide-based DNA microarrays.
J. Bacteriol., 184, 2546±2551.

16. Southern,E.M., Maskos,U. and Elder,J.K. (1992) Analyzing and
comparing nucleic acid sequences by hybridization to arrays of
oligonucleotides: evaluation using experimental models. Genomics, 13,
1008±1017.

17. Maskos,U. and Southern,E.M. (1992) Oligonucleotide hybridizations on
glass supports: a novel linker for oligonucleotide synthesis and
hybridization properties of oligonucleotides synthesized in situ. Nucleic
Acids Res., 20, 1679±1684.

18. Fodor,S.P., Read,J.L., Pirrung,M.C., Stryer,L., Lu,A.T. and Solas,D.
(1991) Light-directed, spatially addressable parallel chemical synthesis.
Science, 251, 767±773.

19. Hughes,T.R., Mao,M., Jones,A.R., Burchard,J., Marton,M.J.,
Shannon,K.W., Lefkowitz,S.M., Ziman,M., Schelter,J.M., Meyer,M.R.,
Kobayashi,S., Davis,C., Dai,H., He,Y.D., Stephaniants,S.B., Cavet,G.,
Walker,W.L., West,A., Coffey,E., Shoemaker,D.D., Stoughton,R.,
Blanchard,A.P., Friend,S.H. and Linsley,P.S. (2001) Expression pro®ling
using microarrays fabricated by an ink-jet oligonucleotide synthesizer.
Nat. Biotechnol., 19, 342±347.

20. Singh-Gasson,S., Green,R.D., Yue,Y., Nelson,C., Blattner,F.,
Sussman,M.R. and Cerrina,F. (1999) Maskless fabrication of light-
directed oligonucleotide microarrays using a digital micromirror array.
Nat. Biotechnol., 17, 974±978.

21. Pellois,J.P., Zhou,X., Srivannavit,O., Zhou,T., Gulari,E. and Gao,X.
(2002) Individually addressable parallel peptide synthesis on microchips.
Nat. Biotechnol., 20, 922±926.

22. Beier,M. and Hoheisel,J.D. (2000) Production by quantitative
photolithographic synthesis of individually quality-checked DNA
microarrays. Nucleic Acids Res., 28, e11.

23. Hasan,A. Stengele,K.-P., Giegrich,H., Cornwell,P., Isham,K.R.,
Sachleben,R.A., P¯eiderer,W. and Foote,S. (1997) Photolabile protecting
groups for nucleotides: synthesis and photodeprotection rates.
Tetrahedron, 53, 4247±4264.

24. StaÈhler,C.F., StaÈhler,P.F., MuÈller,M., StaÈhler,F. and Lindner,H. (1999)
Patent DE-19940750.9-52; PCT/WO/EP/99/0617; AU-749884B2.

25. Rep,M., Krantz,M., Thevelein,J.M. and Hohmann,S. (2000) The
transcriptional response of Saccharomyces cerevisiae to osmotic shock.
J. Biol. Chem., 275, 8290±8300.

26. Schmitt,M.E., Brown,T.A. and Trumpower,B.L. (1990) A rapid and
simple method for preparation of RNA from Saccharomyces cerevisiae.
Nucleic Acids Res., 18, 3091±3092.

e151 Nucleic Acids Research, 2003, Vol. 31, No. 23 PAGE 12 OF 13



27. Van Gelder,R.N., von Zastrow,M.E., Yool,A., Dement,W.C.,
Barchas,J.D., Eberwine,J.H. (1990) Ampli®ed RNA synthesized from
limited quantities of heterogeneous cDNA. Science, 87, 1663±1667.

28. Eberwine,J., Yeh,H., Miyashiro,K., Cao,Y., Nair,S., Finnell,R., Zettel,M.
and Coleman,P. (1992) Analysis of gene expression in single live
neurons. Proc. Natl Acad. Sci. USA, 89, 3010±3014.

29. Zhou,Y. and Abagyan,R. (2002) Match-only integral distribution
(MOID) algorithm for high-density oligonucleotide array analysis. BMC
Bioinformatics, 3, 3.

30. Rasmussen,R. (2001) Quanti®cation on the lightCycler. In Meuer,S.,
Wittwer,C. and Nakagawara,K. (eds), Rapid Cycle Real-time PCR,
Methods and Applications. Springer Press, Heidelberg, pp. 21±34.

31. Muller,P.Y., Janovjak,H., Miserez,A.R. and Dobbie,Z. (2002) Processing
of gene expression data generated by quantitative real-time RT-PCR.
[Erratum: Biotechniques, 33, 514] Biotechniques, 32, 1372±1374, 1376,
1378±1379.

32. Iyer,V. and Struhl,K. (1996) Absolute mRNA levels and transcriptional
initiation rates in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA,
93, 5208±5212.

33. Hereford,L.M. and Rosbash,M. (1997) Number and distribution of
polyadenylated RNA sequences in yeast. Cell, 10, 453±462.

34. Lewin,B. (1980) Gene Expression. Wiley-Interscience, New York, NY,
Vol. 2.

35. Albert,T.J., Norton,J., Ott,M., Richmond,T., Nuwaysir,K.,
Nuwaysir,E.F., Stengele,K.P. and Green,R.D. (2003) Light-directed
5¢®3¢ synthesis of complex oligonucleotide microarrays. Nucleic Acids
Res., 31, e35.

36. Chudin,E., Walker,R., Kosaka,A., Wu,S.X., Rabert,D., Chang,T.K. and
Kreder,D.E. (2002) Assessment of the relationship between signal
intensities and transcript concentration for Affymetrix GeneChip arrays.
Genome Biol., 3, research0005.1±research0005.10.

37. Machl,A.W., Schaab,C. and Ivanov,I. (2002) Improving DNA array data
quality by minimising `neighbourhood' effects. Nucleic Acids Res., 30,
e127.

38. Nuwaysir,E.F., Huang,W., Albert,T.J., Singh,J., Nuwaysir,K., Pitas,A.,
Richmond,T., Gorski,T., Berg,J.P., Ballin,J., McCormick,M., Norton,J.,
Pollock,T., Sumwalt,T., Butcher,L., Porter,D., Molla,M., Hall,C.,
Blattner,F., Sussman,M.R., Wallace,R.L., Cerrina,F. and Green,R.D.
(2002) Gene expression analysis using oligonucleotide arrays produced
by maskless photolithography. Genome Res., 12, 1749±1755.

39. Mills,J.C. and Gordon,J.I. (2001) A new approach for ®ltering noise from
high-density oligonucleotide microarray datasets. Nucleic Acids Res., 29,
e72.

40. Grundschober,C., Malosio,M.L., Astol®,L., Giordano,T., Nef,P. and
Meldolesi,J. (2002) Neurosecretion competence. A comprehensive gene
expression program identi®ed in PC12 cells. J. Biol. Chem., 277,
36715±36724.

41. Schulze,A. and Downward,J. (2001) Navigation gene expression using
microarraysÐa technology review. Nature Cell Biol., 3, E190±E195.

42. Li,J., Pankratz,M. and Johnson,J.A. (2002) Differential gene expression
patterns revealed by oligonucleotide versus long cDNA arrays. Toxicol.
Sci., 69, 383±390.

43. Bartosiewicz,M., Trounstine,M., Barker,D., Johnston,R. and Buckpitt,A.
(2000) Development of a toxicological gene array and quantitative
assessment of this technology. Arch. Biochem. Biophys., 376, 66±73.

44. Heller,R.A., Schena,M., Chai,A., Shalon,D., Bedilion,T., Gilmore,J.,
Woolley,D.E. and Davis,R.W. (1997) Discovery and analysis of
in¯ammatory disease-related genes using cDNA microarrays. Proc. Natl
Acad. Sci. USA, 94, 2150±2155.

45. Richmond,C.S., Glasner,J.D., Mau,R., Jin,H. and Blattner,F.R. (1999)
Genome-wide expression pro®ling in Escherichia coli K-12. Nucleic
Acids Res., 27, 3821±3835.

46. Piper,M.D.W., Daran-Lapujade,P., Bro,C., Regenberg,B., Knudsen,S.,
Nielsen,J. and Pronk,J.T. (2002) Reproducibility of oligonucleotide
microarray transcriptome analyses. An interlaboratory comparison using
chemostat cultures of Saccharomyces cerevisiae. J. Biol. Chem., 277,
37001±37008.

PAGE 13 OF 13 Nucleic Acids Research, 2003, Vol. 31, No. 23 e151


