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Xenoestrogens can affect the healthy functioning of a variety of

tissues by acting as potent estrogens via nongenomic signaling

pathways or by interfering with those actions of multiple

physiological estrogens. Collectively, our and other studies have

compared a wide range of estrogenic compounds, including some

closely structurally related subgroups. The estrogens that have

been studied include environmental contaminants of different

subclasses, dietary estrogens, and several prominent physiological

metabolites. By comparing the nongenomic signaling and

functional responses to these compounds, we have begun to

address the structural requirements for their actions through

membrane estrogen receptors in the pituitary, in comparison to

other tissues, and to gain insights into their typical non-monotonic

dose-response behavior. Their multiple inputs into cellular

signaling begin processes that eventually integrate at the level of

mitogen-activated protein kinase activities to coordinately regu-

late broad cellular destinies, such as proliferation, apoptosis, or

differentiation.
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signaling.

Endocrine-disrupting chemicals such as xenoestrogens are

known to contaminate our environment and affect the re-

productive health of animals and probably humans (Singleton

and Khan, 2003). We and others (e.g., Otto et al., 2008) have

studied a variety of subclasses of these compounds to explore

understudied mechanistic pathways and receptors that they

might engage to mediate their effects. These compounds either

may act as inappropriate estrogens and/or could interfere with

the actions of endogenous estrogens. Many disease suscepti-

bilities (e.g., involving heart, brain, bone, or joints) worsen or

change in women after menopause (Benedetti et al., 2001;

Compton et al., 2002; Dluzen and Mickley, 2005; Foltynie

et al., 2005; Kurlan, 1992; Mao et al., 2009; Quinn, 2005;

Yoon et al., 2007) or at other life stages with different estrogen

metabolite profiles, suggesting a differential protective or

vulnerability effect due to different physiological estrogen

metabolite levels. Therefore, interference by any of the

xenoestrogens with these life stage–specific hormonal profiles

may cause or alleviate stage-specific diseases in women.

Because men also have these estrogen metabolites and re-

ceptors to bind to them, xenoestrogens are also likely to alter

male physiology (Carreau and Levallet, 2000; Delbes et al.,
2006).

Because many xenoestrogenic compounds bioaccumulate in

fat tissues, resulting in prolonged and escalating human ex-

posures, the exposure levels causing possible deleterious health

effects are somewhat difficult to determine and are actively

debated (Myers et al., 2009; Whitten and Patisaul, 2001).

Although physiological estrogens can normally influence the

growth and functioning of both female and male reproductive,

skeletal, and cardiovascular systems (Cornwell et al., 2004),

prolonged estrogen exposures have also been linked to the

development of cancer in tissues, such as breast, colon, and

pituitary (Brownson et al., 2002; Fritz et al., 1998; Mueller and

Gooren, 2008). It is thus important to determine which of these

estrogenic attributes are shared by xenoestrogens, and via

which cellular mechanism(s) they operate, so that their sus-

pected effects on health can be predicted, prevented, perhaps

remediated, or even used therapeutically, such as in the case of

phytoestrogens (Adlercreutz, 1995).

In the past, xenoestrogenic compounds have undergone

extensive testing for actions via nuclear estrogen receptor–

mediated gene transcription but have largely been found to act

very weakly, if at all, via these genomic pathways (generally at

least 1000-fold more weakly than estradiol [E2]). We have

instead probed the ability of different classes and structurally

variant estrogens to trigger signal cascades initiated at the

plasma membrane via membrane estrogen receptors (a, b, and

GPR30). To link these effects to the presence of specific re-

ceptor subtypes, our laboratory has demonstrated the impor-

tance of a membrane form of the estrogen receptor-a (mERa)

in clonal rat pituitary cell lines that naturally express high or
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low receptor levels (Pappas et al., 1994); mERa was also the

predominant receptor through which effects were mediated in

neuronal cells, although the other estrogen receptors mERb and

GPR30 (Filardo and Thomas, 2005; Revankar et al., 2005) had

inhibitory roles (Alyea and Watson, 2009a; Alyea et al., 2008).

We also linked E2’s and xenoestrogens’ abilities to mediate

membrane-initiated signaling via Caþþ elevation, prolactin

(PRL) release, and various kinase activations to complex cel-

lular events, such as cell proliferation and apoptosis (Jeng and

Watson, 2009; Zivadinovic et al., 2005). Others have likewise

found that specific estrogen receptor subtypes can mediate

effects of xenoestrogens (Kuiper et al., 1998; Nadal et al.,
2009). Xenoestrogen-altered responses could explain a variety

of exposed tissue malfunctions, including both short-term

functional deficits and long-term changes in cell and tissue

activities (such as teratogenesis and cancer).

TISSUE-SELECTIVE ACTIVITIES

Human exposures to xenoestrogens have been associated

with a variety of reproductive and neurological impairments

(reviewed in Colborn, 2004; Hotchkiss et al., 2008; McKinlay

et al., 2008). The actions of estrogens that we have compared

in our own laboratory were largely in cultured cells represent-

ing anterior pituitary lactotrophs (Pappas et al., 1994). In the

pituitary, estrogens facilitate both synthesis and regulated

secretion of PRL (Dannies, 1985) and other peptide hormones,

but we have focused on those actions that happen rapidly in

response to estrogens—the secretory response. To understand

to what kinds of pathologies these actions may be related, we

must review the numerous roles of PRL. PRL coordinates the

female hormonal cycle with preparation of tissues (e.g., mam-

mary gland) for reproduction and the control of reproductive

behavior. Hyperprolactinemia is a recognized cause of in-

fertility as well as behavioral illnesses. Exaggerations in preg-

nancy behaviors and also in pseudopregnancy (where PRL

levels rise without a pregnancy) include maternal behavior

aggressiveness and sexual dysfunction. PRL overstimulation

can also be correlated with depression, changed affect, and

abnormal responses to stress (Sobrinho, 2003).

Estrogen-induced cell proliferation is part of the normal

response of the pituitary but can also produce pituitary tumors

(Gorski et al., 1997). PRL is believed to be a growth factor for

many target tissues, including breast and prostate (Adams,

1992; Nevalainen et al., 1997), so its overproduction may lead

to pathologies or tumors of these tissues (Clevenger et al.,
2003; Gutzman et al., 2004; Rose-Hellekant et al., 2003). If

any xenoestrogens act differently than the normal timing and

levels of endogenous estrogens, then imbalances of PRL

secretion and stimulation could occur; these could be de-

velopmental stage specific or gender specific and might cause

unanticipated harmful responses. Our studies demonstrated

how this could occur mechanistically for different estrogens

and xenoestrogens via membrane-initiated signaling pathways

(Bulayeva and Watson, 2004; Jeng and Watson, 2009; Jeng

et al., 2009; Kochukov et al., 2009; Watson et al., 2008).

Estrogen mimetics and antagonists have long been noted to

have selective estrogen receptor modulation effects, such as

those responding differently in different tissues but via the

same receptor (Azuma and Inoue, 2004), usually explained by

alternative associations with such transcription factor co-

modulators as histone acetyl transferases and histone deacety-

lases (Liu and Bagchi, 2004). Xenoestrogens appear to be

SmERMs, i.e., they are selective membrane estrogen receptor

modulators. We and others have demonstrated that these

selective effects could result from alternative partnering with

other signaling proteins in different tissues or regulatory

circumstances (Alyea and Watson, 2009b; Boonyaratanakornkit

et al., 2001; Song et al., 2005). As different tissue and cell types

are explored for activities in the nongenomic signaling pathway

with these different xenoestrogens, tissue-selective profiles will

emerge for nongenomic responses such as those we have seen

for pituitary cancer cells (Bulayeva and Watson, 2004; Jeng

et al., 2009; Wozniak et al., 2005), breast cancer cells

(Zivadinovic and Watson, 2005; Zivadinovic et al., 2005),

cells of the immune system (Narita et al., 2007), and neuronal

cell types (Alyea and Watson, 2009a), and others have seen for

bone versus mammary tissues (Otto et al., 2008). This should

help to explain their toxicities.

STRUCTURALLY RELATED SUBCLASSES OF ESTROGENS

AND THEIR ACTIVITIES

Over the past decade or so, our laboratory has examined

several subgroups of estrogens with different potentials for

promoting or interfering with estrogenic actions via signaling

at the cell membrane. The 16 compounds that we have in-

vestigated so far (see Fig. 1) represent either structurally

related subgroups (endogenous hormone metabolites, alkyl-

phenols, chlorinated pesticides, soy isoflavones) or are related

via their use and exposure route (dietary vs. endogenous

metabolites vs. environmental contaminants from industry,

agriculture, or consumer products). Considering them to-

gether, let us begin exploring the structural requirements for

nongenomic estrogenic signaling via different pathways.

Collectively, we and others have learned that estrogens

originally deemed ‘‘weak’’ for their actions in the nucleus can

potently activate nongenomic signaling pathways (Alyea and

Watson, 2009a,b; Bouskine et al., 2009; Bulayeva and

Watson, 2004; Jeng and Watson, 2009; Jeng et al., 2009;

Kochukov et al., 2009; Nadal et al., 2009; Otto et al., 2008;

Watson et al., 2007, 2008). It is also clear that the rules for

engagement via membrane-initiated estrogen actions for

various signaling cascades differ.

While E2 is the physiological estrogen most often studied

and associated with reproductive function during the
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reproductive years, other endogenous estrogenic compounds

can be more prevalent during other life phases. These other

estrogens may have significant effects on tissue development,

function, and disease states (such as the development of

cancers in reproductive tissues). Estrone (E1) is a significant

estrogenic hormone contributor in both reproductive (~0.5–

1nM) and postmenopausal (150–200pM) women and in men

(~100pM); estriol (E3) levels are significantly higher in

pregnant women (~10–100nM) than in nonpregnant women

(< 7nM) (Greenspan and Gardner, 2004). Lowered E3 levels in

pregnancy have been associated with complications of

eclampsia (Shenhav et al., 2003) and the incidence of Down’s

syndrome in offspring (Chard and Macintosh, 1995). These

estrogenic metabolites are also produced by aromatases in

a number of nonreproductive tissues where their effects may

extend beyond reproductive functions (Meinhardt and Mullis,

2002). One example is that E3 has protective effects against the

development of arthritis in certain experimental models (Jansson

and Holmdahl, 2001), as has been known previously for E2.

Effects in brain, bone, cardiovascular system, and many other

tissues may be affected differentially by these three endogenous

estrogenic compounds during different life stages; therefore, loss

or enhancement of these effects due to interference by

xenoestrogenic compounds could affect human health in a large

number of tissues. These metabolites also present an interesting

structure-activity study group as their modifications are simple

variations at only two positions on their D-rings (see Fig. 1).

Scant previous information about the actions of physiological

concentrations of E1 and E3 via nongenomic steroid signaling

mechanisms (Morley et al., 1992; Selles et al., 2005) have now

been augmented by our recent studies (Alyea and Watson,

2009b; Watson et al., 2008). We saw that E1 and E3 were

similarly potent with E2 in some responses for both pituitary

cells (increasing the number of Caþþ-responding cells and

evoking extracellular-regulated kinase [ERK] phosphorylation)

and neuronal cells (evoking dopamine efflux). However, in

neuronal cells, E1 and E3 (inhibitory) had opposite effects from

E2 (stimulatory) on the activation of dopamine efflux by the

dopamine transporter (DAT), and these physiological hormones

achieved this by differentially causing rapid trafficking of the

estrogen receptors (a, b, and GPR30) and DAT to and from the

plasma membrane. Further exploration of these potent and

differential effects of physiological estrogen metabolites, and

interference with their activities by xenoestrogens, could

illuminate other life stage–specific changes in estrogen-related

disease vulnerabilities.

Alkylphenols represent a group of ubiquitous environmental

estrogens that are highly related in structure, although

somewhat different from E2. These compounds are surfactants

or monomer byproducts of plastic manufacturing or product

breakdown. They have been found at surprisingly high

concentrations in human fluids (Lakind and Naiman, 2008;

Stahlhut et al., 2009) and at environmental sites (Kolpin et al.,
2002; Talsness et al., 2009; Thomas and Doughty, 2004). Our

laboratory compared several members of this class with either

different lengths of carbon side-chain modifications at Position

4 on the phenol ring (nonyl-, octyl-, propyl-, and ethylphenol

[NP, OP, PP, EP]; see Fig. 1), or instead an added phenolic

group (bisphenol A [BPA]). These compounds were active at

very low doses in our studies (Kochukov et al., 2009),

a potency confirmed by others studying other endocrine tissues

(Alonso-Magdalena et al., 2008; Nadal et al., 2009). These

comparisons represent low environmentally common concen-

trations (femtomoles to nanomoles). Overall, the alkylphenols

are quite potent in several of our assays for nongenomic

responses, including PRL release, cell proliferation, calcium

(Caþþ) influx, and in the activation of mitogen-activated

protein kinases (MAP kinases) (Bulayeva and Watson, 2004;

FIG. 1. Structural comparison between classes of estrogens grouped by use

or route of exposure. Shown are several physiological estrogens, including the

most frequently studied 17b-estradiol and several of its metabolites, a pharma-

ceutical mimic (diethylstilbestrol, DES), dietary phytoestrogens, and two classes

of environmental estrogens (including dichlorodiphenyldichloroethylene, DDE).
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Kochukov et al., 2009; Wozniak et al., 2005). These activities

are summarized for all our publications to date in Figure 2.

By comparison, BPA and nonylphenol have shown very low

potency in nuclear transcription assays for estrogen-responsive

genes (Gaido et al., 1997; Gutendorf and Westendorf, 2001;

Kloas et al., 1999; Sheeler et al., 2000; Singleton et al., 2004;

Steinmetz et al., 1997). The long carbon side-chain alkylphe-

nols were previously shown to have weak estrogenic activity in

genomic assays, and the shorter side-chain versions were even

less active (Kwack et al., 2002; Routledge and Sumpter, 1997;

Tabira et al., 1999). In contrast, their nongenomic activities are

quite robust, and short or long carbon chain variants are more

effective in different responses (Kochukov et al., 2009).

Therefore, inactivity in genomic assays does not predict

inactivity in nongenomic mechanisms. In addition, this class

of xenoestrogens is becoming increasingly important to con-

sider for further modification by chlorination in manufacturing

and waste water treatment plants (Fukazawa et al., 2001;

Gallard et al., 2004; Gross et al., 2004; Hu et al., 2002;

Petrovic et al., 2003), so structure-activity knowledge about

their estrogenic effects will become increasingly important.

Our laboratory has also performed nongenomic signaling

studies with several chlorinated pesticides known to be estro-

genic—dieldrin, dichlorodiphenyldichloroethylene, and endo-

sulfan. These compounds break down slowly, and so persist in

the soil even though their use has largely been banned

FIG. 2. Structure-activity analysis of estrogens based on lipophilicity. The assays involved are described in Kochukov et al. 2009. All these signaling or

functional responses to estrogens were graphed versus their octanol/water partition coefficient (log Po/w) (National Center for Biotechnology Information, 2009) to

determine if their lipophilicity profiles predicted their effectiveness as an estrogen. Different signaling or functional responses are shown in each panel: (A) PRL

release, (B) cell proliferation, (C) Caþþ peak oscillation frequency, (D) ERK activation, (E) Jun-kinase (JNK) activation, and (F) p38 kinase activation. Low

physiologically or environmentally relevant concentrations for all compounds used in A, B, and D–F are shown in the composite symbol legend. In the case of the

calcium response (C), data from all effective concentrations were included (femtomoles to nanomoles for alkylphenols and physiological estrogens and 0.1nM–

0.1lM for phytoestrogens) because the responses were ‘‘all or none’’ and not graded according to concentration. All response patterns were used to calculate

a Pearson correlation coefficient (r) to describe the degree of correlation, either positive or negative, with the lipophilicity of the ligands. *Very close to being

statistically significant, p ¼ 0.0533. **Statistically significant, p < 0.01. For panel A, p ¼ 0.0767 and for panel E, p ¼ 0.218. Panels B and D have quite high

p values, which do not indicate any significance. Cou, Coumestrol; Dai, daidzein; Gen, genistein; Res, resveratrol; PP, propylphenol; NP, nonylphenol; BPA; DES,

diethylstilbestrol.
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(U.S. Department of Health and Human Services, 2005). Plants

and animals that are part of the food supply become exposed,

subsequently passing on these exposures to humans. Because

many xenoestrogens bioaccumulate in fat tissues, resulting in

prolonged and escalating human exposures, the exposure levels

causing deleterious health effects are actively debated (Myers

et al., 2009). In our studies, these chlorinated xenoestrogen

pesticides were quite effective in eliciting all the responses

examined, including ERK activation (Bulayeva and Watson,

2004), PRL release, and Caþþ influx (Wozniak et al., 2005).

The studies of others have also demonstrated rapid signaling

actions of these compounds on endocrine cells (Wu et al., 2006).

Phytoestrogens, another category of nonphysiological estro-

gens, have diverse estrogenic biological activities due in part to

their ability to act as either estrogen agonists or antagonists

depending on the dose and the specific tissue involved. These

abilities have caused a lot of attention to be focused on these

compounds as potential safe, effective, and inexpensive estrogen

replacement medications. Coumestrol, first reported to be

estrogenic when it was associated with disrupting reproduction

in livestock (Bickoff et al., 1957), is found in such dietary

sources such as legumes, clover, and sprouts of soybeans and

alfalfa. The reported serum concentration resulting from

ingesting these foods in humans is approximately 0.01lM

(Mustafa et al., 2007). Isoflavones are represented in our studies

by daidzein and genistein, and their major source is soy-based

foods. In Asia, the intake of soy is high, and plasma

concentrations of genistein from 0.1 to 10lM have been

measured (Mustafa et al., 2007; Whitten and Patisaul, 2001);

Western diets usually contain about 10-fold lower concentrations

(Adlercreutz et al., 1993). Some isoflavones, such as genistein,

have also been shown to act predominantly via estrogen

receptor-b in genomic responses (Kuiper et al., 1998). Trans-
resveratrol, a stilbene (Gehm et al., 1997) that has recently

attracted significant attention as a potential anti-aging agent, is

found in high quantities in foods such as red grapes (or wine)

and peanuts and has peak serum concentrations estimated to be

close to 2lM in humans (Walle et al., 2004).

To rank the effectiveness of all these compounds together

and to examine one chemical feature of xenoestrogens thought

to facilitate their behavior as estrogens, we graphed their

responses according to each compound’s lipophilicity (Fig. 2).

We chose an octanol-water partition coefficient to numerically

represent this value for graphing. We combined the results on

compounds from different classes of estrogens and xenoes-

trogens, gleaned from a number of our studies, so as to

compare their lipophilicity to their estrogenicity at multiple end

points in the nongenomic pathway. Depending on the signaling

or functional end point being assessed, the lipophilicity value

positively influenced (PRL release, Caþþ oscillation frequency,

and p38 activity), negatively influenced (Jun-Kinase [JNK]

activity), or did not influence (proliferation and ERK activity)

a response parameter. Also, not influenced by lipophilicity

(data not shown) was the total amount of Caþþ influx

(combined peak areas, correlation coefficient of r ¼ 0.0015).

Therefore, lipophilicity is one characteristic of xenoestrogens

that can partially predict some aspects of estrogenicity. There

are undoubtedly other aspects of these chemicals’ structures that

will need to be evaluated in the future for their contributions to

such predictions. It is not surprising that for different end points,

estrogens can have positive influence, negative influence, or no

influence. Estrogen receptors liganded by a given estrogen will

create specific shape changes in the receptor, resulting in

a different constellation of interaction surfaces (Pike et al.,
1999) to which other proteins can bind. Partner proteins may be

activated or further recruit other proteins, leading to a given

functional response.

NON-MONOTONIC DOSE RESPONSES, SUMMATION, AND

INTEGRATION OF RESPONSES

Nongenomic estrogenic responses often display non-

monotonic dose-response characteristics (Weltje et al., 2005)

(dose curves that do not follow the principle of low-dose

effects rising from a threshold and plateauing at higher

concentrations). Response decay at higher steroid concentra-

tions (\-shaped curves) has been a curious feature long noted

for genomic and whole-animal functional responses (Welshons

et al., 2003). Non-monotonic dose-response curves studied in

our laboratory for rapid nongenomic responses to estrogens not

only reverse direction at higher doses but sometimes rise and

decline multiple times with increasing dose over a wide

concentration test range (perhaps representing two \-shaped

curves put together). Such dose relationships make it

impossible to extrapolate high-dose effects to predict low-dose

effects. Since much toxicological regulatory policy is based on

putative monotonic dose relationships, toxicants that mimic the

non-monotonicity characteristic of hormone effects have

important ramifications for the regulation of compounds such

as environmental estrogens. We have probably been able to

observe these responses to very low levels of hormones and

mimetics in our studies because of our ability to manipulate cells

in culture to exclude endogenous hormone sources entirely

(defined media and exhaustively steroid-stripped media).

Examples of two such responses to environmental estrogens

demonstrating this non-monotonic characteristic from our own

work are shown in Figure 3. EP, an alkylphenol, is shown here

to cause rapid PRL release at very low concentrations and at

higher concentrations but reverses this response at intermediate

concentrations. BPA elicits a similar behavior in one example of

MAP kinase responses—ERK phosphorylation. The shapes of

these dose-response curves are similar to those we have observed

for both physiological and a variety of nonphysiological

estrogens (Alyea and Watson, 2009a; Bulayeva and Watson,

2004; Jeng and Watson, 2009; Jeng et al., 2009; Kochukov et al.,
2009; Watson et al., 1999, 2008; Wozniak et al., 2005;

Zivadinovic et al., 2005).
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We have speculated that such typical bimodal dose re-

sponses for these membrane-initiated mechanisms could result

from different receptor subpopulations present in unique com-

partments of the plasma membrane. For example, membrane

forms of steroid receptors have also been shown to reside in

membrane caveolae by us (Zivadinovic and Watson, 2005) and

others (Chambliss and Shaul, 2002; Lu et al., 2001; Norman

et al., 2002), where it is well known that lipid content and other

signaling molecule and scaffolding protein availability are

quite different from non-raft membranes. Basolateral versus

apical or endocytosed membrane compartments represent com-

partments of different accessibility for hormones to their

receptors (Cao et al., 1998), although this is less likely to be the

case for small lipophilic molecules like steroids or their

mimetics than for peptide hormones. Subcellular location–

based availabilities could also dictate different physical

associations with other proteins by altering hormone-binding

and -partnering opportunities. In addition, differences in lipid

content simulated in artificial membranes are known to affect

the functioning of proteins imbedded therein (Wu and

Gorenstein, 1993), likely causing alteration of ligand-binding

pockets and protein partner interaction interfaces. Therefore,

characteristics of receptors that target to the membrane or

membrane subcompartments may affect signaling responses.

We also know from our own work that estrogens, including

xenoestrogens, can signal via several different pathways si-

multaneously although differentially and that these signals

traverse their pathways at variable speeds (Bulayeva and

Watson, 2004). Different phasing of pathway travel, along with

feedback or feedforward regulation or crossing over to parallel

paths, can result in complex contributions to dose-response

changes, not obvious when examined at a single time point. An

example could be the estrogenic activation of a phosphatase,

which then inactivates another protein, such as a kinase; if the

response being monitored is the kinase activation, then one

would see an unexpected decline in the response whenever the

phosphatase has been activated. We have some evidence

for this effect on response curves in breast cancer cells

(Zivadinovic and Watson, 2005 and Banga and Watson,

unpublished data). For nuclear receptor actions, it is known that

there are different dose-response sensitivities to the same level

of nuclear steroid receptor for different genes in the same tissue

(Catterall et al., 1985; Simons, 2008), probably also involving

receptors partnering with other receptors or coregulators that

are target gene specific. Ligand-induced conformations of

nuclear receptors can vary due to the structure and level of the

hormones bound to them, likely altering their interaction

interfaces being presented to other regulatory molecules, thus

initiating different responses (Pike et al., 1999). Such

mechanisms are also likely to account for associations that

regulate membrane-initiated signaling cascades.

Many more examples of nonconventional dose responses

will likely be found owing to advances in cell culture and

assessment methods for such studies. Our increased understand-

ing of responses to very low concentrations of these ligands

demonstrates that animal cells can be extraordinarily sensitive to

estrogens. We now use more effective methods for removing

other active molecules from culture media (Cao et al., 2009;

Wilkinson, 1993) without disturbing the osmolality and protein

content milieu needed for normal cell signaling and regulation

(Campbell et al., 2002). Completely defined media are now

becoming much more available so that cells can be treated with

very small known quantities of signaling ligands without

interference from endogenous serum-resident steroids and other

molecules that can mask responses. Quantitative assays for

phosphorylated signaling proteins make detection of small

changes at low concentrations more easily defined as significant

compared to immunoblot technologies (Bulayeva et al., 2004;

Howells et al., 2008; Versteeg et al., 2000). These advances

made it possible to do much more comprehensive dose-response

analyses, encompassing the low physiological or disease-

relevant concentration ranges of steroids and their mimetics.

Single-cell analysis methods (e.g., for Caþþ responses) allow

detection of responses that would otherwise be masked by
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FIG. 3. Examples of non-monotonic dose responses reproduced from

Kochukov et al. 2009. (A) Concentration dependence of EP-induced rapid

changes in PRL secretion. PRL released into the medium was measured by

radioimmunoassay after 1 min of treatment with EP at different concentrations

(n ¼ 12–24 for each data point over three experiments). (B) Concentration-

dependent changes in the phosphorylation status of ERKs 1 and 2 after 5-min

BPA treatments. Values are the amount of dephosphorylated p-nitrophenol

generated by an alkaline phosphatase–tagged ERK antibody normalized to the

crystal violet staining value for cell number for each well, presented as

a percentage of vehicle-treated controls (veh). *p < 0.05 versus vehicle control

(n ¼ 32 samples for each data point over four experiments).
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unresponsive cells in the same culture; cell expression levels for

mERa that control their responsiveness to estrogens are

heterogenous at any given time point (Kochukov et al., 2009;

Wozniak et al., 2005) due to cell cycle changes and other forms

of cellular regulation (Campbell et al., 2002). The ‘‘lower hump’’

of the ‘‘camelback’’ non-monotonic dose-response curve (see

Fig. 3) is only recently being examined and appreciated.

FINAL COMMON PATHWAYS AND BROAD CELLULAR

IMPERATIVES

In the past, we have most often studied signaling mechanisms

one pathway at a time. However, an overview of the accumulated

data and powerful new genome-wide assessment technologies

have taught us that the regulation of cellular function is more

realistically depicted by a convergence of information delivered

via many pathways, yet with pathway-selective use by some

ligands (Michel and Alewijnse, 2007). Recently, the study of the

nongenomic actions of multiple xenoestrogens has made

a particularly striking example of this new point of view as

these compounds activate many parallel pathways at once, yet

selectively with respect to timing and predominant use of these

different signaling avenues (Bulayeva and Watson, 2004). These

considerations also are important as we contemplate the

multiplicity of estrogens we are exposed to at any given

time and the effect of the combination of them on signaling

outcomes.

The changing circumstances to which a cell must respond

are first presented by the ligands that it encounters at its

surface, of which there are many that arrive simultaneously.

The engagement of surface receptors by these ligands sets in

motion coordinated actions, eventually leading to major

cellular decision points: proliferation, differentiation, or death.

Cells must integrate all these incoming signals and parallel

pathways that can eventually contribute to a final common

pathway, such as those involving MAP kinases (see Fig. 4).

These enzymatic ‘‘signal-receiving stations’’ tally up many

inputs from multiple signaling cascades and sum them toward

establishing a level of end point of MAP kinase (ERK, JNK,

and p38) activities. The final count dictates a decision about

how to regulate major cellular responses that require co-

ordination so that the whole cell ‘‘is on the same page’’ during

major cellular responses to change. Acting via their membrane

receptors, steroids can be one class of input signals to the MAP

kinase signal integrator, the cellular rheostat that is dialed up or

down according to which pathways feed into it. Not all

estrogens elicit identical responses (in level or timing) along

these pathways (Bulayeva et al., 2004). Thus, different

endogenous metabolites (representing different life-stage chal-

lenges) or xenoestrogen mimetic exposures will cause a different

tally and resulting cellular response. Estrogens provide a very

FIG. 4. Receptors of various types elicit overlapping signals that are summed up in the phosphorylation state of MAP kinases (MAPKs). Various receptors,

both on the membrane and inside the cell (including different subtypes of estrogen receptors), generate multiple second messengers (blue arrows), which then

trigger functional responses or activate other kinases involved in cellular functions (red arrows). The pocket watch symbol indicates that the timing of these signals

differs and can be disrupted. The rheostat knob symbol indicates that some downstream kinase systems (such as the MAPKs) can sum many upstream signals to

dial the final signal up or down. MAPK activity can then lead to major cellular functional decisions (differentiation, proliferation, and death). These signaling

system interactions are highly complex, and each tissue may present a different repertoire of these machineries and outcomes. Xenoestrogens may participate via

various estrogen receptors in multiple cellular locations. NO, nitric oxide; NTs, nucleotides.
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illustrative example of these cellular strategies because of the

availability of many different and medically/environmentally

important estrogens that make differential use of the same

pathways. This example thus gives new insights into how such

signaling webs can lead to variant outcomes depending on which

estrogens engage them.

SUMMARY

New layers of detail in the workings of estrogen mimetics

through nongenomic pathways are being revealed, including

characteristics of their unusual dose responses, and specific

subclasses of xenoestrogens whose structure-activity relation-

ships can be compared. We are learning how these compounds

are different or similar to physiological estrogens when acting

at membrane estrogen receptors. While the lipophilicity of these

compounds can predict some of their signaling capabilities, there

are clearly other structural features that dictate other aspects of

the diverse signaling responses these compounds elicit. We have

presented examples that show how such understanding of

estrogenic or xenoestrogenic ligands may allow us to determine

their estrogenic or antiestrogenic potential and use this

knowledge to design or prioritize intervention opportunities.
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