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Abstract
As the logical next step after sequencing the mouse genome, biologists have developed laboratory
methods for rapidly determining where each of the 30K genes in the mouse genome is
synthesizing protein. Applying these methods to the mouse brain, biologists are currently
generating large numbers of 2D cross-sectional images that record the expression pattern for each
gene in the mouse genome. In this paper, we describe the structure of a geometric database for the
mouse brain that allows biologists to organize and search this gene expression data. The central
component of this database is an atlas that explicitly partitions the mouse brain into key
anatomical regions. This atlas is represented as a Catmull-Clark subdivision mesh with anatomical
regions separated by a network of B-spline crease curves. New gene expression images are added
to the database by deforming this atlas onto each image using techniques developed for fitting
subdivision surfaces to scatter data. Due to this partitioning of the subdivision mesh, user queries
comparing expression data between various genes can be restricted to anatomical regions without
difficulty while the multi-resolution structure of the subdivision mesh allows these queries to be
processed efficiently.

1. Introduction
One of the major recent successes in biology has been the sequencing of the genome of
various organisms such as the fruit fly, mouse and human. This sequencing represents the
first step towards a larger goal of understanding the organization and function of a biological
organism at a molecular level. Two of the authors (Eichele, and Thaller) are involved in a
project5 that represents the next logical step towards this larger goal: determining where
various genes in the genome are being expressed; that is, which cells are producing
transcripts for specific proteins. Using a method known as in situ hybridization, Eichele and
Thaller are collecting gene expression data for all 30K genes in the mouse genome.

This data (consisting of 2D images of the mouse brain taken at various distinct cross-
sections) will play a key role in understanding the functional relationship between various
genes in the mouse genome. To aid in the organization and analysis of this data, we have
developed a geometric database that allows biologist to pose queries comparing expression
data for various genes. This paper describes the geometric data structures and algorithms
used in constructing and searching this database.

1.1. Gene expression images
Genes play a basic role in biology due to the fact that they serve as blueprints for creating
proteins, the building blocks of biological organisms. However, not all genes are actively
involved in protein synthesis. In a particular tissue, only a subset of the genes are expressing
(i.e; synthesizing) proteins. The next step after determining the base pair sequence for each
gene in the genome is to determine where the gene is being expressed.
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Towards this goal, biologists utilize a technique called in situ hybridization, which identifies
cells expressing a particular gene by means of epitope-tagged riboprobes visualized by
enzyme-based amplification. Simply put, the transcript that is actively encoding a specific
protein is labelled with a visible dye on a cell-by-cell basis. By designing RNA probes for
each gene, expression patterns on the complete mouse genome can be generated19.

This gene expression data is collected as a high resolution image. To generate this image,
the mouse brain is extracted from the skull and put into solution to freeze. The frozen brain
is then sliced into sagittal (vertically slicing starting laterally and going towards midline)
cross-sections about 20 microns thick. Each cross-section plate undergoes in situ
hybridization so that the expression of a particular gene is highlighted, and the stained cross-
section is imaged using light-microscopy at the resolution of 3.3 microns per pixel. Given
that the mouse brain is roughly of size 0.6 × 0.8 × 1.2 cm, imaging a single mouse brain
yields around 400 images whose dimensions are 2000 by 3500 pixels4.

Several examples of gene expression images for one cross-section are shown in figure 1.
Note that each image differs slightly due to rotations and translations induced during the
data collection process, as well as the anatomical deviations between individual mice. One
feature of these images is that they all exhibit common anatomical regions such as the
cerebellum (the dark folded region in the upper right portion of the images).

1.2. Gene expression database
Given these expression images, our task is to build a database that organizes the expression
data in the images into a searchable form. This database consists of eleven standard cross-
sections, each corresponding to a sagittal section of particular anatomical interest. Queries to
this database are of the form: "For a given cross-section, which genes have a particular
expression pattern over a specific anatomical region?"

The key to answering such queries is to construct an atlas for each standard cross-section.
An atlas partitions the brain into disjoint anatomical regions, each labelled by appropriate
information such as its name. This labelling allows the user to pose queries in terms of
named regions. To compare gene expression data from different images, the database
deforms this atlas onto each image and records the expression data encoded in the image in
terms of its position on the deformed atlas. This approach ensures accurate comparison of
data from similar regions.

1.3. Contributions
Although there has been a great deal of work on deformable modeling and its application to
anatomy (reviewed in the next section), we view this paper as making two strong, original
contributions to this problem:

• We propose to use Catmull-Clark subdivision meshes as a deformable model for
the mouse brain. In particular, these meshes incorporate a network of B-spline
crease curves that partition the model into disjoint anatomical regions and, as
result, serve as an atlas for the mouse brain. The partitioned, multi-resolution
structure of these meshes allows queries comparing expression data to be
performed efficiently and accurately.

• We propose a new technique for deforming these subdivision meshes to point and
normal data generated from gene expression images. This method improves on a
scattered data fitting technique developed by Hoppe et al.10 and incorporates a
novel deformation energy term into the fitting process.
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2. Subdivision meshes as deformable atlases
A range of models have been proposed to serve as deformable atlases for biological
structures. For the reader interested in review of the basics of deformable modeling, we
suggest two survey papers16, 18. Another good reference focused more on anatomical
applications is Toga’s book23. Most deformable models consist of two basic components: a
geometric representation combined with a physics-based model.

2.1. Previous deformable geometric models
One key contribution in this paper is to propose subdivision meshes as an ideal geometric
representation for deformable atlases. To place our approach in perspective, we briefly
review some of the other geometric representation typically used in deformable modeling.

Freeform deformations—One simple approach to deformable modeling is to embed an
object into a tensor product grid of points. If the grid points are interpreted as the control
points for a tensor product spline, moving these control points induces a smooth deformation
of the mesh (as well as the embedded object). In the case when the underlying splines are B-
splines, the resulting deformations are known as freeform deformations20. One standard task
in this framework is to compute a deformation that maps an input object into a deformed
output shape. Figure 2 shows such an example of a deformation between two brain cross-
sections computed by an elastic warping algorithm due to Paul Thompson22. More recent
work has developed a multi-resolution version of freeform deformations based on
hierarchical B-splines25.

Note that one drawback of free-form deformations is that the boundaries of the embedded
object do not necessarily conform to the grid lines of the deformations. For example, in
figure 2, the boundary of the brain does not conform to the tensor product structure of the
grid in a natural manner. As a result, freeform deformations provide only indirect control
over a deformation when restricted to the boundaries of the embedded object.

Active contours—Snakes13, balloons9, and geodesic active contours6 are boundary-based
deformable primitives that are driven to the boundaries of an object using a physic-based
model. The resulting models approximate the boundaries of the object in a direct and
accurate manner. More recently, T-snakes17 embed the boundary curve in a 2D tensor
product grid and generates automatic topology changes in the boundary curve during fitting
to the object.

T-snakes are interesting in our context in that the boundary curve is embedded in a 2D mesh
which could then be used to store gene expression data. However, as was the case for
freeform deformations, this 2D interior mesh has a tensor product topology that may be
incompatible with the structure of internal regions in the object.

Simplex meshes—An alternative to the structured meshes used in freeform deformations
and T-snakes are unstructured simplex meshes (see18 for an overview of their use in
deformable modeling). Due to their lack of tensor product structure, simplex meshes are
flexible enough to mesh the interior of an object while conforming to its external and
internal boundaries. The main drawback with this type of representation is that regularity
and smoothness of the mesh must be enforced explicitly. Another drawback is that, due to
their piecewise linear nature, very fine meshes are often needed to conform accurately to
curved objects.
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2.2. Subdivision meshes
Given a coarse mesh M0, subdivision is a fractal-like process that produces a sequence of
increasingly fine meshes Mk that converge to a limit mesh M∞ following M0. In terms of
deformable modeling, subdivision surfaces (curved 2D meshes embedded in 3D) have
received only limited attention, most notably in14, 15. In this paper, we propose to represent
a deformable atlas as a planar subdivision mesh partitioned by an embedded network of
crease curves. This explicit partitioning distinguishes our work from previous work on
deformable modeling.

We focus on Catmull-Clark subdivision7, a subdivision scheme for quad meshes that
produces provably smooth meshes in the limit. One particularly simple method for
implementing Catmull-Clark subdivision is described in chapter 7 of Warren et al.24. In
particular, each subdivision step can be factored into two simple transformations: bi-linear
subdivision, followed by centroid averaging. Under bi-linear subdivision, each quad is split
into four sub-quads with new vertices placed at the midpoints of old edges and at the
centroids of old faces. Centroid averaging consists of the following averaging operation:

Centoid averaging—For each vertex p in the mesh, compute the centroids of those quads
that contain p. Reposition p at the centroid of these centroids.

Figure 3 illustrates this factorization applied to the initial quad mesh on the left. The result
after bi-linear subdivision is shown in the middle, while the result after centroid averaging is
shown on the right.

To use these subdivision meshes Mk as an atlas, we must next partition these meshes into
disjoint sub-meshes corresponding to distinct anatomical regions. To this end, we tagged a
subset of the edges and vertices of the coarse mesh M0 as being crease edges and crease
vertices. Taken together, these crease edges form a curve network in M0 that partitions M0

into disjoint pieces. (For subdivision surfaces, crease edges and vertices are used to
introduce normals discontinuities in smooth surfaces.)

After subdivision, the image of this network of crease edges is a network of curves that
partitions the limit mesh M∞. Unfortunately, this curve network has two defects: the curve
network on the limit mesh is not always smooth and the shape of this curve network depends
on the position of vertices of M0 that do not lie on the initial crease edge network.

To address this problem, the subdivision process is now modified as follows. In the first
phase (bi-linear subdivision), each crease edge is linearly subdivided into two crease edges.
Next, during centroid averaging, each vertex on a crease edge is repositioned at the centroid
of the midpoints of those crease edges that contain the vertex. The positions of crease
vertices are left unchanged.

Now, the limit of this modified subdivision process is a smooth mesh M∞ partitioned by a
network of cubic B-spline curves that interpolate crease vertices of M0 and approximate the
curve network formed by the crease edges in M0. Note that the shape of the curve network
depends only on the positions of the crease vertices and crease edges in the coarse mesh M0.

For example, the left part of figure 4 shows an initial mesh M0 consisting of three quads,
eight crease edges (drawn in thick lines), and one crease vertex (drawn as a round dot). The
middle portion of the figure shows the result of bi-linear subdivision. Finally, the right
portion of figure 4 shows the mesh M1 generated by centroid averaging (after modification
to account for crease vertices and crease edges). Figure 5 shows the sequence of meshes
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generated by repeatedly applying the subdivision process. Observe that the curve network
defined by the eight crease edges partitions the mesh into two disjoint regions.

In practice, we model each standard cross-section of the mouse brain as a Catmull-Clark
mesh partitioned by a network of crease curves. The top portion of figure 6 shows such a
coarse mesh M0 for one sagittal cross-section of the mouse brain. (Crease edges are
thickened; crease vertices are large dots.) The middle part of this figure shows the quad
mesh M3 generated by three rounds of subdivision.

Note that the crease curves partition the mesh into 15 disjoint sub-meshes. The crease edge
points in M0 that control the shape of these curves were positioned by a mouse anatomist
such that each sub-mesh corresponds to an important anatomical region of the mouse brain.
The bottom portion of figure 6 shows the crease curve network and the example image used
in laying out the coarse mesh M0. By tagging each quad in the coarse mesh M0 with its
corresponding anatomical region, the partitioned limit mesh M∞ serves as an atlas for this
standard cross-section.

This explicit partition of our model has two substantial benefits. First, in fitting this mesh to
a new expression image, we can focus our attention on the sub-problem of fitting the crease
curve network to data points generated along the boundaries of anatomical regions. Second,
this explicit partitioning allows queries to the associated database of gene expression data to
be restricted to anatomical regions without effort.

3. Deforming a subdivision mesh onto an expression image
Given a gene expression image for a particular cross-section, our next task is to deform the
atlas (i.e; subdivision mesh) for this cross-section to the image. Our solution is the standard
two-step process in which the atlas is first aligned to the image using a global affine
transformation and then locally fit. This global alignment accounts for rotations and
translations introduced during the sectioning and imaging process. The local fitting accounts
for variations in the anatomical shape of the mouse brain and tissue distortion resulting from
the sectioning process.

3.1. Affine fitting using principal component analysis
The top portion of figure 7 shows the expression image for the gene CRY1 (upper left in
figure 1) overlayed with the curve network for the atlas associated with its cross-section.
Our first task is to compute an affine transformation that rotates, translates and scales the
atlas onto the new image. To this end, we apply a simple filter that segments the brain tissue
from white background. The resulting segmentation of the gene expression image is shown
in the middle of figure 7.

If the ith black pixel in this segmented image has coordinates ai (represented as row vector),
we can estimate the center and orientation of the segmented image using principal

component analysis12. The centroid c of the segmented image has coordinates 
where n is the number of black pixels. To estimate the orientation of the image, we next
form the 2 × 2 covariance matrix M
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The two eigenvectors of M are orthogonal, and they describe the directions of the first and
second principal variation of the data points. Together with the centroid c, these axes
represent a coordinate system for the segmented image. Using a similar coordinate system
computed for the atlas, we rotate and translate the atlas onto the gene expression image. The
result of this deformation is shown in the bottom of figure 7.

Note that this method is fast since it requires only a single pass over the gene expression
image and reliable since the sagittal cross-sections have an elliptical (but non-circular)
shape. The top plot in figure 8 shows an estimate of the quality of the initial alignment for
110 expression images taken at the same cross-section. The plotted error measures the area
of non-overlapping portions of the aligned images versus the area of the expression image.
Occasionally, poor alignments are generated due to large amounts of background noise in
the expression image (corresponding to contamination during the in situ hybridization).
Their high error (> 8%) is used to alert the technician collecting the images to visually
examine the image and either align the image by hand or regenerate a new image.

3.2. Local fitting using iterated least squares
Due to variations in the anatomical structure of the mouse brain, applying a global affine
deformation to the coarse mesh M0 is not sufficient to produce a corresponding limit mesh
M∞ that accurately fits the expression image. Instead, our approach is to reposition the
vertices of M0 and form a new subdivision mesh M ̂0 whose associated limit mesh M ̂∞ fits
the image accurately. To compute this mesh M ̂0 we let M0 (x) denote the coarse mesh whose
ith vertex has unknown position xi (where x = (x1, x2,…)). Likewise, Mk(x) denotes the mesh
resulting from subdividing M0 (x) k times.

Now, our goal is to compute a vector of positions x̂ such M∞ (x̂) fits the expression image
accurately while deforming M∞ as little as possible. To this end, we construct a quadratic
energy function Ek (x) of the form

where  measures the fit of Mk (x) to the expression image and  measures the

energy used in deforming Mk to Mk (x). We next construct .

Building the fit term—Our construction for  is a variant of a method for fitting a
subdivision surface Mk to a set of scattered data bj that is due to Hoppe et al.10. (Note that
Hoppe’s method itself is a variant of the iterated closest point method3.) For each data point
bj, this method computes the vertex p j of the mesh Mk that is closest to b j and then
minimizes the quadratic function

where pj (x) is the vertex of Mk (x) corresponding to pj.

One drawback of this quadratic function is that it penalizes local translations of the
subdivision mesh along flat areas of the scattered data. Our improvement to Hoppe’s method
is to estimate a outward unit normal n j for each data point b j (see figure 9) and compute a
new quadratic function of the form
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(1)

where the sum runs over all data point b j. In this model, we penalize deviation of the mesh
vertices p j (x) from the tangent lines defined by the pairs (b j,nj). This modified function
does not penalize translations of the subdivision mesh along these tangent lines.

We can improve the quality of the fitting term even further by replacing Hoppe’s closest
point correspondence (used in pairing b j with p j) by one that favors nearby points with
aligned normals. For each data point b j, we compute the closest vertex p j of Mk whose unit
normal lies within some small cone of the normal n j. In our implementation, we restrict this
search to vertices of Mk that lie within 5% of the image width of b j and whose normals
differ from n j by at most 45°. The weight term w j in equation 1 is simply the cosine of
twice the angular difference between nj and the normal for the chosen p j.

Building the deformation term—The second quadratic term  penalizes non-affine
deformations of the mesh Mk incurred during the fitting process. To understand the structure
of this term, we first focus on the simple case of deforming a triangular mesh consisting of
four points p1, p2, p3, p4 into a new mesh consisting of four corresponding points p̂1, p̂2,
p̂3, p̂4. (See figure 10.)

Note that there exists a unique affine transformation T satisfying T(pi) = p̂i for i = 1,2,3.
However, this transformation does not necessarily map p4 into p̂4. In particular, the residual
T(p4) — p̂4 is zero if and only if there exists a single affine transformation mapping every pi
to p̂i.

To derive an explicit penalty term based on this residual, we first observe that vertex p4 can
be expressed as an affine combination of vertices p1, p2, p3 as follows:

where aijk denotes the unsigned area of the triangle formed by pi, pj, pk. Applying T to both
sides of this expression and multiplying by a123 yields that

Applying this equation to the weighted residual a123 (T (p4) — p̂4) yields a symmetric
penalty term of the form

(2)

(In practice, we divide this penalty term by the square of the area of the quad formed by p1 ,
p2, p3, p4 as part of normalizing the resulting energy functions.)

If we triangulate mesh Mk and its corresponding deformation M ̂k = Mk (x), taking the sum of
the squares of the penalty terms generated by equation 2 for all pairs of edge adjacent

triangles yields the desired energy matrix . As defined, the energy term 
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associated with Mk diverges as k → ∞. However, after normalizing these quadratic
functions by 4−k to account for the growth in the size of the meshes during subdivision, we

have observed experimentally that the energy matrices  converge to a continuous
energy matrix  for underlying continuous deformation.

Computing the deformation—To determine the desired deformation, we form the
quadratic function Ek (x) (using k = 3 in our implementation) and compute the minimizer x̂
for Ek (x) using a linear solver such as conjugate gradients. We then recompute the fit term

 from the deformed mesh Mk (x̂) and recompute the minimizer x̂ . Iterating this process
several times yields a subdivision mesh Mk (x̂) that fits the boundary of the gene expression
image very accurately with a minimum amount of deformation. Since the number of
unknowns in this optimization process is proportional to the number of vertices in M0 as
opposed to the number of vertices in Mk, the total fitting process takes only several seconds
to run on a consumer-grade PC.

Figure 11 shows the result of applying the affine and local fitting method to the four
expression images of figure 1. Note that, although the fit term currently uses only data points
from the external boundary of the brain, the deformation term causes the internal anatomical
boundaries of the deformed atlas to approximate the corresponding internal boundaries of
the image. We are working on detecting internal boundaries of a brain image so that the
deformed atlas will fit more accurately on to the internal brain features.

The lower plot in figure 8 shows an error plot for the deformed atlas for 110 images lying on
cross-section nine. For most genes, the deformed atlas fits the expression image with less
than a 3% error. For images with higher error, the technician typically improves the fit via
interactive manipulation of the control points of the coarse mesh M0. (This level of manual
interaction is acceptable since scanning a gene expression image using light microscopy
takes on the order of ten minutes.)

4. Constructing and searching the database
Having deformed the atlas onto an expression image, we are now ready to add the
expression data encoded in the image into the database. In this section, we discuss this
process and then outline how queries to this database are generated and answered.

4.1. Adding an expression image to the database
For a particular standard cross-section, the gene expression database consists of the refined
subdivision mesh Mk for the standard atlas annotated with gene expression information for
each gene in the database. (In our implementation, k = 5.) The annotation for the ith gene, 
consists of one four-tuple of integers for each quad in the refined mesh Mk. Each of these
four-tuples estimates the number of cells covered by its associated quad that exhibit one of
four levels of gene expression; high, medium, low or none.

To compute , we first deform the subdivision mesh Mk onto the gene’s corresponding
expression image (as described in the previous section). Next, for each quad in the deformed
mesh, we estimate the number of cells covered by that quad and their corresponding levels
of expression. (Cell locations and their levels of expression can be computed using an image
filter developed by one of the authors (Carson).) Note that the use of the deformed mesh in
computing  corrects for anatomical variations in individual mouse brains.
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4.2. Querying the database
Having constructed the gene expression database, we can now allow users to answer queries
of the following form: "For a given region of the brain, which genes have a particular
expression pattern?" Using the atlas, users may specify the target region by name or by
interactively painting the desired region onto the atlas. Target expression patterns can either
be uniform patterns such as high, medium, low or none as well as expression patterns for a
given gene.

To compute the answer to a particular query, the database compares the gene expression
data for various pairs of genes. For example, if the user desires those genes whose
expression patterns are similar to the ith gene in the database, the query compares all of the

gene expression data  to the fixed gene . By computing a norm  that measures
the similarity between the two expression patterns, the database then reports those genes
whose norm with respect to the target gene is smallest.

In practice, we allow the user to choose between two norms, the L 1 norm of the average
gene expression level and a norm based on the χ2 test (a well-known test statistic for
analyzing contingency tables11). For example, the L 1 norm has the form

(3)

where  computes a vector of the average gene expression level for each quad in .
(High, medium, low and no expression are assigned the values 3, 2, 1, 0, respectively.) ‖v‖1
computes the sum of the absolute values of the elements of the vector v.

Figures 12 and 13 show examples of queries to the database at different cross-sections. In
the upper part of figure 12, the user has painted a query onto the thalamus and wants to find
the gene that has a higher level of expression at the lower-left corner (the darkened area).
The best match is the gene NPY which has the desired expression pattern. In the upper part
of figure 13, the user has selected the cortex and asked the database to find those genes
whose expression pattern is similar to the gene NEUROD6 which is strongly expressed
along the upper part of the cortex (as shown by the black areas in the gray quads). The best
match (excluding NEUROD6) is the gene EPHA4 that exhibits a similar expression pattern
along the top of the cortex. Note that this interface also allows the user to paint a query onto
a sub-area of an anatomical region by selecting the corresponding quads.

4.3. Accelerating the query computation
As stated, the search compares the target gene to every gene in the database at the finest
level of subdivision of the atlas. By exploiting the multi-resolution structure of subdivision
mesh Mk, we can substantially accelerate the search. Our technique is essentially a
generalization of the multiresolution search technique proposed by Chen et al. 8 from
rectangular images to subdivision meshes.

The key to this acceleration is to compute a multiresolution summary of the gene expression

data  for coarser meshes Mj where 0 ≤ j < k. For each quad q in Mj, the corresponding

entry in the summary  is the sum of the entries in  for those children of q in Mk. Given a

target expression , the accelerated search first computes  for all genes j in the
database and orders the genes in terms of their relative error at level 0 using a priority queue.
Next, the method repeatedly extracts the gene with the smallest error from the priority

Ju et al. Page 9

Symp Geom Process. Author manuscript; available in PMC 2010 July 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



queue, compares it with the target gene at a finer resolution , and inserts the gene back into
the queue using the newly computed error. The search terminates when the error for the
gene at the head of the priority queue has been previously computed on the fully subdivided
atlas.

The search is guaranteed to return the gene with minimal error if the error function e has the
property that refining the expression data for two genes increases the residual error between
them monotonically; that is,

Both L 1 norm used in equation 3 and the χ2 norm that we use have this property.

This method accelerates the search by eliminating genes that are a “bad” match at a coarser
level without having to compare with these genes to the target at the fine level. Without the
multi-resolution acceleration, the searches done in figures 12 and 13 took 7.76 and 7.92
seconds to find the best matches among 110 genes. (Our database currently runs on a
consumer-level PC.) Using the multi-resolution method, these searches took 2.57 and 2.93
seconds, respectively, on the same computer. As the number of genes in our database grows,
we intend to develop a parallel version of this search to maintain reasonable search times.

5. Future work
In the future, we will extend the proposed techniques to construct a fully 3D database of
gene expressions based on a volumetric deformable atlas of the mouse brain. The brain atlas
will be represented as a volumetric subdivision mesh using techniques such as the multi-
linear subdivision scheme proposed in 2. The subdivision mesh consists of cells (such as
hexahedra) onto which gene expressions will be attached after the atlas is deformed onto a
brain. In analogy to the 2D subdivision atlas in which the anatomical boundaries are
captured by crease edges, the 3D subdivision mesh is partitioned into distinct volumes
corresponding to each anatomical region by a network of smooth crease surfaces.

The partitioned brain atlas allows the user to pose queries to distinct anatomical regions in a
fully 3D manner. To do this in an intuitive way, the user can paint queries onto 2D regions
at selected cross-sections of the brain atlas (similar to the query interface in figure 12 and
13), and the selected cells of the mesh will form a 3D selection volume that can be
visualized on the fly.

We are also interested in improving the quality of creased subdivision meshes. In the current
2D subdivision scheme, the mesh is only C 0 continuous across crease edges. We are
investigating new schemes that will result in higher order continuity at those crease edges to
allow a network of smooth curves embedded in a smooth surface mesh.

6. Conclusions
In summary, we believe that subdivision meshes are an ideal geometric data structure for
deformable atlases. These meshes formed the core technology for a preliminary
implementation of the gene expression database consisting of 1200 images for 110 genes.
For the interested user, this database is fully accessible via the web at www.geneatlas.org.
Our future plan is to extend the layered 2D structure of the database into a fully 3D version
consisting of a single deformable atlas based on subdivision of volume meshes.
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Figure 1.
Expression images from 4 genes taken at the same approximate cross-section of the mouse
brain.
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Figure 2.
Deformation based on a uniform grid. (Thanks to Paul Thompson for this image.)
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Figure 3.
Initial mesh (left), result after bi-linear subdivision (middle), result after centroid averaging
(right).
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Figure 4.
Initial mesh with eight crease edges and a crease vertex (left), result after bi-linear
subdivision (middle), result after centroid averaging (right).
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Figure 5.
Initial mesh in figure 4 being subdivided two (left), three (middle) and four times (right).
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Figure 6.
Atlas at the coarsest level of subdivision (top), subdivided three times (middle), overlaid on
its defining image (bottom).
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Figure 7.
An expression image overlayed with its undeformed atlas(top), the segmentation of the brain
tissue (middle) and the atlas after affine alignment (bottom).
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Figure 8.
An error plot for affine fit (dotted) and affine plus local fit (solid) for 110 images taken at
cross-section nine.
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Figure 9.
Boundary points bj and normals nj for the segmented image of figure 7.
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Figure 10.
Derivation of the penalty term for non-affine deformations.
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Figure 11.
Deformed subdivision meshes for 4 expression images at the same cross-section.
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Figure 12.
A query for the gene with higher expression at the lower-left corner of the thalamus at cross-
section 6.
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Figure 13.
A query for the gene with expression similar to that of NEUROD6 over the cortex on cross-
section 11.
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