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Abstract
Noninvasive functional neuroimaging, as an important tool for basic neuroscience research and
clinical diagnosis, continues to face the need of improving the spatial and temporal resolution.
While existing neuroimaging modalities might approach their limits in imaging capability mostly
due to fundamental as well as technical reasons, it becomes increasingly attractive to integrate
multiple complementary modalities in an attempt to significantly enhance the spatiotemporal
resolution that cannot be achieved by any modality individually. Electrophysiological and
hemodynamic/metabolic signals reflect distinct but closely coupled aspects of the underlying
neural activity. Combining fMRI and EEG/MEG data allows us to study brain function from
different perspectives. In this review, we start with an overview of the physiological origins of
EEG/MEG and fMRI, as well as their fundamental biophysics and imaging principles; it is
followed by a review of major progresses in understanding and modeling the neurovascular
coupling, methodologies for the fMRI-EEG/MEG integration and EEG-fMRI simultaneous
recording; finally, important remaining issues and perspectives (including brain connectivity
imaging) are summarized.
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I. Introduction
Neuroimaging plays a critically important role in neuroscience research and management of
neurological and mental disorders. Modern neuroimaging techniques rely on various
“source” signals that change across different spatial and temporal scales in accompany with
neuronal activity. For instance, neuronal activity intensifies electrophysiological signals,
such as action potentials and post-synaptic potentials, which serve as the primary
messengers for communication among neurons. It is generally agreed that neural activity is
well-characterized by electrophysiological processes which tightly correspond with neuronal
dynamics. In addition, neural activity is also coupled with metabolic and hemodynamic
processes. As brain function requires sustained blood flow to supply oxygen to compensate
for cerebral metabolic energy consumption, changes in neural activity often induce cascaded
changes in cerebral metabolic rate of oxygen (CMRO2), cerebral blood flow (CBF), oxygen
extraction fraction (OEF), cerebral blood volume (CBV), etc. In contrast to
electrophysiological signals, metabolic and hemodynamic responses are much slower and
reflect the indirect and secondary effects of neural activity.
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All noninvasive neuroimaging modalities are based on biophysical signals related to either
brain electrophysiology or hemodynamics/metabolism. Electroencephalography (EEG) [1]
and magnetoencephalography (MEG) [2] are based on electrophysiological principles.
Functional magnetic resonance imaging (fMRI) [3–5], positron emission tomography (PET)
[6,7], single-photon emission computed tomography (SPECT) and near-infrared
spectroscopy (NIRS) are based on hemodynamic and/or metabolic principles. Strengths and
limitations of these modalities depend largely upon the spatiotemporal characteristics of the
measured “source” signals in relation to neuronal activity, as well as many diverse sensing
and imaging methods applied to individual modalities.

EEG and MEG measure external electrical potentials and magnetic fluxes, respectively,
which arise collectively from mass neuronal responses within the brain. Such
electromagnetic signals propagate (virtually) instantaneously from the activated neuronal
tissues via volume conduction to the recording sites on/above the scalp surface [8–11]. The
instantaneous nature of EEG/MEG indicates an intrinsically high temporal resolution and
precision, which make them well suited for studying brain functions on the neuronal time
scale. The collective nature suggests low spatial resolution and specificity, which impede
mapping brain functions in great regional details [12]. This is regardless of recent
advancements in electromagnetic source imaging (ESI) [13–15], which has led to great
strides in improving the EEG/MEG spatial resolution to a centimeter scale or even smaller.

The strength and limitation of fMRI are almost precisely the obverse of those of EEG and
MEG. As neural activity elevates, the concomitant alternation of local oxyhemoglobin vs.
deoxyhemoglobin content gives rise to a so-called blood oxygen level dependent (BOLD)
magnetic resonance (MR) signal [16]. Since its advent in the early 1990's [3–5], the BOLD-
contrast fMRI has rapidly gained a dominant position in neuroscience research [17]. The
merits of fMRI include its whole brain coverage, relatively uniform sensitivity, high spatial
resolution and specificity. These advantages are primarily attributable to well-established
MR imaging techniques (e.g. echo-planar imaging) that allow for the frequency and phase
encoding of spatially distributed MR signals. However, fMRI is also limited by its poor
temporal resolution as well as its indirect nature with respect to neuronal activity. These
limitations often pose concerns to any simple interpretation of the BOLD signal as a
surrogate index of neural activity.

For an illustrative overview, we graph the existing noninvasive neuroimaging
methodologies, in comparison with relevant invasive recording/imaging techniques, with
respect to their spatial and temporal resolution, as shown in Fig. 1. Typical invasive
techniques include intracranial electrophysiological recordings of the single-unit activity
(SUA), multi-unit activity (MUA) and local field potential (LFP). In addition, intrinsic light
optical imaging, which can be applied to exposed brain surface, is also capable of imaging
the hemodynamic signals [18,19]. Noticeably, none of existing noninvasive modalities can
alone achieve high resolution in both spatial and temporal domains. One technique may
have merits in the temporal aspect but limitations in the spatial aspect (such as EEG/MEG),
or vice versa (such as fMRI). These complementary features have motivated recent
developments in integrating multiple neuroimaging modalities, particularly EEG/MEG and
fMRI [20–24]. As illustrated in Fig. 2, such a multimodal functional neuroimaging approach
is based on the fundamental relationships between electromagnetic signals generated by
neuronal activity via volume conduction, and BOLD-contrast fMRI signals related to the
hemodynamic responses. A number of efforts in recording technology, multimodal data
fusion and the neurovascular modeling, have collectively led to a promising fMRI-EEG/
MEG integrated functional neuroimaging approach, which holds the potential to reach
millimeter spatial resolution and millisecond temporal resolution, thereby opening a unique
and noninvasive window to investigate dynamic brain activity and connectivity.
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However, the integration of fMRI and EEG/MEG also faces great challenges, which
arguably compromise its intuitive promise and benefits to neuroimaging and neuroscience
fields. To list a few most critical ones, what is the physiological and physical relationship
between hemodynamic and electrophysiological responses? How can EEG be reliably
recorded during concurrent fMRI scans without affecting the signal quality for both
modalities? How should we fuse the recorded fMRI-EEG/MEG data in a principled way for
integrative imaging with enhance spatiotemporal resolution?

The past decade has witnessed significant progresses in both fundamental and technical
aspects related to these questions. Most of them are still under active research or remain
poorly understood. In this review, we start with an overview of the physiological origins of
EEG/MEG and fMRI, as well as their fundamental biophysics and imaging principles; it is
followed by a review of major progresses in understanding and modeling the neurovascular
coupling, methodologies for the fMRI-EEG/MEG integration and EEG-fMRI simultaneous
recording; finally, important remaining issues and perspectives are summarized. Although
some of the points we make in this review might be speculative or even controversial, we
hope they serve to identify important scientific elements that would help to stimulate future
discussion and research.

II. Overview of Electromagnetic Source Imaging and fMRI
A. Origin of EEG/MEG

As the mass responses from all activated neural tissues, EEG/MEG signals can be regarded
as a weighted sum of instantaneous neuronal currents throughout the entire brain volume. In
other words, EEG/MEG reflects the synchronized electrical behavior of an assembly of
neurons within a certain brain region or even across regions. Asynchronized electrical
activities have little contribution to EEG/MEG, because their random consequences are
virtually cancelled out when summed over locations. The large-scale synchrony serves as
the major factor to identify which specific aspects of brain electrophysiology contribute to
EEG/MEG.

Brain electrophysiological processes take place in a variety of spatial and temporal scales. In
a microscopic scale down to a single neuron, the electrophysiological activity manifests
itself as the neuronal spiking activity and the post-synaptic potential (PSP). The neuronal
spiking activity refers to the action potentials that propogate along the axon. The spiking
activity reaches and accumulates at the synapse through which one neuron connects to
another. When the accumulated spiking activity exceeds a certain threshold, it controls the
amount of chemical transmitters released from the synapse. The released neurotransmitters
further control the gating of the ion channels at the post-synaptic neuron and hence
modulates the PSP. For the spiking activity above the threshold, the synapse effectively
behaves as a low-pass filter, owing to its accumulative effect and the delay due to the
electrochemical conversion. Under such circumstances, the pre-synaptic spiking activity
may be temporally correlated with the PSP. However, for the sub-threshold spiking activity,
such correlation does not necessarily hold true.

EEG/MEG measurements in a macroscopic level are insensitive to action potential sources
with short-duration bidirectional current flows. As action potentials propagate along an
axon, the associated electrical currents flow in opposite directions (i.e. along and opposite to
the direction of action potential propagation) in both intracellular and extracellular spaces.
Signals generated by such action potential sources are only recordable from a sensor at a
close vicinity to the neuron. At a relatively remote sensor (such as on the scalp surface), the
electromagnetic signals generated by opposing currents are essentially cancelled out.
Moreover, the brief duration of the action potential also requires a very strong degree of
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synchrony with great temporal precision in order to be observable from the scalp surface.
However, high-frequency (>120Hz) components associated with neuronal spiking activity
are significantly underrepresented in EEG/MEG.

In fact, the primary sources of EEG/MEG are the synaptic currents flowing through the
apical dendrites of large pyramidal neurons within the cortical gray matter [8,13,25,26]. The
apical dendric trees extend toward the pial surface and are organized into columns – a
unique structure facilitating the formation of regionally synchronized synaptic currents [12].
It has been approximated that the simultaneous activation of as few as 0.1% synapses within
a cortical area of around 40 mm2 would suffice to produce a detectable EEG/MEG signal
[9]. Moreover, the view that the primary EEG/MEG sources are synaptic currents is also
supported by a general similarity between the frequency spectra of scalp potentials and post-
synapc potentials [27]. This is regardless of the fact that extracranial potentials measured
with EEG have much smaller amplitudes and lower frequency than intracranial potentials,
such as local field potentials (LFP) and electrocorticograms (ECoG), owing to the different
spatial scale to which each recording technique is applied. In general, low-frequency signals
tend to be synchronized in a larger spatial scale, whereas synchronous high-frequency
activity is often confined to a smaller scale. The same relationship also holds true for MEG.

B. Origin of BOLD Signals
Most fMRI applications utilize a BOLD contrast, whose mechanism is attributable to some
basic biophysical properties of hemoglobin and its susceptibility effects in nuclear magnetic
resonance (NMR). Deoxyhemoglobin is paramagnetic and its concentration inversely
depends on the blood oxygenation level [28]. The paramagnetic property of the blood causes
the bulk susceptibility difference between a blood vessel and its surrounding neural tissue.
This effect, in turn, gives rise to the inhomogeneity of the local magnetic field and
introduces additional resonance frequency shifts and phase dispersion for extra-vessel
molecules. The BOLD contrast is pronounced in gradient echo (i.e. T2*-weighted) MR
images where higher oxygenation level leads to larger MR signals [16]. In addition, the
echo-planar imaging (EPI) technique further provides remarkable temporal resolution for
recording dynamic BOLD signals in realtime [29].

In the first three pioneer studies, the BOLD-contrast fMRI has been independently
demonstrated in noninvasively mapping in vivo neurophysiologic changes due to either
visual stimulation [3,4] or motor tasks [5]. In all these three experiments as well as
numerous fMRI studies that followed, the brain regions engaged in performing a task or
processing a stimulus demonstrate increased BOLD signals relative to the resting state,
namely the positive BOLD response (PBR). The PBR is widely believed to result from the
over-compensation of oxygen usage by the cerebrovascular system, which causes a regional
hemodynamic influx in excess of the oxygen consumption of the activated neuronal tissue
[6,7]. In fact, the BOLD signal reflects the combined effect of CBF, CBV and CMRO2 [30].
Several models have been proposed to describe the BOLD signal as a function of the neural
activity-induced changes in CBF, CBV and CMRO2 [30–35]. Qualitatively, the CBF
contributes positively to the BOLD signal while the CBV and CMRO2 have negative
contributions; yet such relationships are not necessarily linear.

Another fundamental question concerning the interpretation of BOLD-fMRI data lies in the
neurophysiological origin of BOLD signals. There have been debates regarding whether the
BOLD signal arises from neuronal inputs or outputs (i.e. synaptic or spiking activities,
respectively). Early studies [36,37] suggest the dependence of the BOLD responses upon
neuronal spiking activity. This conclusion was drawn from the observations that the peak
magnitudes of the BOLD signals measured in human V5 [36] and V1 [37] were linearly
correlated with the averaged spiking rates invasively recorded in analogous areas in
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primates. More recently, Mukamel et al. also found a close correlation between the BOLD
signals measured from healthy subjects and the neuronal spiking activity recorded from
epilepsy patients when both groups underwent identical stimuli [38]. However, questions
may be raised, since these studies compared the BOLD and neuronal spiking signals
acquired from different species or subjects.

In contrast, more studies have demonstrated that BOLD-fMRI reflects synaptic activity
rather than spiking activity [39–42]. In a very influential and technically demanding
experiment, Logothetis and his colleagues recorded the spiking activity (i.e. single-unit
activity (SUA) and multi-unit activity (MUA)) and the synaptic activity (i.e. local field
potential (LFP)) simultaneously with the BOLD-fMRI signals from monkeys [39]. Through
linear transformation systems, the LFP was found to yield better estimates of BOLD
responses than the MUA. Hence, they conclude that BOLD signals primarily reflect synaptic
activities [39,43,44]. Following this study, similar findings were also reported in several
independent studies [40–42].

Between two competing views, an agreement has been reached in general with regard to the
synaptic origin of BOLD signals [17]. Hemodynamic responses are driven by metabolic
energy demands, nearly all of which are imposed by synaptic activity instead of action
potential firing [45,46]. The observed correlation between the BOLD signal and the
neuronal spiking rate [36,37] might be owing to the fact that the pre-synaptic neuronal
spiking activity is sometimes correlated with the synaptic current, as previously discussed in
this review and elsewhere [46,47]. However, when LFP and MUA are disassociated, the
BOLD response is primarily correlated with LFP [41,42].

C. Electromagnetic Source Imaging
Electromagnetic source imaging (ESI) is a model-based neuroimaging technique. It entails:
1) modeling the brain electrical activity, 2) modeling the head volume conduction process so
as to link the modeled electrical activity to EEG/MEG, and 3) reconstructing the brain
electrical activity from recorded EEG/MEG data. The first two modeling steps serve to solve
the EEG/MEG forward problem; the third step is the inverse of the second step, thereby
commonly known as the EEG/MEG inverse problem.

A model of brain electrical activity (in short “source model”) is composed of bioelectric
units distributed within the brain volume or over the brain surface, or confined to few
locations in the brain. A single source unit is often defined as a current dipole, which well-
approximates the synchronized synaptic currents at a columnar level [9,12]. Any brain
electrical activity can be modeled by a distribution of current dipoles within the entire brain
volume. One may further choose to confine the dipole locations to the cortical gray matter
and constrain the dipole orientations to be perpendicular to the cortical surface [26].
Alternatively but less frequently, a bioelectric source unit can also be defined as a current
monopole [48], current multipole [49], or extracellular potential [50–58]. Moreover, when
brain electrical activity is confined to a few focal regions, one may prefer to use a source
model consisting of only a few discrete dipoles, namely the equivalent current dipole (ECD)
model [59–62]. As opposed to the general applicability of the distributed source models, the
ECD model assumes small extents of the neural responses, which may or may not be valid
depending on the particular circumstances. Even if the assumptions are valid, the
appropriate number of dipoles is often difficult to be determined a priori or solely from the
EEG/MEG data [63].

A linkage from the source model to the electromagnetic signals at the sensor locations on the
scalp can be established by constructing a volume conductor model that resembles the
human head in both geometry and conductivity. Historically, the head volume conductor is
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modeled as concentric three-shell [57,64,65] or four-shell [66] spherical models. More
accurate forward solutions become possible by using numerical algorithms, such as the
boundary element method (BEM) [61,67,68], finite element method (FEM) [69,70,211], and
finite difference method (FDM) [71]. Such numeric models allow us to incorporate the
realistic geometries of the head compartments segmented from anatomical images such as
MRI. The conductivities of different head tissues, especially for the skull in EEG, may be
specified according to empirical values [64], in vitro measurements [72], in vivo estimates
[73,74], or potentially the results of electrical impedance tomography (EIT) [75] or MR
electrical impedance tomography (MREIT) [76]. In addition, diffusion tensor magnetic
resonance imaging (DT-MRI) [77] provides a new means to obtain the anisotropic
conductivity of the cerebral white matter [78–80].

Given a source model and a head volume conductor model, the EEG/MEG can be linked
with the brain electric sources by

(1)

where x(t) is the vector of EEG or MEG signals, s(t) is the source vector, A is the transfer
matrix, and b(t) is the noise vector, respectively.

As opposed to the well-posed forward modeling and computation, the EEG/MEG inverse
problem is more challenging. Such a problem is to estimate the source signals s(t) from EEG
or MEG measurements x(t). As the number of EEG/MEG sensors is in general smaller than
the number of sources within the brain, the EEG/MEG inverse solution is non-unique if no
constraints are given. Over the past two decades, a number of efforts have been made to
tackle this challenge. Evidence has increasingly indicated that reasonable EEG/MEG inverse
solutions can be obtained if appropriate constraints, as derived from brain anatomy and
physiology, are placed on the source distribution. For instance, one may specify the optimal
solution as the most energy efficient one among those fitting equally well with the data. In a
noise-free condition, this constraint leads to the linear least-squares source estimate. In noisy
conditions, this constraint can be incorporated as a minimum norm side constraint, giving
rise to the minimum norm estimate (MNE) [81]. Other variations of the MNE include the
lead-field normalized weighted minimum norm (WMN) [82], low-resolution brain
electromagnetic tomography (LORETA) [83], and their extensions to statistical mapping
[21,84], etc. The common feature shared by these algorithms is the linearity of the inverse
solution, meaning that the inverse solution can be obtained through transforming the
measurements through a linear system (or inverse matrix). The linear inverse solutions
return low-resolution images of current density or its statistics. Iterative algorithms have
been developed to enhance the focal sources [85]. These iterative methods have been
suggested to be equivalent to a nonlinear inverse solver that minimizes a cost function
formulated with L-p norms for both the data fitting term and the side constraint [86]. This is
in line with other nonlinear inverse algorithms that specifically utilize the solution constraint
other than the L-2 norm, such as the minimum current estimation (MCE) [87], L1 norm [88–
90] and L-p norm [91].

In parallel to current density imaging, dipole source localization can be approached using
nonlinear optimization [59–62,92,93] or sub-space scanning procedures [94–99] Moreover,
the beamforming techniques based on linear spatial filtering can be used to estimate the
source activity at a region of interest (ROI) or every individual location in the source space
[100–103]. The beamformer for a specific ROI or source location is derived in an attempt to
minimize the interference from other locations.
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The imaging performance of all linear and nonlinear EEG/MEG inverse algorithms varies
from case to case, depending on the nature of the brain electrical activity. The
methodological choice is up to the users' own judgment as to whether the activity is sparse
or extended, stationary or non-stationary, etc. Although the evaluation of some typical
algorithms have been done in a few experimental and simulation settings [55,104–106], a
general conclusion or agreement regarding a single optimal source imaging approach, if
possible at all, has not been reached.

D. fMRI Statistic Parametric Mapping
The vast majority of fMRI applications use fMRI for functional localization of the brain
regions engaged in specific sensory processing or cognitive functions [107]. FMRI as a
brain mapping tool depends on experimental designs, data analysis methods and an
explicitly or implicitly assumed relationship between BOLD signals and neural responses.
Fig. 3 summarizes the principle of fMRI.

FMRI is a comparative technique in nature. An fMRI experiment must include at least two
conditions in contrast. A task (or stimulus) condition places specific demands to the brain,
while a user-defined control condition may involve a “baseline” task or a resting state. The
signal difference between the task and control conditions is evaluated, typically voxel by
voxel, to identify the regions engaged in the task execution. Popular fMRI experimental
designs define the alternation of conditions in either a block-design or event-related manner.
In line with earlier PET paradigms, the block-design involves prolonged task and control
periods, so as to observe sustained BOLD signal changes with a high contrast-to-noise ratio
(CNR). The event-related design focuses on the averaged single-trial BOLD response in
ways analogous to event-related potentials/fields (ERP/ERF) in EEG/MEG [108,109].

For both types of study designs, the BOLD signal at an “activated” voxel is expected to
change in a way related to the transitions from one condition to another. This rationale
allows us to make inference about regionally specific effects in response to the task/
stimulus. For experiments with only two conditions, voxel-wise statistical inference may be
simply based on a Student's t-test or period cross correlation [5]. A more general and
flexible approach is based on the general linear model (GLM) [110,111]. Stimulus functions
encoding the occurrence of a particular event or experimental state (e.g. boxcar-functions)
are convolved with a hemodynamic response function (HRF) to form regressors in the
GLM. Fitting the GLM to the data allows for the estimation of model parameters and the
statistic inference against a null hypothesis (i.e. the voxel is not activated). Such inference is
classic in terms of statistics, as opposed to more recent methods based on the Bayesian
inference which provides the posterior probability that the voxel is activated given the data
[112]. All of these methods discussed so far are model-driven in a sense that they require
specific assumptions about the time courses of the processes contributing to the measured
signals and/or a priori statistical distributions of the signal and the noise. To remove such
model dependence, a data-driven method has been implemented using independent
component analysis (ICA) [113,114].

III. Neurovascular Coupling
Statistical inference based on fMRI data alone can only draw conclusions about regional
hemodynamic effects. However, it is the neuronal effect that is of ultimate interest to
neuroimaging. Interpretations of BOLD fMRI data in terms of neural responses are crucially
dependent upon the neurovascular coupling, which is commonly referred to as the
relationship between electrophysiological responses and BOLD signals. This relationship
should also serve as the most fundamental ground for all fMRI-EEG/MEG integrated
neuroimaging methods (to be discussed later).
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In order to infer neural activity from fMRI, the neurovascular relationship is most frequently
modeled as a linear convolution system. It means that the BOLD signal surrounding the
activated neural tissue results from the local neural activity convoluted with a time-invariant
HRF, which describes the hemodynamic consequence of an impulse neural response. The
linear HRF serves as an approximation for the complex interactions between neuronal
activity, metabolic demand and blood flow and oxygenation [47]. With approximations
made at various degrees, the HRF may be simply a Gauss, gamma [115] or double-gamma
function [116]. While all these functions capture the key features of hemodynamics (e.g. the
sluggishness and long duration), the double-gamma HRF entails the most detailed features,
including a delayed onset time, initial dip, overshoot, undershoot, etc.

A linear HRF largely simplifies the analysis and interpretation of BOLD fMRI data. It
serves as the central assumption of the classic GLM analysis [110,111] and the rapid event-
related fMRI design [109]. Note that, in such fMRI analyses and designs, the linear system
is specified to the relationship between BOLD responses and external stimuli (or tasks),
while implicitly assuming linear, yet unknown, neural responses to the stimuli. However, a
nonlinear stimulus-to-BOLD relationship has been found in a number of studies [117–123].
The observed nonlinearity may originate from neural and/or vascular sources (e.g. neuronal
and vascular refractory effects), since the BOLD response is the ultimate consequence of
cascaded processes involving the neural response, the neurovascular coupling and the
vascular response [119,123].

To address the linearity or nonlinearity of the neurovascular coupling, investigators need to
monitor both neural activity and hemodynamic response through invasive [39,121,122,124]
or noninvasive measurements [125–127]. The measured electrophysiological (e.g. MUA,
LFP, EEG and MEG) and hemodynamic (e.g. BOLD and CBF) signals are quantified
individually before being compared against a linear function. In this regard, a critical
concern lies in the variety of methods for quantifying the multimodal signals. Hemodynamic
signals have been quantified as its peak height [124], steady-state height [128] or integral
over time [129]. Ways for quantifying electrophysiological signals are even more diverse.
No consensus has been reached so far with regard to an appropriate pair of quantitative
measures for assessing the cross-modal relationship. It is likely that some reported nonlinear
neurovascular coupling may be simply due to the use of mismatched quantitative measures.
Additional challenges may be further appreciated by considering the highly different
temporal scales of the hemodynamic and electrophysiological responses. Table 1 lists
typical values related to the temporal and frequency features of the single-trial ERP/ERF and
BOLD signals. A quantitative cross-modal relationship is even more obscured when the
electrophysiological signal is analyzed in an event-related manner while the hemodynamic
signal changes across prolonged periods as in block-design experiments.

For the purpose of integrating ERP/ERF and fMRI or investigating the relationship between
them, it is particularly important to develop a theoretically-driven approach to interpret the
fMRI signals as certain meaningful indices in terms of ERP/ERF. In this regard, we have
developed a mathematical model [24] to describe the interactions between stimuli (or tasks),
neuronal synaptic currents and BOLD responses. This model allows us to derive the
relationship between event-related synaptic responses and BOLD fMRI signals.

This model is composed of two cascaded linear systems. The first system is characterized by
the neuronal impulse response function (NRF). The NRF varies across locations and
represents the power of regional synaptic currents , with a very short duration Ts up to
several hundred milliseconds. The task-induced or stimulus-evoked electrophysiological
response, in terms of the biophysical energy, is modeled as the convolution of the tasks or
stimuli with the NRF. As the second system, the neurovascular coupling is simply modeled
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as a location-independent and time-invariant linear system, characterized by the
hemodynamic impulse response function (HRF), denoted as h(t). Therefore, the BOLD
fMRI signal f (r,t), in response to a block of sustained stimuli, can be written as Eq. (2).

(2)

where δ (t) is a delta function, TISI is the inter-stimulus-interval (ISI), fn(r,t) is the noise, and
⊗ stands for convolution. Eq. (2) is valid when the ISI is longer than the neuronal refractory
period and the linear neurovascular coupling holds true.

Since the HRF evolves much slower and lasts much longer than the NRF, Eq. (2) can be
rewritten as Eq. (3).

(3)

where . As graphically illustrated in Fig. 4, Eq. (3) suggests
that the BOLD signal at an activated voxel can be modeled as the product of a predictor
function and a parameter proportional to the time integral of the power of the local event-
related synaptic currents plus the noise. This model resembles the GLM used in the
conventional fMRI analysis, except that the predictor function is defined as the convolution
of the HRF with a train of delta functions (instead of a box-car function) which represent the
occurence of discrete stimuli. The model parameter (or regression coefficient) can be
estimated by fitting the model to voxel-specific BOLD fMRI time series. The estimated
parameter, known as the BOLD effect size, represents the relative strength of the regional
BOLD response, since it reflects the ratio between the measured and predicted BOLD time
courses (i.e. f (r,t)/p(t)). More importantly, the model shown in Fig 4 gives the BOLD effect
size a clear biophysical interpretation meaningful to EEG/MEG. That is, the BOLD effect
size provides an fMRI-based estimate for the time integral of the power of the regional EEG/
MEG source activity during an effective duration of the ERP/ERF. As discussed later in this
review, such a biophysical implication serves as the theoretical basis for important
developments in fMRI-EEG/MEG integrated neuroimaging [24].

It is worth mentioning that the above theoretical model assumes the baseline activity
remains unchanged from the resting-state or control condition to the stimulus condition.
However, it is possible that the baseline activity changes by itself or in response to certain
stimuli. This depends on the brain location of interest as well as the stimulus type and
property. For instance, there are a number of default-mode regions that are functionally
active during the resting state but are likely suppressed given certain stimuli or tasks that
request attentional resources [130]. It is also possible that the baseline activity at some brain
regions spontaneously modulates over time, with or without any relationship to the external
stimulus. As a result, if the stimulus is given when the baseline activity modulation reaches a
lower (or higher) level than during the resting-state control state, the corresponding BOLD
signal change reflects not only the stimulus evoked neuronal response but also the
modulation of the spontaneous baseline activity.

IV. fMRI-EEG/MEG Integrated Neuroimaging
Methods for the fMRI-EEG/MEG integrated neuroimaging are categorized into two types:
the fMRI-constrained electromagnetic source imaging or localization and the EEG/MEG-
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informed fMRI analysis. As the names suggest, the former rests on the EEG/MEG source
imaging while incorporating spatial information from fMRI; the latter utilizes the time and/
or frequency specific electrophysiological information to derive regressors in the fMRI
analysis.

A. fMRI-constrained electromagnetic source imaging/localization
The earliest efforts in the fMRI-constrained EEG/MEG source imaging utilize fMRI
statistical parametric maps to obtain a priori information on where EEG/MEG sources are
likely located. Depending on different source models, the spatial information from fMRI is
typically used to constrain the locations of multiple current dipoles, namely the fMRI-
constrained dipole fitting [131–133], or to constrain the distributed source distribution,
namely the fMRI-constrained current density imaging [20–22,24,134–139].

When neural activity is confined to a few regions with small extents, the fMRI analysis
should yield several fMRI foci (or hotspots). It is reasonable to model the electrical activity
at each fMRI hotspot as an equivalent regional current dipole. The dipole locations are fixed
to the fMRI foci, or initially seeded to the fMRI foci, yet are adjustable to best fit the EEG/
MEG data. Given the dipole locations are assigned or estimated, the dipole moments can be
uniquely estimated by fitting the ECD model to the EEG/MEG data. From the estimated
dipole time course, one can tell the temporal dynamics of the regional neural activity. Note
that the primary goal of the fMRI-seeded dipole fitting technique is not to image brain
activity; rather, it aims at retrieving the time course of the brain activity at identified fMRI
activation foci. However, this technique is questionable when applied to imaging extended
neural responses.

In contrast, the fMRI-constrained distributed source imaging is generally applicable
regardless of whether the source activity is focal or extended. Perhaps, the most
straightforward approach is the fMRI-weighted current density imaging, which uses the
fMRI activation map to derive weighting factors for the inverse solutions compatible with
the EEG/MEG signals. This approach can be implemented in a Wiener filter [20,21,26] and
weighted minimum norm frameworks [22,134–136]. Although seemingly different, these
implementations are fundamentally equivalent [23]. Both of them are based upon the
identical core assumption that locations inside the fMRI activations are more favored than
those outside in terms of the likelihood of being active current sources. The degree of
preference to fMRI hightlighted areas is controlled by an fMRI weighting factor.

These methods have limitations in both technical and fundamental aspects. Technically, the
fMRI weighting factor is most frequently up to users' subjective choice, although several
empirical values have been suggested to be 10 [20], 3 [135] or 1.4 [134] based on results
obtained in several simulation studies. This technical limitation may be solvable by using
data-driven methods for choosing the fMRI weighting factor, such as the expectation
maximization (EM) algorithm [137,138,140]. Moreover, we may bypass this uncertainty by
using an alternative two-step estimation algorithm which avoids using the fMRI weighting
factor [139]. In the first step, the EEG/MEG source space is strictly confined to the regions
highlighted in fMRI, giving rise to an inverse solution firmly constrained by the fMRI. In
the second step, the fMRI constraint is removed, and the solution obtained in the first step is
re-entered as the initial solution to fit the EEG/MEG data again employing a so-called
Twomey regularization [141].

These technical limitations are primarily due to the fundamental mismatches between fMRI
and EEG/MEG, owing to highly different temporal scales in which fMRI and ERP/ERF data
are generated and collected (see Table 1). The fMRI-EEG/MEG mismatches may be further
categorized into three types, namely fMRI extra sources, fMRI invisible sources and the
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fMRI displacement [20,134,139]. The fMRI extra sources represent the source regions that
are deemed as active in fMRI but do not contain the sources for the EEG/MEG at a certain
time instant. During a short period of interest following the event onset, the fMRI
activations are thought of as “static” (or time-invariant) while the EEG/MEG signals are
variable and the source imaging is carried out instant by instant. The electrical source
activity in a millisecond time scale may only involve a subset of the activated fMRI areas,
whereas other areas may appear as false positives if all of the “activated” fMRI voxels are
included in the prior spatial constraint [24,139]. The fMRI invisible sources are the real
EEG/MEG sources but not deemed as active by fMRI. A transient current source may
generate observable EEG/MEG signals whereas it may last too briefly to induce a sustained
BOLD response. In this condition, the fMRI-derived time-invariant spatial constraint
includes false negatives, which often result in the underestimation of fMRI invisible sources
as reported in several independent studies [20,24,139]. The fMRI displacement refers to the
spatial difference between the vascular and electrophysiological sources [134,139]. Because
of these fMRI-EEG/MEG mismatches, it is problematic to constrain the temporally variable
current source estimates to “time-invariant” fMRI spatial priors, which may entail both
fMRI false positives and false negatives.

To tackle these technical and fundamental issues, we have proposed a new framework for
the fMRI-EEG/MEG integrated neuroimaging. As illustrated in Fig. 5, this approach rests on
a unified system underlying the signal generation and analysis for both modalities. The
system assumes a common neuronal source (i.e. synaptic activity), from which fMRI and
EEG/MEG signals are generated via a temporal low-pass filter and a spatial low-pass filter,
respectively. The EEG/MEG inverse problems essentially deal with the spatial
deconvolution – the process of reversing the head volume conduction. The inverse solutions
retain the temporal source evolution even though it may fail to reconstruct the spatial source
distribution. In other words, at every source location, the souce waveform estimated from
EEG/MEG is much less distorted (in terms of its normalized “shape”) than its absolute
magnitude, since the filtering applies to the spatial domain instead of the time domain. This
feature is as opposed to the temporal regression of fMRI data (e.g. the GLM analysis),
which theoretically ends up with high-resolution spatial maps of brain activations but with
little or no temporal information.

Such complementary multimodal results can be simply merged by utilizing the cross-modal
relationship, derived and discussed in Section III. That is, the BOLD effect size estimated
from the fMRI signal in each voxel is proportional to the time integral of the local source
power underlying the ERP/ERF signals.

(4)

where s2 (r,t) is the source power at location r and time t, β(r) is the quantified BOLD effect
size at location r. TS is the duration of the electrophysiological response induced by a
transient stimulus or task, which is referred to as the “event-related period”.

This relationship allows us to constrain, voxel by voxel, the integral of the power of the
EEG/MEG source estimates in accordance with the BOLD effect size. Specifically, we can
scale the source time course estimated from the ERP/ERF, so that the time integral of the
power of the scaled source estimates equals the BOLD effect size [24] as illustrated in Fig.
5. Namely, this process is referred to as the fMRI-EEG/MEG co-registration.

Furthermore, we can re-fit the source estimates to the EEG/MEG data while taking the
fMRI-EEG/MEG co-registered source power estimates as time-variant prior spatial
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constraints. This additional estimation step can be implemented by means of an adaptive
Wiener filter (AWF) [24]. It ensures that the spatiotemporal source reconstruction depends
primarily upon EEG/MEG measurements, and thus provides robustness against inaccurate
fMRI constraints. Relative to the fMRI-EEG/MEG co-registration, the AWF represents an
integrative multimodal imaging superior to simply putting together the results separately
obtained from fMRI and EEG.

The performance of the AWF was assessed by computer simulations, wherein encouraging
results were obtained in imaging multiple focal sources from simulated fMRI and EEG data
[24]. Fig. 6 shows the data obtained from a pilot experiment exploring the cortical pathway
specialized in processing unilateral visual stimuli [24]. The experiment included two
separate sessions with the identical visual stimuli for the EEG and fMRI data collection. The
visual stimulation was a rectangular checkerboard within the lower left quadrant of the
visual field; the checkerboard pattern was reversed at 2 Hz. With significantly enhanced
spatial resolution, the AWF algorithm revealed a pathway sequentially activating V1/V2,
V3/V3a, V5/V7 and intraparietal sulcus, in general agreement with the hierarchical
organization of the visual system [142]. This pathway was also observed in the low-
resolution images reconstructed from the VEP alone. In contrast, a fMRI-weighted source
imaging algorithm [20,21] showed a false positive source region in and around V1/V2 at the
latency of 212 ms, whereas a more likely high-tier EEG source around V5, as observed from
the EEG data, was missed. This experimental result indicates the promises in dynamic
neuroimaging by integrating fMRI with EEG using the model-based adaptive Wiener filter.

B. EEG-informed fMRI analysis
The EEG/MEG-informed fMRI analysis rests on the fMRI analysis frameworks (e.g. the
GLM analysis) while incorporating temporal- or frequency-specific information available in
EEG/MEG. Such a multimodal strategy differs from the conventional fMRI analysis in its
unique ability to selectively localize the fMRI correlates to specific neuronal events or
rhythms. This ability directly benefits from the EEG/MEG measurements which reflect the
mass neural responses, whereas the analysis based on fMRI alone relies on the timing of the
stimuli or tasks. Note that the approaches in this category usually prefer EEG to MEG due to
the highly desired simultaneous recordings of fMRI and electrophysiological signals.

Techniques employing this strategy are particularly useful in stimulus- or task-free
experimental conditions. Perhaps the most typical example is the interictal spike-related
fMRI mapping, in which the interictal epilepiform events manifest themselves as spike-like
discharges in EEG [143,144]. Some other examples have been witnessed in studies
exploring the neural substrates underlying the rhythmic modulations in the resting or
pathological brain [145–149]. In these studies, predictors for the fMRI regression analysis
are derived from frequency-specific EEG modulations. By assessing the correlation between
the fMRI signals and the EEG-defined predictors, one may localize the neural regions
responsible for the generation of the rhythmic modulations of interest.

A more sophisticated approach is based on parametric task manipulations and single-trial
EEG-fMRI covariation [150,151]. A range of parametrically graded experimental conditions
are employed to identify cortical regions for which the BOLD response shows the same
modulation across conditions as a specific single-trial ERP component. More specifically,
external stimuli are designed to induce the variation of single-trial EEG responses. This
single-trial variability is specific to each time point within a trial. For a specific time point,
the signal varying over trials can serve as the predictor in the fMRI regression analysis,
yielding a map of fMRI correlates. Repeating the analysis at multiple or potentially all
latencies, one can obtain a series of fMRI maps, each of which is associated with a specific
instant within the time scale of a single trial. This approach, although interesting, is

He and Liu Page 12

IEEE Rev Biomed Eng. Author manuscript; available in PMC 2010 July 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



theoretically demanding. The single-trial variability can result from spontaneous activity and
noise that may or may not be differentiable from that driven by the external stimuli.
Moreover, it requires a careful design of stimulus properties to allow for an effective control
of single-trial amplitudes.

Compared to the fMRI-constrained EEG/MEG source imaging, the EEG -informed fMRI
analysis appears to be wholly different. In fact, both types of methods share an important
commonality in their fundamental assumption – that is, the neuronal electrophysiological
response is linearly correlated with the BOLD fMRI signal. To date, it is difficult to judge
which method is superior to the other, although the EEG-informed fMRI analysis is
formulated in a better posed manner than the fMRI-constrained source imaging.

V. Simultaneous EEG-fMRI Measurement
In the context of multimodal neuroimaging, one unique feature of EEG, as opposed to MEG,
lies in the feasibility of recording fMRI and EEG simultaneously. This feature is often
desirable in studies that integrate both modalities or investigate the cross-modal relationship.
For instance, simultaneous fMRI-EEG recordings are indispensable for using fMRI to
localize the neural substrates underlying interictal EEG spikes. For this purpose, the fMRI
response is not manipulated by user-defined external stimuli or tasks; but rather, it is driven
by spontaneous biological events. The onsets of these events can be determined by detecting
the interitcal spikes from the EEG recorded during concurrent fMRI scans, serving as the
temporal markers necessary for carrying out the event-related fMRI analysis [143,144]. For
similar reasons, simultanoues fMRI-EEG recordings are desirable for mapping the fMRI
correlates to continuous rhythmic EEG modulations during the resting state [145–147] or
sleep [148,149].

However, strong cross-modal interferences pose great challenges to simultaneous fMRI-
EEG recordings. Both time-varying and static magnetic fields in the MRI/fMRI environment
can introduce large artifacts to EEG recordings. During the fMRI scans, the radio-frequency
(RF) excitation pulses and rapidly switching magnetic gradients result in large dB/dt, which
in turn induce gradient artifacts (GA) about 1000 times larger than the normal EEG
magnitude [152,153]. The pulsatile motion of EEG leads associated with heart beats causes
cardiac ballistic artifacts (CBA) [154]. In addition, subjects' safety is worth special attention,
since the tissues surrounding the electrodes may be heated or damaged by large artificial
currents [155]. The quality of MRI/fMRI images may also be affected by the EEG
electrodes as well as other devices placed inside the scanner [156].

Active research has been conducted to resolve these practical issues (for reviews, see
[157,158]). Special efforts have been put forth upon devising MR-compatible EEG caps and
amplifiers [152,153], synchronizing the EEG sampling with fMRI pulses [159], EEG lead
design and placement [155,160,161], cable wiring [152], signal transmitting [153,162],
subject comfort and safety [155,163] etc. Signal processing algorithms have been developed
to remove the GA [153,164–168] and CBA [152,154,168–171] from the EEG
simultaneously recorded with fMRI. Most of these methods are based on template matching/
subtraction algorithms [153,154,164] or the blind source separation with principal
component analysis [165–168] or independent component analysis [168,170,171].
Interleaved strategies are occasionally adopted to acquire fMRI data during the delayed time
windows of little or no interest to EEG recordings [172,173].

Fig. 7 illustrates a typical experimental setting for simultaneous fMRI-EEG recordings.
Carbon electrodes and current-limiting resistors are often used to minimize the MR
susceptibility effect and the safety concerns [155]. Short copper wires connecting electrodes
should be twisted, bundled and stabilized using taps and sandbags. Local amplifiers are
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preferred for signal amplification and digitization. Optical fibers are used for transmitting
signals to the recording devices outside the MR environment. An ECG lead is placed at the
subject's back to record a temporal marker for every heart beat. The onsets of fMRI volume
acquisitions are recorded by connecting the TTL output from the scanner to the EEG
recording device. Both the ECG and the scanner TTL signals are useful for the artifact
removal during the post-processing. It may also be desirable to synchronize the EEG
sampling with the clock driving the fMRI pulse sequence to avoid any phase-asynchrony of
the GA.

Artifact reduction algorithms are often designed according to the fact that the GA and CBA
remain relatively stable and independent of the EEG signals. The most widely used (and
perhaps still the most effective) algorithms for removing the GA and CBA are based on
average template subtraction [153,154,164]. The central strategy can be briefly described as
follows. A signal-free artifact template is obtained by averaging the raw (or preprocessed)
data phase-locked to the fMRI volume onsets or the ECG-derived heart-beat markers.
Assuming the signal and the artifacts are additive and mutually independent, the EEG signal
should be retained by subtracting the averaged artifact template from the original data.
Although these procedures end up with a significant artifact reduction, some artificial
residuals often remain present owing to possibly non-phased-locked or drifted GA or
instable CBA. These residual artifacts can be further removed by use of independent
component analysis (ICA), which allows us to identify and remove the noisy and artificial
components, whose spatial, temporal and frequency patterns are in accordance with those of
the artifact templates [127].

As the above techniques appear promising, simultaneous fMRI-EEG recordings have proven
to provide reasonable data quality for event-related potentials, frequency-specific oscillatory
activities and rhythmic modulations. To attest this point, three control experiments have
been conducted with the data shown in Fig. 8. In an experiment using 2-Hz full-screen
visual stimuli [174], similar visual evoked potentials (VEP) were obtained from the EEG
data recorded with or without concurrent fMRI scans (Fig. 8.A). No obvious distortions
were found in either MRI or fMRI [174]. In another experiment with 9-Hz visual stimuli,
sustained oscillatory EEG signals at the stimulus frequency, known as the steady-state visual
evoked pontetials (SSVEP), were found at occipital electrodes (Fig. 8.B) [127]. The last
example involved a self-paced eye-open-and-close task, which is known to change the
occipital rhythmic EEG in the alpha band (8~12Hz). Such an expected rhythmic modulation
was clearly observed from the time-frequency representation of the EEG data at the occipital
electrodes (Fig. 8.C) [127].

Simultaneous recording is challenging but necessary in fMRI-EEG integrated neuroimaging
and neuroscience research. Advances, mainly in signal processing techniques, have allowed
us to remove various MR-related artifacts from the EEG data recorded during concurrent
fMRI scans. Future development of hardware and software will no doubt further improve
the quality of EEG and fMRI from simultaneous recordings. Although the simultaneous
fMRI-EEG recording is desirable for a variety of purposes, it is not always necessary when
studying some passive sensory evoked responses. In this regard, one has to base his/her own
choice on the reproducibility of the task (or stimulus) of interest vs. the possible risk of
dealing with largely contaminated EEG data if recorded simultaneously with fMRI.
Regardless of the theoretical efficacy of artifact reduction algorithms, the outcome of these
algorithms is after all partly artificial and inevitably “worse” than artifact-free signals. For
some simple paradigms only involving passive stimulus-evoked responses, it might not
always be worthwhile to obtain these simultaneously-collected signals and, rather, ensure
clear signals by conducting separate but highly reproducible experiments.
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Efforts have also been made to develop SQUID-based instrumentation for ultralow-field
MRI, which aims at ultimately potentially acquiring MEG with MRI [175]. However,
achieving high quality data in an experimental setting remains elusive.

VI. Conclusions and Perspectives
Noninvasive functional neuroimaging, as an important tool for basic neuroscience research
and clinical diagnosis, continues to have room for improvement of spatial and temporal
resolution. While existing neuroimaging modalities might approach their limits in imaging
capability mostly due to theoretical as well as technical reasons, it becomes increasingly
attractive to integrate multiple complementary modalities in an attempt to significantly
enhance the spatiotemporal resolution that cannot be achieved by any modality individually.

In this regard, the integration of fMRI and EEG/MEG has received the most interest.
Electrophysiological and hemodynamic/metabolic signals reflect distinct but closely coupled
aspects of the underlying neural activity. Combining fMRI and EEG/MEG data allows us to
study brain function from different perspectives. Convergent evidence, on one hand,
definitely leads to much more confident conclusions on understanding the neural
mechanisms. Contradictory observations, on the other hand, also pose new hypotheses and
challenges necessary to guide further investigations of the human neural system.

Our understanding of the coupling between fMRI and EEG/MEG has been substantially
improved in the past decade, providing a great opportunity to combine these modalities in a
more fundamental and principled way. Agreements have been reached in general regarding
the neurovascular and neurometabolic coupling. Quantitative models of the cross-modal
relationship, like those discussed in this review, represent important progress along this line.
Although these models can at best approximate the complex interactions between
hemodynamics and electrophysiology while subjected to experimental conditions and
fundamental assumptions, they do serve as a sound basis for developing multimodal
neuroimaging techniques, which promise to enhance the existing imaging capability, at least
relative to fMRI and EEG/MEG alone.

However, this is not meant to guarantee the success of multimodal neuroimaging. Existing
theories fail to explain every aspect of the explosively expanding imaging datasets
documented in thousands of research articles. To date, the primary bottleneck is still more
fundamental than technical. Methodologies that rest on an assumed or modeled
physiological linkage between fMRI and EEG/MEG, almost certainly fail under particular
circumstances when the linkage is invalid. On one hand, theoretical modeling and
experimental investigation need to be performed across microscopic, mesoscopic and
macroscopic scales, and proceed in parallel to further solidify the physiological and physical
basis for the multimodal integration. On the other hand, careful considerations should be
taken in experimental designs to justify the rationale of combining different modalities,
regardless of whatever algorithms are used to fuse the multimodal datasets. Cautions have to
be taken as well in the interpretation of the imaging results.

In what follows, we will discuss a few important remaining issues that deserve systematic
investigations and may represent critical challenges as well as opportunities to future
developments in multimodal neuroimaging.

A. Negative BOLD
Most fMRI studies rely on the task-induced positive BOLD response (PBR) as the
hemodynamic index of increased neuronal activity. The negative BOLD response (NBR),
commonly observed as the sustained BOLD signal decrease relative to the resting-state
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baseline, is occasionally observed in both humans and animals undergoing sensory [176–
183] and cognitive tasks [184].

Regardless of the increasing observations of the negative BOLD, its origin and relationship
to neuronal activity remains poorly understood and controversial. The NBR may originate
from reduced neuronal activity [176,180,183,185,186], or vascular blood stealing [187,188],
or perhaps both [181,182]. In addition, the NBR can be either dependent or independent
upon the task or stimulus content [17,185]. For example, in response to a particular stimulus,
the NBR may be found at non-stimulated regions within the relevant sensory system [177–
183]. Such a task-dependent NBR is often hypothesized to reflect neuronal suppression at
regions complementary to those with increased neural activity [182]. On the other hand,
decreases in BOLD (or CBF) signals are also observable at locations that change little across
a wide variety of tasks [130,176]. These task-independent NBR regions are believed to be
functionally active [130,185] and connected [189] in the resting state, collectively
responsible for a default-mode brain function [130,190]. At these regions, the NBR may be
induced as a consequence of decreased default-mode activity when the resting-state brain
function is interrupted by the execution of attention demanding tasks [17].

Nevertheless, how the NBR should be interpreted in the context of fMRI-EEG/MEG
integration remains to be investigated.

B. Frequency-dependent Neurovascular Coupling
As discussed in this review, the vast majority of methodologies integrating fMRI and EEG/
MEG are based upon a linear neurovascular coupling. However, recent studies have
proposed alternative hypotheses [38,191]. That is, a negative correlation between low-
frequency (e.g. alpha-band) electrophysiological signals and BOLD fMRI signals [38,145–
147], whereas high-frequency components (e.g. gamma-band) contribute positively to the
BOLD signal [38,192]. Although this relationship remains highly controversial and often
varies considerably across subjects [193], it does point to some cross-modal relationship that
has been ignored or unexplained by conventional neurovascular coupling models. This
alternative view, although being speculative so far, may help in revising the neurovascular
model by extending the model from the spatiotemporal domain to the spatial-frequency or
spatial-temporal-frequency domain. Along this line, an interesting paper deserves attentions
[191]. In this analytical work, Kilner et al. propose a heuristic model suggesting that an
increase in hemodynamic signals is associated with a shift of electrophysiological power
spectrum from low to high frequencies (i.e. a loss in low-frequency power relative to a gain
in high-frequency power). As the authors admit, the model may be oversimplified. Its value
to neuroimaging also remains to be demonstrated. Moreover, the validity of this model is
obviously challenged by the fact that the stimulus-driven low-frequency power increase is
associated with an increase in the BOLD response. For instance, visual stimuli presented
with low temporal frequency (e.g. 4~5 Hz) induce a noticeable increase in the occipital
EEG/MEG power at the stimulus frequency to accompany a positive increase of the BOLD
fMRI signals in the primary visual cortex.

In short, the frequency-dependent neurovascular coupling remains to be verified. Even if
true, its impact on interpretation of fMRI, EEG/MEG and their combined imaging remains
to be investigated.

C. Imaging Brain Functional Connectivity
One of the important applications of the multimodal fMRI-EEG/MEG imaging lies in
imaging brain functional connectivity. Static images indicating brain regions responsible for
the execution of particular tasks do not convey sufficient information with respect to how

He and Liu Page 16

IEEE Rev Biomed Eng. Author manuscript; available in PMC 2010 July 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



these regions communicate with each other. The concept of brain connectivity now plays an
important role in neuroscience, as a way to understand the organized behavior of brain
regions or to reveal the functional brain circuitry [194,195].

Investigators have computed cortical connectivity patterns based on hemodynamic or
metabolic measurements such as fMRI [196–199], whereas the indirect nature of fMRI
signals confounds the interpretation of fMRI-derived connectivity in terms of neuronal
interaction [200]. The cortical networks are formed and characterized by organized neuronal
oscillations that span several orders of magnitude in frequency [201]. As discussed in this
review, the neurovascular coupling behaves as a temporal low-pass filter with a cut-off
frequency at around 0.4 Hz. High-frequency oscillations may be effectively excluded from
the connectivity patterns estimated from fMRI. Even though the fMRI connectivity may
reveal coherent low-frequency modulations of high-frequency oscillatary neural activities,
the sluggishness of BOLD fMRI signals represents a significant challenge, if all possible, to
imaging the full spectrum of brain functional connectivity.

EEG/MEG holds the promise to reveal dynamic connectivity since it is sensitive to transient
neural activities occurring on the order of milliseconds [202–204]. A variety of techniques
have been used, most of which have amounted to evaluating the cross-correlation or phase
synchronization of signals between pairs of scalp electrodes or sensors [205]. Graph-theory-
based tools from the study of complex network have also been developed to describe the
connectivity of large-scale networks [206]. However, the relationship between the observed
connectivity pattern in the sensor space and that in the source space is complicated by the
dispersion of electromagnetic signals from the cortex to the sensors.

Multimodal fMRI-EEG/MEG integrated neuroimaging approaches hold the potential to
greatly enhance our ability to reveal the brain functional connectivity, due to the combined
high spatial and temporal resolution. The more precise is our ability to image the brain
functional anatomy, the better we would be able to pinpoint neural connectivity among
specific brain regions. The higher temporal resolution we can achieve, the better chance we
would be able to view a wide range of dynamics in functional interactions within a local or
large scale. Efforts have been made in integrating fMRI with electromagnetic source
imaging [22] using the directed transfer function (DTF) approach. Other existing methods,
such as structural equation modeling (SEM) [207], and Partial Directed Coherence (PDC)
[208], are also applicable to fMRI-EEG/MEG imaging data [209].

Also of importance is the investigation of the relationships between the functional
connectivity as derived from fMRI data and from EEG/MEG data. Due to the different time
scales and spatial resolutions of these two modalities there has not been a clearly established
consistency between the results obtained from fMRI or EEG/MEG alone. Perhaps, this is
simply owing to the fact that these modalities reflect the different and complementary
consequences of the same neurophysiological origin. Combining both modalities promises
to offer a more complete conclusion on the connectivity among assemblies of neurons.

Retrieving connectivity patterns from functional neuroimaging data essentially deals with a
problem of data-driven system identification. That is to find a directional or non-directional
functional network that can explain or predict the relationship among the data at various
brain locations. While neuronal interactions are physically enabled by anatomical
connections, which may be reconstructed from diffusion tensor MRI [77], the consistency
between functional and anatomical connectivity remains to be investigated. Moreover,
neuronal circuitry at microscopic scales entails inhibitory and excitatory connections. The
dynamic yet balanced behaviors of neuronal inhibition and excitation fulfill the regional
computation, as well as the large-scale synchrony and interaction among regions. The
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linkage between the large-scale functional network and neuronal microcircuits remains
unclear. Interpretations of functional connectivity in terms of excitation and inhibition are
currently missing, but potentially important.
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Figure 1.
Schematic illustration of the ranges of spatial and temporal resolution of various
noninvasive (in blue) imaging techniques and invasive (in red) experimental techniques.
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Figure 2.
Illustration of the fMRI-EEG/MEG integrated multimodal neuroimaging (part of figure
adapted from Fig. 1 of [46] with permission).
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Figure 3.
Schematical illustration of BOLD-contrast fMRI. The regional neuronal activity alters the
local CBF, CBV and CMRO2, which collectively leads to changes in the blood oxygen
level. The increase of oxygen level, meaning the decrease of local field inhomogeniety,
produces a longer T2 or T2* and therefore larger MR signals. The frequency-and-phase
encoding technique (e.g. echo-planar imaging) allows for the fast acquisition of a so-called
k-space data, which can be transformed to the original image space through Fourier
transformation. The signal is most frequently analyzed voxel by voxel, yielding statistic
maps indicating regions with significant hemodynamic effects related to external stimuli/
tasks or internal events. These regions arguably define the activated neuronal populations.
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Figure 4.
The BOLD fMRI signal at an “activated” voxel can be modeled using a linear system. The
signal is the scaled version of a location-independent predictor signal, derived from the
stimulus function and the hemodynamic response function (HRF). The scaling factor (called
the BOLD effect size) is proportional to the time integral of the event-related synaptic
power.
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Figure 5.
Flow-chart of the fMRI-EEG/MEG co-registration.
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Figure 6.
A) The pattern-reversal checkerboard visual stimulation, B) fMRI activation map with a
corrected threshold p<0.01, and C) the global field power of VEP and the dynamic cortical
source distribution at three VEP latencies (76, 112, 212 ms after the visual onset) imaged
from EEG alone (1st row), or fMRI-EEG integration using our proposed adaptive wiener
filter (2nd row) and the conventional 90% fMRI weighted algorithm (3rd row). Both the
source images and the fMRI activation map are visualized on an inflated representation of
cortical surface. (From [24] with permission)
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Figure 7.
Typical experimental setting for simultaneous fMRI-EEG recordings.
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Figure 8.
Examples of simultaneous fMRI-EEG data in three control experiments. A) VEP waveforms
obtained inside the fMRI scanner with (blue) or without (dashed red) fMRI scans, or outside
the scanner (black). The scalp potential map corresponds to the 120-ms peak latency in the
VEP acquired during fMRI scans. B) SSVEP power spectrum and the spatial distribution of
the power at the stimulus frequency. C) Time-frequency representation of the alpha
modulation induced by self-paced eye-open and eye-close. (Panel A) from [174] with
permission)
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Table 1

For event-related potential or field and event-related fMRI, the response delay, duration, signal sampling rate
and frequency.

Delay (sec) Duration (sec) Sampling Rate (ms) Frequency (Hz)

ERP/ERF 0 0.01–2 ≤ 5 0.5~40

ER-fMRI 1~3 15–30 ≥ 50 0~0.4
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