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Abstract

The most widely used mouse model of Alzheimer’s disease is the Tg2576 (APPswg) model. While
general agreement about their neuropathology prevails, disparate results concerning cognitive
changes have been reported. To resolve this controversy, we combined Morris water maze data
collected over >10 years to determine the extent of memory impairment. APPs\g mice exhibited an
age-dependent decline in memory, but the effect size was small when compared to non-transgenic
littermates. Larger effect sizes were achieved when comparing APPgyg and Tg5469 (APPyyT) mice.
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Alzheimer’s disease (AD) is characterized by an age-related impairment in learning and
memory, neuronal loss, gliosis, neuritic changes, amyloid deposition, and abnormal tau
phosphorylation and aggregation [1-3]. Animal models of AD should display both the
pathological changes observed in AD, as well as changes in memory function that worsen in
an age-dependent manner. The latter is particularly important since the primary risk factor for
sporadic AD is age.

Over 15 years ago, the Tg2576 mouse (herein referred to as APPgyg) was developed as an
animal model of AD, and has since been used in over 607 articles pertaining to the pathogenesis
and treatment of AD. This model over-expresses the 695 amino acid human isoform of the
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amyloid precursor protein (APPggs) with the “Swedish” mutation, resulting in the
overproduction of the amyloid-beta (Ap) peptide [4]. The APPswg mouse model recapitulates
some of the hallmarks of AD, including neuritic changes, inflammation, amyloid deposition
and plaques [5-7]. Although most studies have found memory deficits in the APPsyg mice,
discrepancies exist as to when the onset of these deficits first occurs, with reports ranging from
3 months to as late as 15 months, as well as ages in-between [4,8-11]. Disparate results occur
within laboratories as well [4,8,12-14]. Some investigators have failed to find deficits
altogether [15]. Thus, it has been difficult to discern if an age-related impairment exists in the
APPSWE model.

Several possible reasons for these discrepancies exist, including sensitivity differences in the
cognitive tests used. The current paper, however, focuses on two other possibilities: (1) the
relatively small effect size seen when comparing APPgy e mice to transgene negative (Tg Neg)
mice using the Morris water maze and (2) the cognitive-enhancing effects of secreted APPa.
[sAPPq; 16,17] and the APP intracellular domain [AICD; 18], additional byproducts of APP
cleavage.

In the APPgye mouse model, SAPPa, AICD, and Ap are over-expressed following proteolytic
processing of APP. sAPPa has been shown to enhance long-term potentiation (LTP), modulate
the induction of long-term depression (LTD) [16], and enhance memory performance in a
variety of learning-tasks following intracerebroventricular injection [17]. Likewise, AICD
facilitates memory and synaptic plasticity [18,19]. This stands in opposition to AB, which
impairs memory [4,14,20] and synaptic function [9,21-24]. Consequently, the proper control
for APPswe mice is the Tg5469 (APPyw) mouse line. We used previously described methods
[20] to show that, with the exception of A, the levels of APP and APP metabolites were similar
between the two lines. Briefly, a four-step extraction protocol was used to generate four
fractions (extracellular-enriched soluble (EC), intracellular-enriched soluble (IC), membrane-
enriched (MB) and insoluble). 1 ug of protein from the EC and MB fractions were loaded onto
gels to probe for sAPPao and APP, respectively, using 6E10 (Signet, 1:2500). 150 ug of protein
from the MB was used to probe for AICD with an anti-APP C-terminal antibody 0443
(Millipore, 1:5000), and 100 ug of protein from the EC fraction was used to probe for Ap with
6E10. Blots were stripped and reprobed for a-Tubulin using an anti-a-Tubulin antibody
(Sigma, 1:200,000). OptiQuant was used for densitometric analysis, and bands were
normalized to a—Tubulin loading controls for each sample. Using this method, we found that
the APPyT mice over-express wild-type human APP at levels equivalent to mutant APP in
APPswe mice (Fig. 1A & 1E), have equivalently high levels of AICD (Fig. 1B & 1E) and
SAPPa (Fig. 1C & 1E) but much lower levels of AB (Fig. 1D & 1E).

These are important issues because APP transgenic mice are often used to evaluate potential
therapies for AD. Knowing when memory loss first appears as well as the appropriate sample
size needed is essential for establishing experimental designs. In addition, an appropriate effect
size is needed to ensure that the dynamic range for a particular cognitive task is large enough
so that subtle treatment effects can be detected. Comparison of APPgyye to APPyyt mice should
increase the effect size of APPgyg mice by controlling for the beneficial effects of SAPPa and
AICD overexpression, making this a more useful model for therapeutic testing. The current
paper tests this possibility.

Here, we combined Morris water maze data collected over more than 10 years in our laboratory
in order to determine if an age-dependent impairment in memory exists, and report effect size
and sample size needed at various ages. We also report the effect sizes of APPswE versus
APPyy mouse models in an effort to distinguish the beneficial effects of SAPPo and AICD
expression from the detrimental effects of Ap.
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Spatial reference learning and memory was tested using the Morris water maze in a cohort of
86 Tg5469 (APPwT), 146 Tg2576 mice (APPswe), and 243 Tg negative littermates (Tg Neg)
at various time points across their life span (Table 1). All transgenic mice used in this study
were generated by breeding transgene positive male APPyt or APPgwe mice to female
C57BI6j/SIL F1 mice. The resultant mixed-background mice are F2-like in strain
characteristics. To ensure that strain backgrounds in the APPyy 1 and APPsyg lines were
similar, behavioral scores for Tg Negs littermates from both lines were compared. There were
no differences between the Tg Negs for any measure tested (Ps>0.5).

Mice were grouped into four age ranges [14] based on previously established changes in soluble
AP oligomers [20], detergent-insoluble AB (ABinsol) levels [25], and plaque pathology [4]: (1)
very young mice, 4-5 months, after the appearance of Ap trimers and hexamers but before the
appearance of ABinsol OF plaques; (2) young mice, 6-11 months, after the appearance of
AP*56, a 56-kDa AP oligomer, and during the initial appearance of ABjnsol and both amyloid
plaques and punctate Ap deposits; (3) middle-aged mice, 12-18 months, during a period in
which soluble AB oligomers do not change but there is extensive deposition of plaques and
ABinsol levels are rising rapidly; and (4) old mice, 20-25 months, at a time when soluble Af
levels are stable, ABinsol is leveling off and amyloid loads are comparable to those in patients
with AD (see Tables 1, 2). Mice were naive at each time point tested.

We previously described in detail the Morris water maze procedure used here [14]. Briefly, at
each age tested, mice received visible platform training for 3 days, eight trials per day, followed
by hidden platform training for 9 days, four trials per day. Three probe trials of 60 s duration
were performed at the beginning of the 4th, 7th, and 10th day of hidden platform training. The
mean platform score (MPS) was used to assess retention of spatial reference memory and was
calculated for each mouse by averaging time spent in the quadrant area for the three probes
conducted. Although similar trends were observed using the platform crossing index (PCI),
percent time is reported here because it is the most popular dependent measure reported in the
Morris water maze literature [26], including our own search of the APPsyg literature.

All trials were monitored using a computerized tracking system (Noldus EthoVision 3.0;
Noldus Information Technology, Wageningen, The Netherlands), and performance measures
were extracted using Wintrack (Wolfer, et al. 2001). Statistical analysis consisted of t-tests,
ANOVA and repeated-measures ANOVA (RMANOVA). Post hoc comparisons were
performed using Bonferroni with p values of <0.05 considered significant.

Effect size and sample size needed was calculated for each probe and MPS using the software
package Systat (2004). Cohen’s d for t-tests was used to calculate effect sizes and was chosen
for two reasons. First, this calculation is one of the most popular, allowing for easy comparison
to other published studies. Second, Cohen’s [27] classification of effect sizes into categories
(.20 - small, .50 - medium, and .80 - large) makes evaluation of this experiment’s effect-size
results easy to compare to known benchmarks.

To calculate effect size, we computed the standardized mean difference (SMD) as the
difference between the APPs\yg mice and either the Tg Neg or the APPy,t mice divided by
the pooled standard deviation. In addition, we compared the Tg Neg mice to the APPy,T mice.

d=M — M2/ poolea (a)

Tpootea =V (1 = 11> +(ny = 1)5,°)/(n1+n7)] ®)
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Key to symbols:
d = Cohen’s d effect size
M1 = mean (average of Tg Neg or APPwrT)
M, = mean (average of APPswe)
s = standard deviation
n = number of subjects

Effect sizes were computed as Cohen’s d where a positive effect size represents better
performance for the (1) Tg Neg mice when compared to either the APP\ or APPgywEe mice
or (2) APPyT when compared to the APPgyg mice (Tables 2 & 3). In order to estimate an
appropriate sample size, the SMD was determined, the probability of a Type I error (a) and
power were set at 0.05 and 0.80, respectively, and the alternative was specified as not equal.

To justify individual comparisons of transgene at each age range, we first examined the effect
of age, gender, and transgene on probe scores to determine if there were any main effects or
interactions among these variables. This analysis revealed a main effect of (1) age (P=0.004),
performance declined as the mice aged, (2) transgene (P<0.0001), APPyyt mice performed
better than Tg Negs and APPgyg mice (ps<0.01) while Tg Negs were superior to APPswEe
mice (p<0.01), (3) gender (P=0.0057), males performed better than females, and (4) an
interaction between transgene and age (P<0.0001). To clarify the interaction between age and
transgene, we examined the effects of transgene at each age range.

When compared with APPyyT mice, spatial reference memory was significantly impaired in
APPg\wEe mice at all ages tested after 4-5 months of age (Fig. 2). At 6-11 and 12-18 months
of age, a medium to large effect size was observed for every measure when comparing
APPg\wE to APPyT mice, regardless of gender (Table 2 and 3). However, at 20—24 months of
age the effect size was gender dependent; APPy males performed better than APPgyg males
at each probe, whereas APPyt females were more variable (Table 3). In contrast, comparison
between Tg Neg and APPsye mice revealed much smaller effect sizes, regardless of gender
(Table 3), leading to a lack of statistical difference at 6—11 months of age (Fig. 2). In addition,
these small effect sizes mandated the need for much larger sample sizes compared to the
practical numbers needed for comparisons between APPswe and APPy mice, particularly
when comparing males (Table 2 & 3), making this latter comparison the more prudent of the
two.

To determine whether an age-dependent decline in retention of spatial reference memory was
present for any of our three groups, the 4 time points were compared for each group separately.
We then compared performance at 6-11, 12-18, and 20-24 months of age to that at 4-5 months
of age, a time at which the groups did not differ. For the APPgyg mice, the first indication of
impaired spatial reference memory was observed at 6-11 months (Fig. 3). As the mice aged,
retention of spatial memory became more dramatically impaired, whereas for both the
APPwT and Tg Neg mice, there were no age-related declines in performance (Fig. 3).

These results suggest that APPgye mice do in fact have an age-dependent decline in memory
but that the effect size is quite small from 6-11 months when compared to Tg Neg mice. This
small effect size is most likely due to the opposing effects in APPsye mice of SAPPa and
AICD, which enhance cognition [16-18], and the accumulation of Af oligomers, which disrupt
cognition. Support for this comes from comparisons between APPsye and APPyyt mice, which
over-express SAPPa and AICD, but not A, to the same extent as APPsyg mice. This
comparison results in a much greater effect size, particularly at 6-11 months of age. Likewise,
APPyy1 mice outperform Tg Neg mice at 6-11 and 20-24 months of age, similar to previous
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reports [18]. Thus, one potential reason for disparate results in the APPgyg literature is the use
of Tg Neg mice. When using a small number of animals with a relatively small effect size,
which is often the case when experimenters compare APPswe to Tg Neg mice, there is greater
potential for erratic results due to variations in random sampling. By using the APPy mice
with their greater effect size, variability between experiments should be reduced. We should
note that although we compared the Tg Negs from the APP\ and APPgy lines to ensure
that background strains were similar between the two lines, it is possible that parental strains
of the two lines have diverged over a 10-15 year period and may differ from those in other
laboratories. The emergence of sublines of APPs\g during the 15 years since the first founder
was created could explain the acquisition deficits seen in mice purchased from Taconic (for
example, [28-30]).

The use of APPy1 mice, instead of Tg Neg mice, for comparison with APPsye mice results
in a larger difference at 6—11 months of age. Because this is the first time point at which an
age-dependent decline in performance is seen (Fig. 3), the study of cognitive enhancers at this
age would most likely inform therapeutic prevention in AD. Therefore, it is imperative that
differences between the APPg\yg mice and the control group be as large as possible to detect
subtle enhancements in performance. The difference between the Tg Neg and APPgyg mice
at this time-point is not statistically significant when a large cohort of animals are compared.
Therefore, subtle changes in performance are likely to be undetected.

It should be noted that the APPg\yg mouse is only a partial model of AD that lacks both
neurofibrillary tangles and neuronal loss. This mouse may best be thought of as a latent AD
model. If this is the case, it is not surprising that deficits are subtle and that variability is greater
in this model than in those exhibiting substantial deficits at a very young age. While these
characteristics make the model difficult to use, they also make it one of the best models for
research on the prevention of AD. The subtle and slow progression of cognitive deficits allows
for therapeutic intervention before extensive pathology is present. A key factor in the use of
this model lies in understanding the small effect size when compared to Tg Neg mice and
utilizing the APPy, mouse line to increase this effect size.
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Figure 1. Comparison of APP and APP metabolites in 8.5 month old APPsywE and APPyyT mice
A-C, Forebrain lysates from 5 APP\ and 5 APPgyg mice were analyzed by SDS-PAGE and
immunoblot probed with (A) 6E10, a mouse monoclonal antibody, to detect full-length APP
(f-APP) in the membrane-enriched fraction (MB), (B) a rabbit polyclonal anti-APP antibody
to recognize AICD in the MB fraction, and (C) 6E10 to detect SAPPa in the extracellular-
enriched (EC) fraction. To ensure there was no fl-APP contamination during protein extraction,
the same amount of the EC fraction was immunoprecipitated with an anti-APP antibody that
recognizes the C-terminal region. No fl-APP was detected from subsequent probing with 6E10
(data not shown). (D) 6E10 was used to detect AP species in the EC fraction. All blots were
stripped and reprobed with anti-a-Tubulin (bottom rows). (E), APP, AICD, sAPPa, and A
were quantified by normalizing the band intensity to that of a-Tubulin to determine the relative
intensity between APPyT and APPg\yg mice. Mean levels in APPy,t mice were defined as
1.0. There were no significant differences in protein levels of a—Tubulin, fl-APP, AICD, or
SAPPa (Ps>0.1), but A levels were significantly higher for the APPgyge mice (P< 0.01).
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Figure 2. Assessment of memory function in APPswe, APPwT, and Tg Neg mice using the Morris
water maze

A, Compared with APP,T and Tg Negs, the time spent swimming in the target quadrant during
probe trials did not differ in APPgyyg mice at 4-5 months of age. Mean platform score (MPS)
represents the average time spent in the quadrant area for the three probes conducted.
RMANOVA data are as follows: transgene (MPS): P=0.44; probe versus transgene: P=0.86.
B, At 6-11 months of age, APPy,T mice spent significantly more time in the target quadrant
than both APPg\yg and Tg Neg mice. RMANOVA data are as follows: transgene (MPS):
P=0.001; probe versus transgene: P=0.83. C, APPgyg mice were impaired compared to both
APPyyt and Tg Neg mice. RMANOVA data are as follows: transgene (MPS): P=0.003; probe
versus transgene: P=0.97. D, Although APPy,T and Tg Neg mice improved with repeated
probe testing, APPs\wg mice exhibited stable performance (probe trial RMANOVA: P=0.46),
resulting in a probe by transgene interaction. RMANOVA data are as follows: transgene
(MPS): P=0.001; probe versus transgene: P=0.004. # APPSWE vs. APPWT p<0.05, APPSWE
vs. Tg Neg p<0.05, * APPWT vs. Tg Neg p<0.05.
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Figure 3. APPsyE mice develop age-dependent memory deficits not seen in APPyT or Tg Neg
mice

Mean platform score (MPS) represents the average time spent in the quadrant area for the three
probes conducted.. APPg\yg mice exhibited an age-dependent decline in MPS performance
(P=0.0002) that was not observed in APPyT (P=0.23) or Tg Neg mice (P=0.07). 4-5M vs.
older ages *p < 0.05, **p < 0.001, ***p < 0.0001.
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Table 1

Animals tested in the MWM.

Included
Mice Tested Male  Female
APPy1 (Tg5469)
4-5 Months 11 13
6-11 Months 14 8
12-18 Months 9 19
20-24 Months 6 6
APPgye (Tg2576)
4-5 Months 10 15
6-11Months 29 33
12-18 Months 20 16
20-24 Months 15 8
Tg neg
4-5 Months 23 25
6-11Months 41 44
12-18 Months 30 37
20-24 Months 23 20
Total 231 244
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