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Starting as a basic research tool in cardiology as recently as 10 years 
ago, cardiovascular magnetic resonance (CMR) imaging has 

become a powerful diagnostic method and has entered the clinical 
arena.

In general, the strengths of the technique lie in its favourable safety 
profile and the ability to use specific image acquisition settings (sequences) 
to create a tissue-specific contrast. The signal obtained depends on the 
magnetic properties of protons in any tissue, which are determined by 
tissue composition. The range of contrast patterns can be extended by 
the use of contrast agents, which, for example, enables the identification 
of contrast-enhancing lesions. Currently available standard sequences 
offer a spatial resolution of as high as 1.0 mm × 1.0 mm in plane – sub-
stantially higher than that achieved by single photon emission computed 
tomography (SPECT) and positron emission tomography (PET) imag-
ing. Temporal resolution is good, with the fastest sequences being able to 
acquire an image in approximately 15 ms to 30 ms.

A recent consensus statement of the leading international societies 
for cardiology and radiology (including the American College of 
Cardiology Foundation, the American College of Radiology and the 
Society for Cardiovascular Magnetic Resonance) recommended CMR 
imaging for a list of clinical indications (1), and the Canadian 
Cardiovascular Society together with leading imaging societies in 

Canada published a position statement summarizing the indications for 
CMR imaging in ischemic heart disease (2).

In the present review, we discuss the emerging role of CMR imag-
ing in clinical cardiology.

CMR in Congenital HeaRt Disease
CMR is well suited for pre- and postoperative evaluation of congenital 
heart disease (CHD) because it offers advantages over other imaging 
modalities, including lack of ionizing radiation, which is particularly 
important because many CHD patients will require imaging studies in 
childhood or serial examinations throughout their lifetime; capacity 
for true three-dimensional (3D) imaging; accurate blood flow quanti-
fication; tissue characterization; and freely selectable imaging planes 
with wide fields of view that enable assessment of relationships 
between cardiac and vascular structures (3,4). Although echocardiog-
raphy is the initial imaging modality for CHD in infants and children, 
CMR is of benefit in the presence of complex anatomy or in older 
patients whose echocardiographic views may be suboptimal (5,6). 
CMR has found an increasingly important role in the evaluation of 
morphology and pathophysiology of complex CHD at all ages, particu-
larly in the assessment of great vessel anatomy, venous connections, 
extracardiac conduits and intracardiac baffles, and complex spatial 
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Starting as a research method little more than a decade ago, cardiovascular 
magnetic resonance (CMR) imaging has rapidly evolved to become a power-
ful diagnostic tool used in routine clinical cardiology. The contrast in CMR 
images is generated from protons in different chemical environments and, 
therefore, enables high-resolution imaging and specific tissue characteriza-
tion in vivo, without the use of potentially harmful ionizing radiation.
CMR imaging is used for the assessment of regional and global ventricular 
function, and to answer questions regarding anatomy. State-of-the-art 
CMR sequences allow for a wide range of tissue characterization approaches, 
including the identification and quantification of nonviable, edematous, 
inflamed, infiltrated or hypoperfused myocardium. These tissue changes 
are not only used to help identify the etiology of cardiomyopathies, but also 
allow for a better understanding of tissue pathology in vivo. CMR tissue 
characterization may also be used to stage a disease process; for example, 
elevated T2 signal is consistent with edema and helps differentiate acute 
from chronic myocardial injury, and the extent of myocardial fibrosis as 
imaged by contrast-enhanced CMR correlates with adverse patient out-
come in ischemic and nonischemic cardiomyopathies.
The current role of CMR imaging in clinical cardiology is reviewed, 
including coronary artery disease, congenital heart disease, nonischemic 
cardiomyopathies and valvular disease.
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le rôle clinique émergent de l’imagerie 
cardiovasculaire par résonance magnétique

Utilisée comme mode de recherche il y a un peu plus de dix ans, l’imagerie 
cardiovasculaire par résonance magnétique (CRM) a rapidement évolué 
pour devenir un puissant outil diagnostique en cardiologie clinique 
régulière. Le contraste des images CRM est produit par les protons des 
divers environnements chimiques qui, par conséquent, procurent une 
imagerie à haute résolution et une caractérisation tissulaire spécifique 
in vivo, sans qu’il soit nécessaire d’utiliser le rayonnement ionisant au 
potentiel néfaste.
L’imagerie CRM permet d’évaluer la fonction ventriculaire régionale et 
globale et de répondre à des questions liées à l’anatomie. Les séquences 
CRM de pointe permettent toute une série d’approches de caractérisation 
tissulaire, y compris le dépistage et la quantification d’un myocarde non 
viable, œdémateux, enflammé, infiltré ou hyperperfusé. Ces changements 
tissulaires sont non seulement utilisés pour contribuer à repérer l’étiologie 
des myocardiopathies, mais permettent également de mieux comprendre la 
pathologie tissulaire in vivo. La caractérisation tissulaire CRM peut 
également permettre d’établir le stade du processus de la maladie. Par 
exemple, un signal T2 élevé est compatible avec un œdème et contribue à 
différencier une lésion myocardique aiguë d’une lésion chronique, et 
l’étendue de la fibrose myocardique perçue par IRM avec injection d’un 
agent de contraste est corrélée avec des issues négatives en cas de 
myocardiopathie ischémique ou non ischémique.
Le rôle actuel de l’imagerie CRM en cardiologie clinique est analysé, y 
compris la coronaropathie, la cardiopathie congénitale, les myocardiopathies 
non ischémiques et les affections valvulaires.
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relationships, as well as physiological evaluation of shunts, ventricular 
function and myocardial fibrosis (7).

The clinical use of CMR in patients with CHD – like that of any 
other imaging technique – is challenged by the tremendous diversity of 
congenital cardiac malformations and the manner in which they are 
repaired. Keeping in mind the versatility of CMR, the overall goals of 
CMR assessment of CHD include the following (8):
1. Evaluation of the anatomy and severity of the defect(s);
2. Assessment of the functional consequences of the defect(s) before 

and after surgical repair; and
3. Identification of associated and incidental lesions.

The first goal, anatomical evaluation, is achieved by imaging the 
heart and vascular structures in several planes to produce a multi-
dimensional representation of the anatomy. Transverse, coronal, sagit-
tal and oblique multislice images using black-blood sequences (fast 
spin echo) (Figure 1A) or static bright-blood sequences (static single-
shot or segmented steady-state free precession [SSFP]) (Figure 1B) 
provide excellent anatomical definition and serve as reference images 
for accurate location of piloted breath-hold SSFP cine images, which 
are useful for assessment of anatomy and function. Contrast-enhanced 
magnetic resonance angiography with gadolinium, which has compa-
rable diagnostic accuracy to x-ray angiography in complex CHD (9), is 
valuable for 3D assessment of extracardiac structures such as the aorta, 
main and branch pulmonary arteries, pulmonary veins and collateral 
vessels (Figure 1D). Time-resolved 3D contrast-enhanced magnetic 
resonance angiography is a newer angiographic technique that cap-
tures information about the dynamics of blood flow through the right 

and left heart using a small volume of contrast (10). Additionally, 3D 
static SSFP acquisitions may be obtained, either with single breath-
hold or diaphragmatic monitoring, for visualization of the coronary 
arteries or 3D anatomy of the whole heart and vessels.

The second goal, assessment of the functional consequences of 
CHD, is achieved with a number of techniques including cine imaging 
using SSFP and phase- contrast velocity mapping. Cine imaging with 
SSFP offers an excellent contrast between blood and myocardium and, 
hence, is very useful for the analysis of right ventricular (RV) and left 
ventricular (LV) function (described in greater detail below), for quan-
tification of ventricular volume and mass, and for the visualization of 
valve leaflets and high-velocity stenotic jets (Figure 1C). There are 
particular advantages of cine SSFP CMR imaging over echocardio-
graphic evaluation of the right heart in CHD; CMR is independent of 
geometrical assumptions for evaluation of RV volume and function, 
and the wide field of view provides good visualization of the RV out-
flow tract and anterior RV wall. CMR quantification of the right 
ventricle is therefore becoming increasingly important in the manage-
ment of patients with repaired tetralogy of Fallot and pulmonary 
regurgitation (11,12).

Evaluation of blood flow and velocity by CMR imaging is 
achieved with the use of phase- contrast velocity mapping, a tech-
nique that is based on magnetic resonant properties acquired from 
blood flowing in a magnetic field gradient. Phase- contrast maps 
acquired parallel to blood flow are used to measure peak velocities or 
assess turbulent jets. Phase- contrast velocity mapping allows mea-
surement of blood flow as well as velocity. In this regard, phase- 
contrast techniques are useful for evaluation of flow, stenosis and 
regurgitation in the systemic and pulmonary circulations (13,14), 
and in shunt quantification in CHD (15).

The third goal, identification of associated and incidental lesions, 
relates to the complexity of many types of CHD. Because CMR pro-
duces images independent of acoustic windows and provides addi-
tional information about tissue characteristics such as myocardial 
scarring or fibrosis (described in greater detail in following sections 
of the present review), it may provide additional new diagnoses or 
insight into the pathophysiology of a patient’s condition. For exam-
ple, CMR is valuable in the detection of previously unrecognized 
shunts, aberrant arterial vessels (16) or anomalous pulmonary veins 
(17). Additionally, CMR findings of myocardial fibrosis or infarction 
in repaired transposition of the great arteries (18) and in tetralogy of 
Fallot (19) appear to have prognostic significance with respect to 
ventricular function, exercise tolerance, arrhythmia or sudden death 
in these types of CHD.

CMR FoR tHe assessMent oF RV anD lV 
size anD FunCtion

CMR provides accurate measurements of LV and RV mass, volumes 
and systolic function. SSFP sequences are commonly used and provide 
excellent contrast of myocardium over intracavitary blood, and cine 
movies covering one cardiac cycle with 25 frames are typically 
acquired over 15 heartbeats (with acquisition of up to six slices during 
one breath-hold) (20). Using the multiple short-axis slice-summation 
method, contiguous slices of short-axis cine datasets are acquired from 
the base of the left ventricle to the apex, covering the myocardium 
completely. This approach has been shown to provide excellent accu-
racy (21) and low interstudy variability (22); normal values are avail-
able for healthy subjects (23). A less commonly used approach covers 
the entire LV myocardium with multiple radial long-axis slices, and 
has been shown to yield similarly robust values of interobserver vari-
ability (24). Imaging time for the acquisition of a complete LV or RV 
data set takes in the range of 3 min to 5 min, and approximately 5 min 
to 10 min are required for quantitative data analysis. In the absence of 
arrhythmia, CMR yields a consistently stable image quality, and the 
reproducibility of CMR for anatomical and functional parameters is 
higher than that of echocardiography (25). This translates into a 
sample size reduction in research studies when CMR is used to measure 

Figure 1) Examples of cardiovascular magnetic resonance imaging of con-
genital heart disease. a Sagittal black-blood image of a patient with repaired 
tetralogy of Fallot, showing right ventricular dilation and an aneurysm (A) 
of the right ventricular outflow tract patch. B Transverse static bright-blood 
image (steady-state free precession) of the pulmonary arteries (PAs) lying 
anterior to the aorta (Ao) following arterial switch repair with the Lecompte 
manoeuvre in transposition of the great arteries. C Diastolic frame of a 
steady-state free precession cine image series in a patient with repaired 
tetralogy of Fallot and pulmonary regurgitation showing severe right ven-
tricular dilation. D Volume rendering of a gadolinium-enhanced magnetic 
resonance angiogram of the right ventricle (RV) and PAs in a patient with 
an RV-to-PA-valved conduit for repair of pulmonary atresia and ventricular 
septal defect. LA Left atrium; LV Left ventricle; RA Right atrium



The emerging clinical role of CMR imaging

Can J Cardiol Vol 26 No 6 June/July 2010 315

treatment effects on ventricular volumes, function or mass (26-28), 
and it allows higher accuracy in the assessment of smaller changes of 
these parameters in patients. Furthermore, two-dimensional (2D) 
echocardiographic studies have been shown to overestimate LV mass 
and underestimate LV volume when compared with CMR imaging 
(29). This is explained by the technical approach to volumetric assess-
ment. While 2D echocardiography obtains quantitative data in 
two imaging planes, these are subsequently extrapolated to obtain 3D 
data, under the assumption that the patient’s ventricle has a geometri-
cal ellipsoid shape. This, however, may not perfectly represent the 
patient’s anatomy. CMR overcomes this limitation by using a 3D 
imaging method; here, volumes are measured, not extrapolated, and 
anatomical variances are respected. In summary, while 2D echocar-
diography can provide an estimate of LV volumes and function, CMR 
can provide an actual measurement of LV volumes and function; 
therefore, it is often regarded as the gold standard for the assessment of 
ventricular volumes and function.

Few approaches have been undertaken to examine diastolic dys-
function with CMR, but none is currently being widely used in routine 
clinical imaging. One promising approach uses a technique known as 
tagging. Here, magnetic field saturation is applied to the myocardium 
in a grid-like fashion, and the deformation of this grid is used to assess 
regional wall motion and strain (30,31). However, analysis software is 
currently too complex for daily routine use. One working group has 
suggested tissue phase mapping of the myocardium as an alternative 
for diastolic function assessment. This method measures myocardial 
tissue velocity in 3D space, which can be used to measure diastolic 
wall motion with low interobserver variability (32).

DeteCtion oF stRess-inDuCeD 
MyoCaRDial isCHeMia

CMR currently offers two clinically used methods for the detection of 
stress-induced myocardial ischemia – first-pass perfusion studies with a 
vasodilatory stress agent (adenosine) (Figure 2), and wall motion 
analysis with an adrenergic agent (usually dobutamine). Both are rou-
tinely used in experienced CMR centres, with modern cardiac scan-
ners allowing for continuous real-time electrocardiographic and 
respiratory monitoring, blood-pressure measurements and intercom 
systems for optimal patient supervision.

Adenosine causes microvascular vasodilation by acting on the A2 
receptors of the muscularis layer of coronary resistance vessels. 
Although adenosine is used to unmask hypoperfused myocardium at 
perfusion scans, the underlying mechanism of action is not well under-
stood. It is commonly believed that adenosine causes a ‘steal phenom-
enon’ by increasing perfusion in coronary territories not affected by 
epicardial artery stenosis, which leads to relative hypoperfusion of the 
territory subtended by a stenosed coronary artery (33). Several 
research papers (34-38), including one multicentre study, have 
assessed the role of adenosine stress perfusion for the diagnosis of coro-
nary artery disease and consistently demonstrated high sensitivity for 
CMR imaging to diagnose epicardial coronary artery stenoses. When 
CMR perfusion was compared with x-ray coronary angiography, its 
specificities to detect coronary stenoses were only moderately high 
(62% to 90%) (34-38). However, when PET or fractional flow reserve 
on x-ray angiography were used as standards of truth, specificities were 
higher (94% [34] and 90% [38], respectively). This is explained by the 
fact that CMR assesses perfusion on a tissue level, which includes not 
only perfusion deficits caused by macrovascular epicardial coronary 
artery disease, but also those due to microvascular disease as it occurs, 
for example, in diabetes or chronic arterial hypertension. The method 
can be used to quantify myocardial perfusion reserve with good inter-
observer and intraobserver variabilities (36). In patients presenting to 
the emergency room with chest pain and exclusion of acute myocar-
dial infarction, abnormal findings on adenosine stress perfusion were 
shown to predict adverse cardiovascular events independently and 
stronger than the combination of known risk factors; furthermore, 
negative adenosine stress perfusion tests had a negative predictive 

value of 100% for cardiovascular events at one-year follow-up in 
one study (39). A high negative predictive value was recently con-
firmed in another study involving more than 450 stable outpatients 
who were referred for a CMR stress test (40).

Dobutamine stress studies for ischemia-induced wall motion 
abnormalities can be performed with CMR protocols identical to 
those established for transthoracic dobutamine stress echocardiogra-
phy, with a similar safety profile (41-43). Because wall motion abnor-
malities occur later in the ischemic cascade than perfusion deficits 
(44), dobutamine stress tests may be less sensitive but more specific for 
inducible ischemia than perfusion tests.

An advantage of CMR imaging over transthoracic echocardiogra-
phy for dobutamine stress testing is that state-of-the-art CMR 
sequences offer consistently high image quality for visualization of all 
RV and LV wall segments. Additionally, CMR is not limited by the 
restrictions of an acoustic window. In a head-to-head comparison of 
more than 200 patients, this was shown to translate into superior accu-
racy of dobutamine stress CMR imaging (accuracy 86%) over echocar-
diography (accuracy 73%) for the diagnosis of epicardial coronary 
artery disease (45). Overall, published sensitivities for the diagnosis of 
epicardial coronary artery stenosis using dobutamine stress CMR 
imaging are reported to be in the range of 78% to 89%, with specifici-
ties in the range of 80% to 87% (45-47).

Few working groups have studied blood oxygen level-dependent 
CMR imaging as a method to detect adenosine-dependent ischemia in 
coronary artery disease. This approach does not depend on a contrast 
agent, and derives image contrast from the concentrations of oxygen-
ated versus deoxygenated hemoglobin. While early studies (48,49) 
demonstrated the feasibility of this approach, they were limited by 
image artifacts; recent technical developments have overcome this 
problem, and more recent research (50,51) suggests that blood oxygen 
level-dependent CMR imaging may be entering the clinical arena in 
the next few years as a test for myocardial hypoxemia.

assessMent oF MyoCaRDial ViaBility in 
isCHeMiC HeaRt Disease

The detection of viable myocardium plays a crucial role in clinical 
cardiology because it has been shown that myocardial infarction 
patients only benefit from revascularization therapy if the reperfused 
tissue is viable (52,53).

In a clinical setting, there are two ways to assess myocardial viabil-
ity with CMR – cine imaging, which allows for wall motion analysis at 
rest and during low-dose dobutamine stress; and ‘late enhancement’ 
imaging, which identifies nonviable tissue (fibrosis and scar).

Low-dose dobutamine stress CMR imaging for viability assess-
ment is performed with protocols similar to low-dose dobutamine 
stress echocardiography. An improvement of regional contractility 

Figure 2) Adenosine stress perfusion imaging of a patient with coronary 
artery disease. A patient with a high-grade stenosis of a diagonal branch 
artery. The left image shows a short-axis view of an apical short-axis slice 
(still frame extracted from a movie). There is no significant perfusion deficit 
during contrast infusion at rest. When the examination is repeated 20 min 
later during the continuous infusion of adenosine, the second contrast infu-
sion shows a stress-induced subendocardial perfusion deficit of the anterolat-
eral wall (arrows). LV Left ventricle
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during a continuous infusion of dobutamine at a dose of 10 µg/kg 
body weight/min or less has been shown to be a powerful predictor of 
functional recovery after revascularization therapy (54), and is a bet-
ter predictor of LV functional recovery after revascularization than 
end-diastolic wall thickness (55). However, this method is limited by 
assessing viability indirectly through an assessment of function as a 
surrogate, which can be hampered in the presence of dysfunctional 
(eg, stunned or hibernating) tissue (56).

A more recently developed approach allows for viability assess-
ment at the tissue level and is known as ‘late enhancement’ imaging. 
The method, first described by Simonetti et al (57) and first used by 
Kim et al (58), is based on gadolinium contrast enhancement of nonvi-
able cardiac tissue (Figure 3); it accurately reflects infarction tissue when 
compared with ex vivo pathology in animal models (57-60) and is 
highly reproducible (61). The underlying mechanism is an increased 
volume of distribution for the extracellular contrast agent gadolinium-
diethylene triamine penta-acetic acid in nonviable tissue as opposed to 
healthy myocardium, leading to delayed washout of contrast in nonvia-
ble tissue (60,62). In addition to contrast enhancement of myocardial 
necrosis or collagenous scar, late enhancement imaging sequences sup-
press the signal derived from remote noninfarcted myocardium, leading 
to very high image contrast. Image voxel size obtained with these 
sequences is typically 1.5 mm2 × 1.3 mm2 in plane with a slice thickness 
of 8 mm or 10 mm, which allows the detection of myocardial infarcts 
involving as little as 0.7 g of tissue (63). The method is established in 
acute as well as chronic myocardial infarction.

The high spatial resolution viability imaging allows for the in vivo 
assessment of the transmural extent of viable myocardium as well as 
the amount of viable tissue within one segment of myocardium. The 
spatial resolution is superior to what is achieved by SPECT or PET 
imaging and, consequently, subendocardial infarctions that are missed 
by SPECT (59,64,65) and PET imaging (66,67) are detected by late 
enhancement CMR imaging.

The transmural extent of late enhancement contains clinically 
relevant information because it can be used to predict the functional 
recovery of myocardial contractility after vascularization. In a study 
performed by Choi et al (68) in patients with acute reperfused myocar-
dial infarction, only 5% of segments demonstrated improved contrac-
tility at eight to 12 weeks follow-up if the transmural extent of necrosis 
was greater than 75%; however, it was 63% when the transmural 
extent of necrosis was 50% or less. Other investigators confirmed the 
correlation of functional recovery with transmural extent of viable tis-
sue in acute myocardial infarction (69) as well as in chronic ischemic 
disease (70,71). Equally, in chronic systolic heart failure, the recovery 
of function after initiation of beta-blocker therapy was shown to be a 

measure of the transmural extent of viable myocardium (72). CMR 
imaging is therefore a useful tool to assess stunned as well as hibernat-
ing (73) myocardium, when functional cine imaging is combined with 
late enhancement imaging. CMR imaging has a higher accuracy than 
SPECT for the prediction of functional recovery, which is explained 
by the higher spatial resolution of CMR (65).

More recently, the concept of peri-infarct zone imaging was intro-
duced using CMR imaging. Electrophysiology studies have suggested 
that in ischemic heart disease, the infarct border zone may be the ori-
gin of ventricular tachycardia due to micro re-entry. Initial CMR stud-
ies have shown an association between the extent of the heterogeneous 
infarct border zone and inducible ventricular tachycardia (74) and 
mortality, independent of ejection fraction, infarct size and ventricular 
volume (75).

The same technique applied early after contrast injection is used for 
visualization of microvascular obstruction or no reflow, which presents 
as absence of contrast enhancement in the subendocardium, surrounded 
by contrast enhancement in the infarcted but successfully reperfused 
tissue (Figure 3). The presence of no reflow, as displayed on CMR imag-
ing, predicts adverse outcome independent of infarct size (76).

While late enhancement CMR imaging is highly accurate for the 
detection of viable myocardium, it is unable to differentiate between 
acute necrosis and chronic fibrotic scar.

Advancement in CMR imaging was achieved when T2-weighted 
spin-echo imaging was shown to yield a signal increase specific to 
acute, but not chronic, myocardial infarction (77). The signal inten-
sity in T2-weighted images is influenced by the tissue water content, 
and myocardial edema is believed to be the main underlying pathol-
ogy that causes the T2 signal change. Myocardial edema precedes 
myocardial necrosis (78), and is a marker of the area at risk in acute 
ischemia (79,80). T2 signal changes persist after reperfusion, and this 
method can therefore be used to determine the area at risk retrospec-
tively after reperfusion therapy. In conjunction with infarct size mea-
surement, the myocardial salvage can be measured in grams of tissue 
(77,79-81). A recent study (82) suggested that edema in reversibly 
injured myocardium may be the cause of myocardial stunning in acute 
ischemic injury.

In summary, the combination of functional studies, sequences for 
stress-inducible ischemia, viability and edema allow for the comprehen-
sive assessment of a patient with coronary artery disease within 30 min 
to 40 min of examination time. Example images of a viability study in a 
patient with acute myocardial infarction are shown in Figure 3.

CMR FoR Patient assessMent BeFoRe 
CaRDiaC ResynCHRonization tHeRaPy

Two types of CMR parameters have been assessed for patient evalua-
tion before cardiac resynchronization therapy (CRT) – functional 
parameters that assess different aspects of ventricular wall motion, and 
tissue characterization parameters that assess myocardial scar. In terms 
of functional LV assessment, velocity-encoded CMR of LV contraction 
has been shown to yield similar results as tissue Doppler echocardiog-
raphy (83). Moreover, CMR tagging allows for the assessment of 
regional function, which can be used to assess circumferential shorten-
ing and regional quantification of myocardial strain. A recent study 
suggested that strain imaging may be more effective at predicting 
response to CRT than the assessment of mechanical dyssynchrony 
(84); however, another study demonstrated that a CMR function- 
derived dyssynchrony index is of prognostic value and useful for the 
prediction of mortality and morbidity after CRT (85).

The second way to predict response to CRT using CMR imaging is 
the assessment of scar burden using late enhancement CMR imaging. 
Several studies have demonstrated that an increased scar burden, mea-
sured as total scar or transmural extent of scar, decreases the likelihood of 
a patient to respond to CRT. The relationship between scar burden and 
LV end-systolic volume at six months post-CRT appears to be linear (86), 
but scar location in the septum (87) or transmural extent of the scar (88) 
may be more powerful predictors of response than global scar burden.

Figure 3) A patient with an acute posterolateral myocardial infarction. The 
image to the left displays a short-axis view using the ‘late enhancement’ 
sequence after application of gadolinium-diethylene triamine penta-acetic 
acid contrast. There is contrast enhancement indicating myocardial necrosis 
of the inferior lateral wall (bold arrows), but not in the anterior and septal 
wall. There is an area of microvascular obstruction, highlighted with the slim 
arrow. The image to the right is a T2-weighted spin-echo image, showing a 
regionally high signal in the inferior lateral wall (arrows), consistent with 
myocardial edema in the area of necrosis. The presence of edema indicates 
that the infarction is acute
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While these approaches yield very promising initial data, the best 
possible way to assess CRT response and to predict mortality after this 
procedure using CMR is still a matter of ongoing research.

ValVulaR HeaRt Disease
CMR can quantify the severity of regurgitant and stenotic valvular 
lesions. Several methods are available for this purpose – phase-contrast 
sequences quantify anterograde and retrograde flow volumes and 
velocities in any desired imaging plane, within a vessel or a valvular 
plane (89,90). The accuracy of phase-contrast measurements as 
assessed with in vitro models is excellent (91,92) and good correla-
tions have been documented between CMR flow measurements and 
Doppler echocardiography (93), as well as cardiac catheterization 
(94,95). Cine imaging is applied to quantify the orifice of a stenotic 
valve (96).

Aortic valve stenosis can be accurately quantified by planimetry of 
the aortic valve (96,97) (Figure 4), a method that does not depend on 
pressure gradient measurement-derived calculations, and that there-
fore may be less susceptible to pre- and afterload variations. Another 
established way to assess the aortic valve area is by flow measurements 
using phase-contrast CMR imaging, analogous to Doppler echocar-
diography. This CMR method allows calculation of the pressure gradi-
ent and valve area, but does not directly measure the orifice; it shows 
good correlation with the values obtained by Doppler echocardiogra-
phy (93). Aortic regurgitation can be measured by characterization of 
blood flow immediately adjacent to the aortic valve, using phase- 
contrast magnetic resonance imaging. This allows for the calculation 
of regurgitant volume and regurgitant fraction. The method is highly 
reproducible (98), and the results agree well with aortic root angiogra-
phy (94). Similar principles are applied to the assessment of the mitral 
and right-sided heart valves (95,99,100).

CMR iMaging oF nonisCHeMiC 
CaRDioMyoPatHies

CMR imaging can principally make two contributions to the workup 
of patients with nonischemic cardiomyopathies:
1. Identification of the etiology of the nonischemic cardiomyopathy; 

and
2. Quantification of volume, mass and systolic function of the right 

and left ventricles, and quantification of scar tissue as measures of 
disease severity.

identification of etiology
Hypertrophic cardiomyopathy: In hypertrophic cardiomyopathy, 
CMR can identify the pattern of hypertrophy (eg, differentiation 
between global and regional hypertrophy, with or without LV outflow 
tract obstruction) using the aforementioned sequences for ventricular 

function. The accuracy of the method for quantification of LV mass 
and systolic function makes it an appropriate tool for the serial 
 follow-up of a patient with sensitive evaluation of the effects of phar-
macological therapy. LV outflow tract obstruction can be identified 
(101) and quantified before and after therapeutic septal artery embo-
lization; the change in outflow tract dimensions was shown to corre-
late with the improvement of the patient’s symptoms (Figure 5) (102). 
On histology, the disease is known to cause myofibrillar disarray and 
fibroses at the insertion sites of the RV wall; this is reflected by a signal 
increase on late enhancement imaging in those regions (103-105). 
Some studies (104) suggested that an increasing amount of fibrotic 
areas correlates with increasing clinical predictors for sudden cardiac 
death in patients with hypertrophic cardiomyopathy. A large prospec-
tive study (106) demonstrated an association between the extent of 
late enhancement and the occurrence of ventricular arrhythmia. Late 
enhancement may, therefore, emerge as a prognostic tissue marker in 
hypertrophic cardiomyopathy. However, more prospective mortality 
data are needed.
idiopathic dilated cardiomyopathy: Idiopathic dilated cardiomyopa-
thy is characterized by an increase in end-diastolic volume and, usu-
ally, reduced systolic function of the left and right ventricles; 
histopathology reveals partial replacement of cardiomyocytes by 
fibrotic tissue. LV dilation is readily identified by CMR using 3D 
assessment of ventricular volumes and systolic function. Further 
insight can be obtained by adding tissue characterization sequences to 
the CMR examination. Idiopathic dilated cardiomyopathy does not 
display any late enhancement in two-thirds of patients, but in one-
third of patients, focal fibrosis of the septum is observed at the mid-
wall level, commonly termed the ‘mid-wall sign’ (107,108). The 
presence of this finding was recently identified as a prognosticator of 
adverse outcome, and it is also a substrate of ventricular tachycardia 
(108,109).

A diagnostic challenge that cardiologists face frequently is the 
need for differentiation of idiopathic dilated cardiomyopathy from 
phenotypic dilated cardiomyopathy as a secondary result of an uniden-
tified primary disease. The phenotype of dilated cardiomyopathy is 
frequently caused by ischemic cardiomyopathy, but among many oth-
ers, may be caused by myocarditis (110), exposure to cardiotoxic 
agents such as drugs (eg, anthracyclines) (111), alcohol abuse (112)
and autoimmune diseases (113).

CMR tissue characterization can play a crucial role in this situa-
tion, because the pattern of fibrosis seen on late enhancement CMR 
imaging allows differential diagnosis of the underlying disease. In 

Figure 4) A patient with aortic valve stenosis. Both images are still frames 
extracted from steady-state free precession cine movies. The orifice of the 
aortic valve can be measured from the systolic image to the right. The con-
tour of the orifice is marked in yellow. AoV Aortic valve; LA Left atrium; 
RA Right atrium; RV Right ventricle

Figure 5) A patient with hypertrophic obstructive cardiomyopathy. Both 
images are extracted from functional steady-state free precession cine mov-
ies, at diastole (left) and mid-systole (right). The diastolic image displays 
marked thickening of the anterior septal wall. At mid-systole, there is an 
anterior movement of the anterior mitral valve leaflet, causing left ventricu-
lar outflow tract obstruction and a jet of high-velocity flow (arrow). 
Cardiovascular magnetic resonance imaging allows for quantification of the 
obstruction by planimetry of the left ventricular outflow tract and flow veloc-
ity quantification of the jet (not shown)
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ischemic cardiomyopathy, CMR imaging displays infarction-type scar 
tissue usually restricted to the perfusion territory of one coronary 
artery, extending across the myocardium from the subendocardium. In 
anthracycline toxicity, late enhancement has been observed in a 
global subendocardial fashion (114), and early enhancement (a mea-
sure of hyperemia and capillary leak) is increased (115). Myocarditis is 
diagnosed using a comprehensive tissue assessment.

Myocarditis
Myocarditis leads to inflammatory tissue changes including hyperemia, 
capillary leak, edema and, in severe cases, cardiomyocyte necrosis that 
remodels to fibrosis.

For the diagnosis of inflammatory tissue changes in myocarditis, 
several CMR sequences are available that specifically address these 
different aspects of tissue pathology:
•	 T1-weighted	early	contrast-enhanced	sequences	assess	myocardial	

hyperemia and capillary leak (116);
•	 T2-weighted	sequences	assess	myocardial	edema	(117,118);	and
•	 Late	 enhancement	 assesses	 cardiomyocyte	 necrosis	 or	 fibrosis	

(119,120).
Therefore, a comprehensive in vivo assessment of tissue pathology 

is possible, beyond the analysis of myocardial volumes and function.
The fibrosis and edema patterns observed in myocarditis are often 

patchy and, unlike in myocardial infarction, do not necessarily involve 
subendocardial areas (Figure 6) (117). Some studies observed that the 
epicardium of the inferior lateral wall was affected more often than 
other areas (119); other studies linked certain fibrosis patterns to spe-
cific causative viruses (120). It was shown that early enhancement 
changes are detectable soon after the clinical onset of disease and van-
ish with declining symptoms at follow-up (121). Two studies from 
independent working groups have shown that sequences that assess 
edema and hyperemia are more sensitive, while late enhancement 
imaging is more specific for the diagnosis of myocarditis (117,118). 
This is in accordance with the current understanding of pathophysiol-
ogy. While inflammatory changes with edema and hyperemia are a 
mandatory component of inflammation in myocarditis, tissue necrosis 
may only occur in more severe cases. Both studies showed that the 
highest diagnostic accuracy is achieved by combining different tissue 
characterization methods in one diagnostic study and, therefore, 
assessing several aspects of tissue pathology at the same time. In a 
recent expert consensus conference on the CMR diagnosis of myo-
carditis, a combination of functional imaging, T2-weighted imaging, 
and early and late enhancement was recommended as the approach of 
choice for patients with suspected myocarditis (122). This combined 
approach yielded a sensitivity of 76%, a specificity of 95.5% and an 
accuracy of 85% for the diagnosis of acute myocarditis in a study apply-
ing comprehensive clinical information as a reference standard (117). 
Another study of patients with chronic active myocarditis, using 
myocardial biopsy with histology and immunohistology as a reference 

standard, yielded a sensitivity of 62%, a specificity of 89% and a diag-
nostic accuracy of 74% (118). In a recent review paper (123), CMR 
imaging was considered to be the most powerful noninvasive tool for 
determining whether active myocarditis is present.

other nonischemic cardiomyopathies
The principle of using different imaging sequences to enable tissue char-
acterization of the myocardium is also useful in other cardiomyopathies. 
CMR imaging detects myocardial involvement in amyloidosis; late 
enhancement involves the myocardium globally, usually with a pre-
dominant involvement of the subendocardium (124,125). Cardiac 
involvement in sarcoidosis can be diagnosed by early and late contrast 
enhancement. Early enhancement reflecting hyperemia is a more sensi-
tive method (126), and late enhancement may identify patients with a 
worse clinical course. The late enhancement pattern involves the lateral 
wall more frequently than other areas of the myocardium (126-128).

Myocardial involvement in Anderson-Fabry disease leads to myo-
cardial fibrosis, which can be visualized by late enhancement CMR 
imaging (129,130). The amount of fibrotic tissue as defined by late 
enhancement imaging correlates well with the extent of LV hypertro-
phy, and it is more frequently observed in the inferior lateral wall. The 
subendocardium is usually spared, which helps to differentiate this 
disease from others.

In thalassemia, progressive iron deposition in the myocardium can 
lead to heart failure. Dedicated T2-star (T2*)-weighted CMR 
sequences can create image contrast depending on the iron content of 
the myocardium (131). These are used to detect cardiac involvement 
in thalassemia, and furthermore measure the T2* magnetic resonance 
value to quantify the amount of iron deposits in the myocardium. The 
amount of iron as assessed by in vivo T2* quantification correlates 
with LV systolic function (131). CMR imaging can be used to guide 
therapy in these patients, and a therapy-related reduction in iron con-
tent, as measured by CMR imaging, correlates with improvement in 
LV systolic function (132,133)

Noncompaction cardiomyopathy is caused by genetic abnormalities 
of the desmoglein gene and leads to a phenotype with regional LV wall 
thinning of the compact myocardium and increased trabeculation in 
the same area. However, a similar phenotype may also evolve as the 
result of remodelling in other cardiomyopathies. A CMR study compar-
ing noncompaction cardiomyopathy to hypertrophic cardiomyopathy, 
aortic valve stenosis, dilated cardiomyopathy and hypertensive cardio-
myopathy showed that CMR imaging is able to diagnose noncompac-
tion with 86% sensitivity and has 99% specificity to differentiate it 
from other causes of hypertrabeculation, using simple diagnostic crite-
ria (134). The increased trabeculation may be subject to fibrosis or 
hypoperfusion (135).

Few studies (136) have been published using CMR imaging in 
patients with transient LV apical ballooning (takotsubo cardiomyopathy). 
One case study (137) demonstrated edema and hyperemia in a patient 
with a typical takotsubo-like presentation. Late enhancement may also be 
present (138), indicating that cardiomyocyte necrosis can occur.

FuRtHeR CliniCal aPPliCations oF CMR
In clinical practice, CMR is of important value for the diagnosis of aor-
tic diseases. 3D contrast angiography is an excellent tool for the assess-
ment of aortic aneurysms, and has high sensitivities and specificities for 
the diagnosis of aortic dissection (139). The combined use of different 
sequences providing T1 and T2 contrast, with and without fat suppres-
sion, perfusion imaging and assessment of contrast uptake, allow for 
noninvasive tissue characterization of cardiac and paracardiac masses 
(140). Additionally, high-resolution images can be obtained to exactly 
assess the spatial extent of a tumour.

Considerable effort is being invested in the development of CMR 
coronary angiography. Although the diagnostic accuracy appears to be 
comparable with computed tomography (141), the technique is not 
widely accepted as a routine clinical tool. Most studies agree on a lim-
ited image quality for middle and distal segments of the large epicardial 

Figure 6) A patient with myocarditis. The quantitative measurements of 
signal intensities in the myocardium normalized to skeletal muscle using a 
T1-weighted spin-echo sequence, before and after application of gadolinium 
contrast, allow for identification of patients with inflammatory myocardial 
disease (left image). In patients with acute severe myocarditis, patchy foci of 
delayed enhancement can be visualized, corresponding to foci of acute myo-
cardial necrosis (right image, arrows)
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vessels, while image quality in the proximal segments is usually good 
(142).

suMMaRy anD ConClusion
Starting as a research tool little more than a decade ago, CMR imaging 
has entered the arena of routine clinical imaging applications. Specific 
imaging sequences and protocols are now available for a wide range of 
heart diseases, including ischemic and nonischemic heart disease, as 
well as valvular disease. The high accuracy of flow measurements, 
freedom to deliberately choose an imaging plane and the lack of ioniz-
ing radiation make it the imaging modality of choice for CHD in chil-
dren and adults. The unique ability to obtain information on 
disease-specific tissue characteristics provides the clinician with new 
insight into pathology and pathophysiology in vivo. Although long-
term follow-up studies with very large patient numbers remain scarce, 
there is evolving evidence that some pathological CMR imaging find-
ings, such as fibrosis, may be of value as predictors of patient 
outcome.
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