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Abstract

There has been increasing interest in predicting patients’ survival after therapy by investi-
gating gene expression microarray data. In the regression and classification models with high-
dimensional genomic data, boosting has been successfully applied to build accurate predictive
models and conduct variable selection simultaneously. We propose the Buckley-James boosting
for the semiparametric accelerated failure time models with right censored survival data, which can
be used to predict survival of future patients using the high-dimensional genomic data. In the spirit
of adaptive LASSO, twin boosting is also incorporated to fit more sparse models. The proposed
methods have a unified approach to fit linear models, non-linear effects models with possible in-
teractions. The methods can perform variable selection and parameter estimation simultaneously.
The proposed methods are evaluated by simulations and applied to a recent microarray gene ex-
pression data set for patients with diffuse large B-cell lymphoma under the current gold standard
therapy.
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1 Introduction
Gene expression profiling is a way of measuring the activity levels of thousands
of genes at the same time. Studies have shown great promise in predicting can-
cer survival using the gene expression data (Rosenwald et al., 2002, Lenz et al.,
2008). A typical task is to select a parsimonious subset of genes with good predic-
tion accuracy. The analysis of the high-dimensional low-sample size gene expres-
sion datasets presented a statistical challenge. Additionally, there is growing evi-
dence that gene-gene interactions play roles in the risk for common diseases. The
investigation of such gene-gene interactions provides even more methodological
challenges as the number of potential interactions among genes can grow rapidly.
Time-to-event data is often censored, thus presenting another difficulty for model-
ing. This article is aimed to develop a unified framework on regression models for
a time-to-event outcome with the gene expression data. All the above issues can be
addressed within this framework.

Cox regression has been a common choice in the analysis of time-to-event
data with censoring information. However, due to its limitations such as the pro-
portional hazards assumption and lack of an intuitive interpretation compared with
linear regression, the accelerated failure time (AFT) model is an important alter-
native. There are some advantages and motivations in developing the estimation
methods for the AFT model. First, the AFT model has a familiar linear regression
form, typically based on a logarithmic transformed response variable. Such a “di-
rect physical interpretation” from the AFT model has been favored by many statis-
ticians including Sir David Cox himself (Reid, 1994). Second, although the Cox
model has been dominant for the analysis of time-to-event data, the proportional
assumption may not be realistic in some settings. In theory, except for the extreme
value error distributions, the Cox model and AFT model cannot simultaneously
hold. Hence, the AFT model will be more appropriate in some settings. Finally, it
will be demonstrated that the Buckley-James (BJ) estimation (Buckley and James,
1979) for the AFT model can be conveniently extended to describe more complex
data structures with existing software, such as MART Friedman (2001) and MARS
Friedman (1991).

For the theoretical work with the AFT model, see Lai and Ying (1991) and
the references therein. In applications, the BJ method has been utilized in many dis-
ciplines including medicine (Hammer et al., 2002), genetics (Bautista et al., 2008),
astronomy (Steffen et al., 2006) and economics (Deaton and Irish, 1984, Calli and
Weverbergh, 2009). For the estimation of high-dimensional AFT models, origi-
nating from regression and classification, there have been some proposals on reg-
ularized estimation methods, combining with a variety of approaches adjusting for
censoring. Huang et al. (2006) applied the least absolute shrinkage and selection
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operator (LASSO) (Tibshirani, 1996) and the threshold gradient directed regulariza-
tion (TGDR) (Friedman and Popescu, 2004), with the inverse probability censoring
(IPC) weighted least squares estimator (Stute, 1993). Datta et al. (2007) applied the
partial least squares (PLS) and LASSO by mean imputation. Engler and Li (2009)
and Wang et al. (2008a) applied an elastic net algorithm (Zou and Hastie, 2005) to-
gether with a mean imputation and the BJ method, respectively. PLS with BJ can be
found in (Huang and Harrington, 2005), although PLS can’t conduct variable selec-
tion. The TGDR approach in Huang et al. (2006) relies on the threshold parameter
whose small changes can dramatically vary the number of variables selected. Thus,
it can be critical to obtain the optimal tuning parameter for a stable model selection.
The LASSO approach in Huang et al. (2006) is based on IPC weighting which is
different from BJ iterative imputation, and can produce inferior prediction accuracy,
at least in some empirical studies (Huang et al., 2006).

All the aforementioned methods, however, were developed for describing
simple linear effects. On the other hand, it is anticipated that the genetic archi-
tecture of the common diseases is very complex (Moore, 2003, Sing et al., 2003,
Thornton-Wells et al., 2004), and many diseases are produced by the nonlinear in-
teraction of genetic and environmental covariates (Motsinger AA, 2006). Briollais
et al. (2007) claimed that “gene-gene interactions are ubiquitous in determining the
susceptibility to common human diseases”. One of the major tasks using gene ex-
pression microarrays in cancer study is “identifying cancer-associated (signalling)
molecular markers and their complex interactions” (Wang et al., 2008b). By cap-
turing nonlinear effects plus high order (nonlinear) interactions can potentially im-
prove predictive power. The success of such complex models over simple linear
effects model perhaps can be explained by the somewhat famous XOR or chess-
board problem, in which two uncorrelated covariates and their linear combinations
have no classification power, while a simple nonlinear model is perfectly classifying
(Duda et al., 2001, Guyon and Elisseeff, 2003). In addition, such an XOR problem
can be generalized to higher than two-dimensional. The literature has repeated indi-
cated that applications of complex models in cancer classification can lead to better
prediction than simple models, which support the hypothesis that genetic variants in
cancer genes contribute to cancer risk through complex relationship. For instance,
Briollais et al. (2007) showed evidence for several two-way and higher order inter-
actions associated with breast cancer. Huang et al. (2007) demonstrated that a four-
factor model involving gene-gene and gene-environmental interactions had the best
power to predict bladder cancer risk. A complicated technique, multifactor dimen-
sionality reduction has been introduced to detect gene-gene interactions in diseases
such as sporadic breast cancer (Ritchie et al., 2001). Statistical methods in ge-
netics with complex model structure for time-to-event outcome is underdeveloped.
Not surprisingly, due to the curse of dimensionality and censoring, fitting nonlin-

2

Statistical Applications in Genetics and Molecular Biology, Vol. 9 [2010], Iss. 1, Art. 24

http://www.bepress.com/sagmb/vol9/iss1/art24
DOI: 10.2202/1544-6115.1550



ear model and interactions becomes a more challenging task. To our knowledge,
one such example is gene harvesting (Hastie et al., 2001a) with pairwise interac-
tion, despite some limitations on its prediction performance and robustness (Segal
et al., 2003). In conclusion, although there is a rich literature on statistical meth-
ods for high-dimensional survival data, flexible methods are needed to fit complex
structures.

This paper is motivated to develop a unified framework to model survival
times with gene expression microarrays. The proposed approach can fit linear ef-
fects model, nonlinear effects model, and nonlinear effects model with high order
nonlinear interactions. A key component of this framework relies on boosting tech-
niques. Boosting is a different approach for estimation when covariates are high-
dimensional, which is popular in machine learning and computer science. Devel-
oped by Freund and Schapire (1995, 1996), boosting as a classification algorithm
has been proved to be successful in many applications. A typical boosting algorithm
begins with a weak base learner, which is a model fitting method, and iteratively fits
the weighted data to update the accuracy of predication and update the weights for
each observation by giving more weights to those with more difficulty to fit. The
resulting final model is a linear combination of such iterative estimates. Boosting
has been generalized in various statistical estimation problems, after the discovery
that boosting is a gradient descent method. When the number of noneffective co-
variates are large, a twin boosting (Bühlmann and Hothorn, 2010) can select more
sparse models, similarly to the adaptive LASSO (Zou, 2006). For a recent review
on boosting in statistical applications, see Bühlmann and Hothorn (2007). Boost-
ing also has a clear connection with the LASSO (Hastie et al., 2001b, Efron et al.,
2004). With survival data, boosting has been employed by Ridgeway (1999) and Li
and Luan (2005) to optimize the partial likelihood in Cox’s model with regression
trees and smoothing splines, respectively. Hothorn et al. (2006) employed boosting
for the AFT models with the weighted least squares loss function. Also, see Lu and
Li (2008) for non-linear transformation models and Schmid and Hothorn (2008) for
parametric models.

In this article, we propose to apply the BJ iterative estimation method for the
AFT models. Within each iteration, boosting is utilized for model estimation and
selection. Since the proposed method is a combination of BJ and boosting, we illus-
trate its advantages from two aspects. First, as an iterative least squares approach,
the BJ estimator is closely related to the ordinary least squares estimator without
censoring. Such an interpretation can be more accessible to practitioners. In a com-
parison study, Heller and Simonoff (1990) concluded the BJ estimator is preferred
among the commonly applied estimation methods in the literature. In addition, the
validity of the BJ approach requires weaker assumptions. For instance, the IPC
approach assumes the censoring time is independent of the covariates, and the sup-
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port of the failure time is included in the support of the censoring time, which may
not be true in practice. Under weak requirements on the censoring mechanism,
in particular, the residuals are independent of the covariates, the BJ estimator is
comparably efficient with the classical least squares estimator. Second, we empha-
size that boosting is a method for minimizing convex loss functions via gradient
descent techniques. Thus, boosting is different from some of the aforementioned
methods which optimize penalized loss functions, such as the LASSO. Bühlmann
(2006, section 4.3) specifically demonstrated that boosting is different from the
LASSO. Efron et al. (2004) considered a version of boosting, called forward stage
wise linear regression (FSLR), and they show that FSLR with infinitesimally small
step-sizes generates a set of solutions which is approximately equivalent to the set
of the LASSO solutions, under certain conditions. They are, however, different
for many problems. The FSLR paths are much smoother and more monotone than
the LASSO paths in high-dimensional problem with correlated covariates (Hastie
et al., 2007, Hastie, 2007). This particularly implies that in analyzing the microar-
ray gene expression data for which gene-gene interactions often exist, the LASSO
and boosting can generate different results. Additionally, boosting and LASSO can
generate different results due to the parameters selected in tuning methods. This is
because boosting typically has a larger number of tuning parameter to choose from
compared with LASSO. Boosting is a general and generic method which can be
used to estimate models with complex data structures. Therefore, compared with
the LASSO-type methods (Huang et al., 2006, Wang et al., 2008a), the BJ boost-
ing can produce different, and sometimes better results. In the subsequent sections,
we develop a unified framework with BJ boosting for linear, and non-linear effects
models with possible interactions. Finally, the proposed BJ boosting is not diffi-
cult to implement. In fact, the BJ procedure can be readily implemented because
it iteratively utilizes the Kaplan-Meier estimates, which is a common component
in major statistical software. In addition, the boosting algorithm is straightforward
to program. Both BJ estimation and boosting have been implemented in statistical
software R (R Development Core Team, 2009), for instance, in Design (Harrell,
2003) and mboost (Bühlmann and Hothorn, 2007) package, respectively. The al-
gorithm developed here including the tuning parameter selection procedure can be
readily carried out.

The rest of the article is organized as follows. In section 2, we outline
the BJ estimation method for the AFT models. In section 3, we give a summary
of a generic boosting and twin boosting algorithms. In section 4, we propose the
L2 boosting algorithm adjusting for censoring by the BJ method. In section 5, a
simulation study was conducted to evaluate and compare the proposed algorithm
and other related methods. In section 6, the proposed methods are applied to the
microarray data for patients with diffuse large B-cell lymphoma (DLBCL). Finally,
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section 7 concludes with discussions.

2 Regression Models for Survival Data
Let Ti be the logarithmic (or some other monotone function) transformed random
failure time and Xi be length-p covariate vector for subject i. For right censoring
Ti, the observed data are (Yi,δi,Xi), where Yi = min(Ti,Ci). Ci is the logarithmic
transformed censoring time and δi = I(Ti ≤Ci) is the censoring indicator function.
We first assume a parametric model

Ti = f (Xi,β )+ εi, i = 1, ...,n,

for a parameter vector β = (β1,β1, ...,βp)′. The form of f , depending on the pa-
rameter vector β , may be chosen to be linear, such as the AFT model f (Xi) = X ′

i β .
Later, we extend to a nonparametric model and β can be dropped out. With some
abuse of notation, f (X) and f (X ,β ) are used interchangeably, which should be
clear according to the context. We assume the random noise εi has mean zero and
finite variance. If no censoring occurs, then Ti = Yi and the function f may be
estimated by minimizing a loss function, for example,

L(Y, f (X)) =
1
2

n

∑
i=1

(Yi− f (Xi))2. (1)

Due to censoring, f cannot be estimated directly from (1). Buckley and James
(1979) suggested to impute those censored Ti with their conditional expectation
given associated censoring times and covariates. Specifically, let Y ∗

i be imputed as

Y ∗
i = Yiδi +E(Ti|Ti > Yi,Xi)(1−δi).

This implies Y ∗
i = Ti if δi = 1 and Y ∗

i = E(Ti|Ti > Yi,Xi) if δi = 0. We can calculate
the conditional expectation by

E(Ti|Ti > Yi,Xi) = f (Xi)+
∫

∞

Yi− f (Xi)

tdF(t)
1−F(Yi− f (Xi))

,

where F is the distribution function of T − f (X), which can be simply estimated
by the Kaplan-Meier estimator F̂ . Assume f (X) = X ′β and we have an estimated
f̂ (X) (for instance, an initialized value f̂ (X) = 0). Note the underlying residuals
Ti− f̂ (Xi) is generally not available due to censoring. Denote the observed residuals
ei = Yi − f̂ (Xi) with ranked order such that e1 < e2 < · · · < en and the responses,
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indicators and covariates are re-arranged according to this ranking. Thus, Y ∗
i can be

imputed by

Y ∗
i = f̂ (Xi)+

{
eiδi +(1−δi)

[
Ŝ(ei)−1

∑
e j>ei

e jδ j∆Ŝ(e j)

]}
, (2)

where Ŝ(ei) is the Kaplan-Meier estimator of survival function for residual fail-
ure time ei, and ∆Ŝ(e j) is the jump size of Ŝ at residual time e j. Denote Y ∗ =
(Y ∗

1 ,Y ∗
2 , ...,Y ∗

n )′ and the covariates matrix X = (X1,X2, ...,Xn)′, we can rewrite Equa-
tion (2) as follows:

Y ∗ = f̂ (X)+A(β )(Y − f̂ (X)),

where

A(β ) =


δ1 (1−δ1)δ2

∆Ŝ(e2)
Ŝ(e2)

. . . (1−δ1)δn
∆Ŝ(en)
Ŝ(en)

0 δ2 . . . (1−δ2)δn
∆Ŝ(en)
Ŝ(en)

...
... . . . ...

0 0 . . . δn

 . (3)

To update the estimate f̂ (X) based on the current (Xi,Y ∗
i ), a least squares estimator

can be obtained. Specifically, substituting Yi with Y ∗
i , β may be obtained by mini-

mizing the loss function (1). The BJ estimator has a simple least squares solution

β̂BJ = (X ′X)−1X ′Y ∗

An iterative procedure is expected to solve for β as the imputed value Y ∗
i involves

unknown parameter β . For linear regression with an intercept β0, we first center
both responses and covariates. After the iterations are completed and the estimated
coefficients β̂ are claimed, the intercept can be estimated as β̂0 = Ȳ ∗− X̄ β̂ , where
Ȳ ∗ is the sample mean of Y ∗

i and X̄ is the vector of sample means of the covariates.

3 Generic Boosting
In this section, we present a generic boosting algorithm and discuss the selection of
loss function, base learner and tuning parameter.

3.1 Generic boosting algorithm

We first summarize a generic boosting algorithm, or functional gradient descent al-
gorithm (Friedman, 2001, Bühlmann and Yu, 2003, Bühlmann and Hothorn, 2007).
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Given (Xi,Yi) for i = 1,2, ...,n, the goal is to approximate Y with a function f such
that Y = f (x)+ ε , with ε being random noise with mean 0 and finite variance. To
optimize a loss function L(Y, f ), boosting proceeds as follows:

1. Initialize f̂0 = Ȳ , where Ȳ = 1
n ∑

n
i=1Yi, set m = 0.

2. At the mth iteration, compute the residuals, defined as negative gradient of
loss function, Ui,m =−∂L(Yi, f )

∂ f | f = f̂m(Xi).
3. Fit a base learner (see section 3.3) g(Um,X) to the residuals Ui,m with covari-

ates Xi, for i = 1,2, ...,n.
4. Update the estimated function f̂m+1(X) = f̂m(X)+ νg(Um,X) for a learning

rate 0 < ν ≤ 1.
5. Increase m by one and repeat steps 1-4 until m = M for some tuning parameter

M determined by the procedures to be described in section 3.4.

As an example, if we consider L2 boosting, i.e., a squared loss function L = (Yi−
f (Xi))2/2, then in step 2, Ui,m = Yi − f̂m(Xi). Similarly, with nonnegative wi and
a weighted squares loss function L = wi(Yi − f (Xi))2/2, we can simply make a
change in step 2, Ui,m = wi(Yi − f̂m(Xi)). In our simulations and applications, we
chose ν = 0.1. This choice of ν does not determine the predictive performance
(Friedman, 2001). A smaller value of ν typically requires a larger boosting step M.

3.2 Twin boosting

It has been demonstrated that the L2 boosting can falsely select a larger number of
covariates when the ratio of the effective number of covariates to the total number of
covariates is low (Bühlmann and Yu, 2006, Bühlmann and Hothorn, 2010). A pos-
sible remedy is sparse boosting (Bühlmann and Yu, 2006) which is related to non-
negative garrote estimator (Breiman, 1995). Another more general strategy is twin
boosting (Bühlmann and Hothorn, 2010) which has connections with the adaptive
LASSO. Roughly speaking, the twin boosting (or adaptive LASSO) is to apply a
second round of boosting (or LASSO) and only those covariates selected in the first
round will be considered as the remaining candidates in the second round. These
remaining candidates are weighted by their magnitudes of the estimated coefficients
from the first round. This principle can be generalized to a generic base learner as
described below. The twin boosting is especially useful in the settings with small n
and large p, since it can select more sparse solutions and typically maintains or im-
proves the predictions. The twin L2 boosting algorithm with a generic base learner
g follows (Bühlmann and Hothorn, 2010).

7

Wang and Wang: Buckley-James Boosting

Published by The Berkeley Electronic Press, 2010



1. First round of boosting to obtain the initial function estimates f̂init and the
covariates selected by the model. Without loss of generality, assume the se-
lected covariates are X1,X2, ...,Xs where s ≤ p.

2. Among the remaining covariates selected by the first round of boosting, sec-
ond round of boosting resembles the first round by selecting the best base
learner which mostly reduces the penalized residual sum of squares

l̂ = argmin
1≤ j≤s

ĉor2(g, f̂init)
n

∑
i=1

(ui−g(X ( j)
i ))2, (4)

where ĉor is the sample correlation which measures the strength of the simi-
larity. The estimate is used to replace step 3 in section 3.1 and the rest of twin
boosting is the same as boosting.

3.3 Base learner

Boosting requires a weak base learner g to iteratively fit the residuals U obtained
from the last iteration. Three common base learners in the literature (Friedman,
2001, Bühlmann and Yu, 2003) are incorporated for the survival data in this article.
In the following description, we sometimes suppress the subscript m, which should
be clear from the context.

3.3.1 Componentwise linear least squares

At each iteration, one single covariate is chosen which minimizes the residual sum
of squares most:

l̂ = argmin
1≤ j≤p

n

∑
i
(Ui−β jX ( j))2, β̂ j =

n

∑
i=1

X ( j)
i Ui/

n

∑
i=1

(X ( j)
i )2.

The base learner is ĝ(x) = β̂l̂X
(l̂).

We choose the initial offset value f̂ (0) = Ȳ and center the covariates to avoid shrink-
ing the intercept.

3.3.2 Smoothing splines

At mth iteration, fit a univariate cubic smoothing spline gm(X ( j)) based on Ui,m

against X ( j), for j = 1,2, ..., p, with a large amount of smoothing. Then select the
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covariate which explains the variability most. Specifically,

l̂ = argmin
1≤ j≤p

n

∑
i=1

(Ui,m−g(X ( j)
i ))2 +λ

∫
(g′′(x))2dx,

where λ is the smoothing tuning parameter, and the base learner is ĝ(X (l̂)). We fix
a corresponding small degrees of freedom, say 4 for each of covariate. As a result,
such a choice implies a weaker learner having an estimate with large bias and small
variance. Applications of boosting with smoothing splines may be found in Li and
Luan (2005), Meier et al. (2009).

3.3.3 Regression trees

Regression trees have the advantages that the response variables are invariant to
monotone transformations, and are insensitive to outliers. Friedman (2001) studied
gradient boosting trees to improve prediction over a single regression tree. If we
employ a base learner by constructing a regression tree having two terminal nodes
(degree=1), the boosting estimate will be an additive model in the original predic-
tor covariates. With at most 3 terminal nodes (degree=2), boosting estimate is a
nonparametric model having interaction terms between pairs of covariates.

3.4 Tuning parameter

The number of boosting step M is a tuning parameter. Because of the connection
between the boosting and L1 regularization, this tuning parameter plays a regular-
ization role. It should be chosen in a trade-off of the model fitting and parsimony.
A general strategy is to estimate M by the K-fold cross-validation. With the com-
ponentwise linear least squares as the base learner, Bühlmann (2006) developed a
computational efficient Akaike information criterion (AIC) for the selection of M.
The results can be summarized as below. Let

H j = X ( j)X ( j)T / ‖ X ( j) ‖2, j = 1,2, ..., p,

be the n× n hat matrix for the linear least squares fitting operator with the jth
covariate variable vector X ( j), where ‖‖ is the Euclidean norm. At mth iteration, it
was shown that L2 boosting hat matrix is

bm = I− (I−νHcm)(I−νHcm−1) · · ·(I−νHc1),

where I is the identity matrix and ck is the component identified in the boosting
procedure in the kth iteration, for k = 1, . . . ,m. In an operator notation, the L2
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boosting estimate in iteration m is

f̂m = bmY. (5)

An AIC is defined to penalize the model complexity in the boosting algorithm:

AIC(m) = log(σ̂2)+
1+d f /n

1− (d f +2)/n
,

where

σ̂
2 =

1
n

n

∑
i=1

(Yi− f̂m(Xi))2,

and the degrees of freedom d f can be approximated by the number of covariates
selected at the mth boosting step (Hastie, 2007). The tuning parameter M can be
chosen to minimize the AIC(m), for m = 1,2, ...Mstop, where Mstop is a prespeci-
fied large number. This procedure, however, may not exist for some boosting base
learner, for instance, regression trees. Therefore, for tuning parameter selection,
one may simply use the K-fold cross-validation technique, as suggested in Hastie
(2007). Specifically, define the CV score as

CV (m) =
K

∑
v=1

∑
(Xi,Yi)∈Dv

(Y (k)
i − f̂−Dv

m (Xi))2, (6)

where Dv and D(−v) are the test and training data, respectively, and f−Dv

m is esti-
mated from the training data.

In survival data analysis, the above tuning parameter selection strategies can
be implemented, although some modifications are required to take into account of
censoring (Hothorn et al., 2006, Luan and Li, 2008). Details on tuning parameter
selection in the current setting will be given in the next section.

4 Boosting Survival Data
To estimate the AFT model with right-censoring survival times and high-dimensional
covariates, we propose a method combining BJ estimator and boosting.

4.1 Buckley-James boosting algorithm

1. Initialization of β̂ (0) or f̂ (0). Set R = 0.
2. At the Rth iteration,
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(a) Update Y ∗
i from Equation (2):

Y ∗
i = f̂ (Xi)(R−1) +

{
eiδi +(1−δi)

[
Ŝ(ei)−1

∑
e j>ei

e jδ j∆Ŝ(e j)

]}
,

where ei = Yi− f̂ (Xi)(R−1).
(b) With (Xi,Y ∗

i ), fit the model Y ∗
i = f̂ (Xi)(R) + εi by the L2 boosting or

twin boosting outlined in section 3 for a chosen m iterations. Also see
remarks below for tuning parameter selection.

3. Increase R by one and repeat step (2) until some stopping criterion or R =
MBJ for some prespecified number MBJ . With the componentwise linear least
squares, the stopping criterion is chosen to be |β (R)−β (R−1)| < η , where η

is a prespecified small number. Otherwise, the stopping rule is

‖ f̂ (X)(R)− f̂ (X)(R−1)‖
‖ f̂ (X)(R−1)‖

< η , (7)

where for a length-n vector f = ( f1, f2, ..., fn), we define ‖ f‖= ∑
n
i=1 f 2

i . The
Buckley-James algorithm can generate oscillated estimates among iterations,
due to the nature of the discontinuity of the estimating function for β or f
in relation to the Kaplan-Meier estimator. We stopped the iterative algorithm
whenever such an oscillation occurred or convergence was reached. See, e.g.,
Huang and Harrington (2005), Wang et al. (2008a), Cai et al. (2009).

Remarks: When computing tuning parameters, both AIC and cross-validation in-
volve the squared difference between the observed outcome and the predicted out-
come. Since the observed outcome Y is subject to censoring, we replace Y with the
imputed Y ∗, for instance, in (6), which is the same strategy as in Johnson (2009).
There are a variety of tuning parameter selection methods in regularized survival
data analysis (Huang et al., 2006, Wang et al., 2008a). While some approaches
such as the one in Wang et al. (2008a) can be adopted for linear model in the cur-
rent setting, the approach is not directly applicable for some nonparametric base
learners including smoothing splines and regression trees.

5 Simulation Studies
This section is to evaluate the performance of the BJ boosting, and compare with
various relevant methods for the high-dimensional AFT models, which will be
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briefly presented here. Initially we consider linear models only. Hothorn et al.
(2006) proposed a boosting method minimizing an IPC loss function (IPC-B):

Lw(Y, f (X)) =
1
2

n

∑
i=1

wi(Yi− f (Xi))2,

where wi = δi
Sc(Yi−) , and Sc(Yi−) (− denotes a left limit) is the conditional censoring

survivor function, which is calculated by the Kaplan-Meier estimate. To apply the
twin boosting, we first obtain the initial estimates finit from the above IPC boosting.
Then, the twin boosting is employed using estimator (4).

Huang et al. (2006) considered the LASSO estimator (IPC-LASSO):

β̂ (λ ) = argmin
β

1
n

n

∑
i=1

wi(Yi−Xiβ )2 +λ

p

∑
j=1

|β j|,

where λ is the regularization tuning parameter. The adaptive LASSO with the
IPC model can be estimated as well. In the sequel, we use an ∗ to denote the
twin boosting or adaptive LASSO. Zou and Hastie (2005) considered an elastic
net estimator which can select groups of correlated covariates and the number of
selected covariates can exceed the total sample size n, which is one of the limitations
of the LASSO. For survival data, Wang et al. (2008a) applied the elastic net method
to the BJ regression (BJ-EN) by replacing the step 2(b) in section 4 with the elastic
net estimator.

The simulations contain three scenarios for linear effects model with p =
30 and two scenarios for non-linear effects model. Since methods for non-linear
effects model are quite different, we present the results separately from those for
linear effects model. For each scenario, 50 random replications were conducted
to evaluate the methods unless otherwise specified. In the first three scenarios,
the transformed survival time log(T ) = 0.5 + X ′β + ε with ε ∼ N(0,1). For each
scenario, the censoring time is generated from the uniform distribution such that
the censoring rates are about 30% and 70%, respectively. It is worth mentioning no
distribution assumptions were made for the BJ boosting although it is convenient
to simulate data from some distributions, as we did here. The tuning parameters
were chosen by the AIC for the (first round) BJ boosting with linear least squares
(BJ-LS) and IPC boosting, and 5-fold cross validations for the IPC-LASSO. For
the twin BJ-LS, IPC-B and adaptive IPC-LASSO, tuning parameters were chosen
by the 5-fold cross validations. For BJ-EN, the tuning parameters were chosen by
the generalized cross validation as proposed in the original article. To evaluate the
predictive performance of the proposed methods, we consider the mean squared
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error in the simulation study. For linear models, the estimated parameters obtained
from the training data are used to predict

MSE = E[( f̂ (X)− f (X))2], f (X) = E[Y |X = x], (8)

where X is a new test observation with the same distribution as in the training
sample. More details of data generation are described below.

Scenario 1
In this scenario, the components of β is 0.4 for the first half and 0 for the

second half. The covariate X is generated from a multivariate normal distribution
N30(0,Σ), where

Σ =


J

J
J

I

 ,

with J being a 5× 5 matrix with diagonal elements to be 1.01 and off-diagonal
elements to be 1, and I being a 15× 15 identity matrix. The model has five mem-
bers in each of three equally important groups (cf. Zou and Hastie (2005)). In
gene expressing data with large p and small n, the ‘grouped variables’ scenario has
attracted some attention (Hastie et al., 2000, Segal et al., 2003).

Scenario 2
The first 10 components of β are set to be 1, and 0 otherwise. The design

matrix X is generated as X ∼ N30(0,Σ) where [Σ]i j = 0.5|i− j|.
Scenario 3
The first half of components of β are set to be 0.4, and 0.2 for the other half.

The design matrix X is the same as in Scenario 2.
We summarize the simulation results. The intercepts were not counted in

computing the number of non-zero coefficients. Table 1 and 2 support the following
findings:

1. For sparse models, it is almost always beneficial to run the twin boosting or
adaptive LASSO. The applications of such procedures will typically result
in more parsimonious models while maintaining similar prediction perfor-
mances. When the ratio of noneffective number of covariates to the total
number of covariates is large, the advantage is more substantial. When the
true underlying models are not sparse, the twin boosting or adaptive LASSO
are not favored compared with their counterparts, respectively. For instance,
in Scenario 3, the twin BJ-LS, IPC-B and adaptive IPC-LASSO can generate
larger MSE and underestimate the effective covariates more severely com-
pared with their counterparts, respectively.
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Table 1: Mean squared error (MSE) E[( f̂ (X)− f (X))2],( f (X) = E[Y |X = x]) for
different censoring rate (CR). The twin boosting BJ-LS, IPC-B, or adaptive IPC-
LASSO is denoted by an asterisk ∗. Tuning parameter is selected by AIC or cross-
validation as specified in the text. Estimated standard deviations are given in paren-
theses.

Method Scenario 1 Scenario 2 Scenario 3
CR 30% CR 70% CR 30% CR 70% CR 30% CR 70%

n=100
BJ-LS 0.22 (0.09) 0.62 (0.30) 0.39 (0.18) 1.67 (0.92) 0.64 (0.21) 1.84 (0.67)
BJ-LS∗ 0.25 (0.11) 0.54 (0.27) 0.40 (0.17) 1.96 (1.27) 0.94 (0.30) 2.62 (1.18)
IPC-B 0.25 (0.11) 1.24 (0.59) 0.46 (0.21) 2.89 (1.53) 0.69 (0.18) 2.64 (1.17)
IPC-B∗ 0.26 (0.11) 0.85 (0.50) 0.45 (0.22) 3.01 (1.97) 1.02 (0.27) 3.34 (1.53)
IPC-LASSO 0.43 (0.36) 2.81 (2.44) 0.51 (0.28) 7.78 (12.6) 0.80 (0.28) 10.02 (22.3)
IPC-LASSO∗ 0.24 (0.20) 2.13 (3.67) 0.39 (0.21) 10.79 (19.9) 1.15 (0.35) 15.56 (34.8)
BJ-EN 0.32 (0.19) 1.60 (0.71) 0.41 (0.23) 1.77 (1.02) 0.62 (0.23) 2.07 (0.94)

n=200
BJ-LS 0.12 (0.06) 0.28 (0.12) 0.19 (0.06) 0.53 (0.21) 0.31 (0.09) 0.78 (0.19)
BJ-LS∗ 0.14 (0.05) 0.26 (0.12) 0.21 (0.08) 0.60 (0.24) 0.42 (0.14) 1.11 (0.30)
IPC-B 0.14 (0.07) 0.60 (0.29) 0.23 (0.07) 0.99 (0.41) 0.33 (0.10) 0.99 (0.35)
IPC-B∗ 0.14 (0.05) 0.48 (0.22) 0.21 (0.08) 0.75 (0.38) 0.47 (0.13) 1.35 (0.38)
IPC-LASSO 0.22 (0.14) 1.33 (0.72) 0.22 (0.08) 1.29 (1.30) 0.35 (0.11) 1.45 (0.79)
IPC-LASSO∗ 0.18 (0.14) 0.49 (0.30) 0.19 (0.08) 0.63 (0.31) 0.50 (0.17) 1.56 (0.54)
BJ-EN 0.13 (0.08) 0.45 (0.21) 0.20 (0.08) 0.51 (0.20) 0.32 (0.09) 0.74 (0.17)

2. BJ-LS, IPC-B and BJ-EN have similar prediction performances while IPC-
LASSO can generate larger MSE when censoring rate is high with small sam-
ple sizes.

3. When a grouping effect exists, such as the data generated in Scenario 1, BJ-
EN can capture more grouped effects since this is the method specially de-
signed for. However, BJ-EN may overestimate the grouped effects with high
censoring data. Other methods that typically underestimate the grouped ef-
fects, however, can still maintain good prediction accuracy. In this case, the
grouped effects are absorbed in a subset of the effective covariates. It is worth
noting that boosting with ridge regression as developed in Tutz and Binder
(2007) may be utilized in the BJ framework to account for grouping effect.

4. When the censoring rate increases, the estimation problem becomes more
difficult. We suggest to apply some dimension-reduction techniques first to
reduce the dimension of the problem. Then, more important covariates are
kept for the analysis using the techniques described here.

5. With larger sample sizes, all methods improve the prediction performances.

We have conducted additional simulations with extreme censoring 5% and
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Table 2: Estimated number of covariates with non-zero coefficients for different
censoring rate (CR). The twin boosting BJ-LS, IPC-B or adaptive IPC-LASSO is
denoted by an asterisk ∗. The selected number (No.) of covariates: A is the total
number selected; T is the correctly selected number; F is the falsely selected num-
ber. Tuning parameter is selected by AIC or cross-validation. Estimated standard
deviations are given in parentheses.

Method No. Scenario 1 Scenario 2 Scenario 3
CR 30% CR 70% CR 30% CR 70% CR 30% CR 70%

n=100
BJ-LS A 12.1 (2.9) 12.3 (3.4) 15.1 (3.0) 17.3 (4.0) 27.2 (2.0) 23.1 (4.0)

T 7.9 (1.5) 6.8 (1.4) 10.0 (0.0) 9.9 (0.4) 27.2 (2.0) 23.1 (4.0)
F 4.2 (2.6) 5.5 (3.0) 5.1 (3.0) 7.4 (3.9) - -

BJ-LS∗ A 7.1 (2.4) 7.2 (2.0) 14.4 (2.3) 15.6 (3.0) 22.6 (2.8) 17.8 (3.0)
T 4.4 (1.0) 3.9 (0.7) 10.0 (0.0) 9.6 (0.6) 22.6 (2.8) 17.8 (3.0)
F 2.7 (2.1) 3.2 (1.8) 4.4 (2.3) 6.0 (2.9) - -

IPC-B A 13.7 (3.2) 20.9 (3.5) 18.8 (4.7) 27.4 (1.3) 27.5 (1.9) 27.8 (1.3)
T 8.1 (1.4) 8.0 (1.9) 10.0 (0.0) 10.0 (0.2) 27.5 (1.9) 27.8 (1.3)
F 5.6 (3.1) 12.9 (2.4) 8.8 (4.7) 17.5 (1.2) - -

IPC-B∗ A 9.9 (2.3) 13.6 (2.7) 16.6 (3.2) 20.0 (2.2) 24.6 (1.9) 20.4 (2.0)
T 5.4 (0.9) 5.1 (1.1) 10.0 (0.0) 9.6 (0.7) 24.6 (1.9) 20.4 (2.0)
F 4.4 (2.3) 8.5 (2.5) 6.6 (3.2) 10.4 (2.1) - -

IPC-LASSO A 10.8 (4.5) 17.9 (8.2) 14.9 (4.4) 21.5 (6.2) 25.7 (2.3) 22.2 (6.2)
T 7.0 (1.8) 7.4 (3.1) 10.0 (0.0) 9.6 (0.7) 25.7 (2.3) 22.2 (6.2)
F 3.8 (4.0) 10.4 (5.9) 4.9 (4.4) 11.9 (6.1) - -

IPC-LASSO∗ A 5.8 (2.7) 8.4 (6.3) 12.9 (3.0) 17.0 (7.6) 20.2 (2.8) 17.0 (8.4)
T 4.4 (1.6) 4.2 (2.1) 10.0 (0.0) 8.7 (1.4) 20.2 (2.8) 17.0 (8.4)
F 1.3 (1.9) 4.2 (4.6) 2.9 (3.0) 8.3 (7.1) - -

BJ-EN A 17.7 (5.0) 26.1 (4.6) 19.8 (4.9) 23.6 (3.6) 28.0 (1.3) 25.6 (1.8)
T 8.7 (2.0) 11.8 (2.9) 10.0 (0.0) 10.0 (0.0) 28.0 (1.3) 25.6 (1.8)
F 9.0 (4.0) 14.3 (2.3) 9.8 (4.9) 13.6 (3.6) - -

n=200
BJ-LS A 13.4 (3.3) 13.7 (3.7) 17.3 (3.9) 19.9 (4.2) 29.0 (1.2) 27.1 (1.8)

T 9.5 (1.5) 8.2 (1.4) 10.0 (0.0) 10.0 (0.0) 29.0 (1.2) 27.1 (1.8)
F 3.9 (3.0) 5.5 (3.2) 7.3 (3.9) 9.9 (4.2) - -

BJ-LS∗ A 6.8 (1.6) 6.2 (2.0) 15.5 (3.3) 16.5 (2.7) 26.6 (1.8) 20.9 (2.7)
T 5.3 (1.0) 4.2 (0.7) 10.0 (0.0) 10.0 (0.0) 26.6 (1.8) 20.9 (2.7)
F 1.5 (1.5) 2.0 (3.1) 5.5 (3.3) 6.5 (2.7) - -

IPC-B A 14.9 (3.8) 21.2 (3.8) 19.8 (4.1) 27.8 (2.2) 29.1 (1.2) 28.8 (1.3)
T 9.3 (1.3) 9.2 (1.6) 10.0 (0.0) 10.0 (0.0) 29.1 (1.2) 28.8 (1.3)
F 5.6 (3.6) 12.0 (2.8) 9.8 (4.1) 17.8 (2.2) - -

IPC-B∗ A 7.1 (2.5) 7.3 (2.9) 14.9 (3.6) 17.5 (3.8) 26.7 (1.4) 21.7 (2.5)
T 5.2 (1.2) 4.2 (1.1) 10.0 (0.0) 10.0 (0.0) 26.7 (1.4) 21.7 (2.5)
F 1.8 (1.9) 3.1 (2.4) 4.9 (3.6) 7.5 (3.8) - -

IPC-LASSO A 12.7 (5.2) 9.0 (4.1) 15.7 (3.8) 14.9 (4.0) 29.1 (1.1) 22.6 (3.8)
T 8.7 (1.6) 6.1 (2.9) 10.0 (0.0) 10.0 (0.3) 29.1 (1.1) 22.6 (3.8)
F 4.0 (4.7) 2.9 (3.5) 5.7 (3.8) 5.0 (4.0) - -

IPC-LASSO∗ A 6.8 (4.2) 5.7 (2.5) 12.8 (2.6) 13.4 (3.4) 25.6 (1.8) 18.0 (3.5)
T 5.0 (2.0) 4.3 (1.4) 10.0 (0.0) 10.0 (0.0) 25.6 (1.8) 18.0 (3.5)
F 1.7 (2.9) 1.3 (1.9) 2.8 (2.6) 3.4 (3.4) - -

BJ-EN A 16.4 (3.9) 23.7 (5.6) 20.0 (5.1) 22.7 (2.8) 29.0 (1.0) 26.4 (1.3)
T 9.7 (2.1) 10.9 (2.6) 10.0 (0.0) 10.0 (0.0) 29.0 (1.0) 26.4 (1.3)
F 6.7 (4.1) 12.8 (3.5) 10.0 (5.1) 12.7 (2.8) - -
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95%, respectively. The results with sample size n = 200 can be found in Supple-
mentary Table 1 and 2, which also support the above findings. Furthermore, we
plotted the MSE of test data against BJ iterations in Supplementary Figure 1. The
plots suggest that in BJ iterations, the MSE curves can quickly become flat so that
the stable predictions are reached.

Scenario 4 We present a simulation study with p = 50, to evaluate the per-
formance of the proposed BJ boosting methods for non-linear effects. The model
considered here has the same functional forms as those in Li and Luan (2005):

f (X) = f1(X (1))+ f2(X (2))+ f3(X (3))+ f4(X (4)),

where f1(X (1)) = 4[X (1)]2 +X (1), f2(X (2)) = sin[6X (2)], f3(X (3)) = cos[6X (3)]−1,
f4(X (4)) = 4[X (4)]3 +[X (4)]2. Along with other 46 noneffective covariates, X ( j), j =
1, ...,50 are generated from uniform [-0.5,0.5] distribution. The logarithmic trans-
formed survival time T is generated from a normal distribution T = f (X)+ε where
ε has a normal distribution N(0,0.75). Thus the survival time follows a log-normal
distribution. The logarithmic transformed censoring time C is generated from a
normal distribution N(0,0.75) to obtain 36.5% censoring.

We conducted analysis of simulated data by BJ boosting with smoothing
splines (BJ-SS) and regression trees with degree 1 (BJ-Tree). For non-linear effects
models, we also combine BJ estimator with other nonparametric methods including
ACOSSO and MARS to compare with the boosting approach. Storlie et al. (2009)
developed ACOSSO which is a version of the adaptive LASSO in the nonpara-
metric framework. Another popular algorithm MARS was developed in Friedman
(1991) which is a stepwise forward-backward procedure, and can overcome some
limitations of regression trees such as discontinuity. At each BJ iteration, we fit
a model for the imputed survival times with ACOSSO or MARS, and the tuning
parameters for these methods were appropriately set. These methods are denoted
by BJ-ACOSSO and BJ-MARS, respectively.

We begin with investigating how well the proposed BJ boosting method can
recover the underlying functional forms. For illustration, estimated function forms
for a sample are shown in Figure 1. It can be seen that the estimated functional
forms with smoothing splines are similar to the true ones. The regression trees ap-
parently misspecify the model. It is worth noting that the estimated functional forms
for covariates X (1)−X (4) are typically shrunk toward zero, which is the anticipated
feature of the shrinkage estimates. The functional form for X (4) is more difficult
to estimate due to the lower signal-to-noise ratio (SNR = var( f (x))/var(ε)) com-
pared with the first 3 covariates. For noneffective covariates X (5) and X (6), the
estimated functions are close to their true values zero. The results for other nonef-
fective covariates are similar. To further evaluate the importance of the remaining
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covariates selected in the model, Friedman (2001) suggested the relative influence
measure (RIF):

I j =

(
EX

[
∂ f̂ (X)
∂X ( j)

]2

varX(X ( j))

)1/2

, (9)

for j = 1, ..., p, where EX can be computed by the sample average. A larger value
of I j suggests a more important contribution from the covariate X ( j) to the model.
If I j = 0, then the corresponding covariate is not selected in the model. It can be
shown that I j is equivalent to the coefficients for some special linear regression
models (Friedman, 2001). RIF can be computed for the boosting with smoothing
splines, but not for the regression trees since Equation (9) does not exist. One so-
lution is the measure proposed in Friedman (2001). Here we consider a simplified
measure by approximating (9) with numerical differentiation so that the measure
can be evaluated for both smoothing splines and regression trees. It is simple to
implement even for twin boosting. The usage of the measure is illustrated in a sim-
ulation study. Figure 2 shows the medians with 100 replications for the proposed
measure by applying BJ twin boosting with smoothing splines and regression trees.
Despite of misspecification of the model, regression trees indeed provide informa-
tive importance measures, similarly to smoothing splines.

For non-linear effects models, the integrated squared error (ISE) is estimated
by Monte Carlo integration using 2000 test points from the same distribution as the
training points. In Table 3, BJ-SS has similar ISE compared with BJ-ACOSSO.
BJ-Tree and BJ-MARS generate larger ISEs which is not unanticipated. Compared
with boosting, twin boosting appears to improve the prediction accuracy, and gen-
erate more parsimonious models. Additionally, we compared the methods with a
relatively small sample size n = 100 in Supplementary Table 3. BJ-SS and its twin
boosting counterpart clearly outperform other methods.

Scenario 5 We present a simulation study with p = 20, to demonstrate that
BJ boosting can be utilized to detect nonlinear high order interactions. With four
effective covariates, the model follows:

f (X) = 0.25[X (1) +X (2) +X (3) +X (4)]+8X (1)X (2)X (3)X (4).

The covariates X ( j), j = 1, ...,20 are generated from uniform [-0.5,0.5] distribu-
tion. The logarithmic transformed survival time T is equivalent to f (X)+ ε where
ε ∼ N(0,0.25). The logarithmic transformed censoring time C is generated from
uniform [0,3] distribution to obtain 35% censoring. With sample size n = 200, we
applied the BJ boosting trees with degree 4 to fit a model with up to four-way in-
teractions. At the first iteration in the outer BJ loop, the algorithm was run only
one inner boosting iteration. A corresponding model is shown in Figure 3. The
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Figure 1: The true functional forms (solid line), the estimated functional forms with
smoothing splines (dashed line) and regression trees (dotted line).
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Figure 2: Median of relative influence measure (RIF) for each covariate in 100
simulations (n=200) by BJ twin boosting with smoothing splines and regression
trees (degree=1). Data generated in the same setting as Scenario 4.
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Table 3: Average ISE and total number of selected covariates (standard deviations
in parentheses) in Scenario 4.

Method ISE No.
n=200 n=400 n=200 n=400

BJ-SS 0.16 (0.047) 0.10 (0.021) 13.5 (3.3) 12.1 (1.8)
BJ-SS∗ 0.10 (0.038) 0.05 (0.020) 6.9 (1.8) 4.9 (1.2)
BJ-Tree 0.34 (0.072) 0.21 (0.029) 44.7 (2.1) 41.5 (2.7)
BJ-Tree∗ 0.32 (0.094) 0.20 (0.042) 12.0 (5.4) 11.7 (4.4)
BJ-MARS 0.43 (0.112) 0.27 (0.072) 16.0 (3.7) 17.8 (4.0)
BJ-ACOSSO 0.15 (0.107) 0.06 (0.023) 4.7 (1.0) 4.6 (1.2)

leaves right side of the first node X4 < 0.4 clearly demonstrate four-way interac-
tions among X1,X2,X3,X4. BJ boosting can generate different trees and some of
them can detect four-way interactions such as those illustrated in Figure 3. Thus,
the final assembled model can contain complex structures including interactions. To
show the benefits of modeling interactions, we apply the comprehensive BJ boost-
ing algorithm to the simulated data and evaluate the prediction accuracy with 2000
test data, with 100 replications. As a comparison, we also run BJ boosting trees with
main effects only (i.e., tree with degree 1). The mean squared error of model with
four-way interactions is 72% of that for the main effects model (standard deviation
6%), which clearly illustrates the advantages of modeling the interactions.

6 An Application to DLBCL Data
We apply the proposed methods to a DLBCL study. Lymphoma is a type of can-
cer involving cells of the immune system. DLBCL is an aggressive lymphoma of
B-cells, which can grow quickly, and can spread fast to diverse parts of the body.
DLBCL often occur in men with age above 50 years. At the time of diagnosis of
DLBCL, patients may have extensive disease requiring chemotherapy, which may
lead to 35 to 40% of cure (Rosenwald et al., 2002). To predict therapy success of
DLBCL, high-profile microarray gene expression studies have been conducted, in
the hope that the gene level analysis can provide better prediciton of disease prog-
nosis than that obtained from clinical predictors only. In the literature, DLBCL data
sets for the combination chemotherapy with cyclophosphamide, doxorubicin, vin-
cristine and prednisone (CHOP) have been analyzied, for instance, see Rosenwald
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Figure 3: Four-way interactions with BJ boosting trees in Scenario 5.

et al. (2002), Segal (2006) and the references therein. The current gold standard
therapy, however, has evolved into to include rituxima immunotherapy in addition
to the chematherapy (R-CHOP), which has improved overall survival among pa-
tients with DLBCL by 10 to 15% (Lenz et al., 2008). It is interesting to identify
genes that predict survival among patients who received CHOP also retain their
prognositc power among patients who received R-CHOP. Studying those robust
genes can lead to better understanding of biologic variation among DLBCL tumors.
Using R-CHOP data, some recent medical articles have re-evaluated the prediction
accuracy of the models previously developed for CHOP data (Alizadeh et al., 2009,
Malumbres et al., 2008).

We analyzed the microarray data of DLBCL reported in Lenz et al. (2008).
There are 181 CHOP patients as training data, and 233 R-CHOP patients as testing
data, each with 54675 probe sets or covariates. Loosely, we will use the terms genes
and probe sets interchangeably. The censoring rate in the training data is about 40%.
The goal of the analysis was to build a model with good prediction based on a small
subset of probe sets, which was believed to be the truth. The training data were
used to build models and the testing data is used to validate the models. Due to the
nature of p � n, we first conducted a preselection procedure on the training data
by filtering out the genes with lower variations if a sample variance for a gene was
smaller than the 10th percentile for that gene. Genes with weak variations were less
likely to correlate with biological functions, and removing such genes can increase
the signal to noise ratio. Testing data with the same remaing genes as in the training

20

Statistical Applications in Genetics and Molecular Biology, Vol. 9 [2010], Iss. 1, Art. 24

http://www.bepress.com/sagmb/vol9/iss1/art24
DOI: 10.2202/1544-6115.1550



data will be used for validation.
With the remaining 3833 probe sets in the sequel, we applied the methods

described in the previous sections. For the AFT models, before the logarithmic
transformation was applied to the survival times, a value 1 was added to the ob-
served survival times due to a few zero values. The interpretation, however, is based
on the predicted values after transforming back to the original time scale. For com-
parison, other high-dimensional data analysis tools based on the Cox proportional
hazards model were included: the Cox model with L1 penalty (Park and Hastie,
2007) denoted as Cox-LASSO; and supervised principal components (Bair et al.,
2006) denoted as Superpc. To assess prediction, the survival times estimated from
the testing data were dichotomized into two groups at year 3 for the AFT models,
or the median for the Cox model. We then constructed the Kaplan-Meier curves
for the two groups with their corresponding observed survival times in the testing
data, and conducted the log-rank tests. Selected results are presented in Table 4. If
the twin boosting improved the prediction on the testing data, then the results were
shown. Otherwise, the boosting results were shown. For instance, with smaller
log-rank test p-value, BJ-LS∗ was preferred to BJ-LS. With the same principle, the
results from the IPC-LASSO rather than the adaptive LASSO were shown. The
results for BJ-EN and Cox-LASSO are based on a different strategy on tuning pa-
rameter selection. Our first attempt was to follow the original strategies proposed
in the authors’ papers. For BJ-EN, it is the generalized cross-validation (GCV). It
appears that further pre-selection is required for BJ-EN due to the high demanding
computation for the GCV. Thus, a univariate BJ procedure was employed to select
the top 1000 most significant probe sets, as in Wang et al. (2008a). This procedure
is called supervised gene screening in Ma (2006). With the tuning parameters se-
lected by the GCV, the model resulted in a large p-value for the log-rank test. In
addition, pre-selection of top 100 most significant probe sets resulted in a p-value
0.05 and 78 probe sets were selected. Since the tuning parameter selection for BJ-
EN is out of the scope of this manuscript, we chose the tuning parameters so that the
corresponding log-rank test is the most significant based on 3833 probe sets without
supervised gene screening. The results were shown in Table 4. This procedure was
also employed for the supervised principal components with the similar reasoning.
For nonparametric model estimation, we adopted a supervised gene screening to se-
lect the top 100 probe sets based on univariate BJ estimation. With other selection
such as top 1000, BJ-Tree still had good prediction, although it became a compu-
tational burden to BJ-SS or BJ-ACOSSO. Apparently, gene screening itself is an
important topic and Ma (2006) provided some discussion.

The results can be summarized as follows. In Table 4, all methods show
good prediction accuracy despite that p-values vary. The results for BJ-LS∗ was
used as benchmark since only 12 probe sets were chosen in the model, with co-
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efficients presented in Table 5. With good separation, the Kaplan-Meier survival
curves for the BJ boosting methods were illustrated in Figure 4. Kaplan-Meier sur-
vival curves for BJ-EN, IPC-LASSO and IPC-B∗ can be found as Supplementary
Figure 2 online. Figure 4 contained the results with BJ-Tree (degree=4), which
allows for interactions among 4 probe sets, at least. This model further enhanced
the prediction accuracy compared with the additive model BJ-Tree (degree=1). In
fact, the resulting p-value was less than 5× 10−8 which was the smallest among
all methods under investigation, while BJ-Tree (degree=1) resulted in a p-value
9×10−5). With regression trees, in particular with interactions, partial dependence
plots (Friedman, 2001) can be utilized to show the impact of one or more covariates
on the response after taking account the average effects of all other covariates in the
model. For the BJ-Tree (degree=4) model, the partial plots were depicted in Fig-
ure 5 for the 8 overlapping probe sets to BJ-LS∗. These plots clearly indicated the
same monotonic patterns for the corresponding probe sets. For instance, a negative
coefficient for probe set 1558999 x at in Table 5 perhaps was better illustrated in
a monotonic decreasing curve in Figure 5. The two-way interaction partial plots
in Figure 6 suggested gene-gene interactions for the survival. To determine the
top dominant interactions shown in the figure, we adopted the method described
in Elith et al. (2008). Since the IPC based methods selected a different subset of
probe sets, in the following, we summarize the variable selection results from other
methods excluding IPC based methods. BJ-LS∗ selected 8 or more common probe
sets with other methods. Furthermore, there was a high degree of consensus on the
probe sets. Except for 224043 s at, the 7 probe sets presented in Figure 5 were
selected by all methods. Probe set 224043 s at was not selected by Superpc, but
selected by all the remaining methods. Additionally, BJ with MARS or ACOSSO,
after supervised gene screening, also typically selected the 8 probe sets. However,
due to the less accurate prediction, the results were not shown here. In summary,
BJ-LS∗ selected a small subset of probe sets with good prediction accuracy, and
BJ-Tree had greater fidelity to the data to potentially improve the prediction accu-
racy. BJ-Tree with higher degree can capture the gene-gene interactions in a flexible
nonparametric fashion, which also further added the prediction power.

We briefly report the biological relevance of the selected probe sets. Probe
set 1558999 x at is described as pyruvate dehydrogenase phosphatase regulatory
subunit pseudogene. Probe 212713 at is microfibrillar-associated protein 4, which
involves in cell adhesion and signal transduction. Probe 224043 s at (gene UPB1)
encodes a protein that belongs to the CN hydrolase family. UPB1 deficiencies
may lead to abnormalities in neurological activity (van Kuilenburg et al., 2004).
It is our hypothesis that such abnormalities may be associated with primary lym-
phomas of the central nervous system (PCNSL), which are highly malignant B-
cell lymphomas confined to the central nervous system. Since PCNSL cannot
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Table 4: Prediction results for testing data with R-CHOP therapy for different meth-
ods. The models were estimated using the training data with CHOP therapy. The
third column is the number of probe sets selected by a method. The fourth col-
umn displays the number of overlapping probe sets in BJ-LS∗ and other methods.
P-value is calculated by a log-rank test for high risk and low risk groups.

Model Method No. Overlap P-value
AFT linear BJ-LS∗ 12 - 0.004

IPC-B∗ 57 1 0.012
IPC-LASSO 64 1 0.011
BJ-EN 17 12 <0.001

AFT non-linear BJ-Tree (degree=1) 61 8 <0.001
BJ-Tree (degree=4) 66 8 <0.001
BJ-SS∗ 23 8 <0.001

Cox linear Cox-LASSO 118 12 0.016
Superpc 97 8 <0.001

be distinguished histologically and immunophenotypically from DLBCL (Richter
et al., 2009), UPB1 deficiencies perhaps are also associated with DLBCL. Probe
229839 at (gene SCARA5) was identified as a new candidate tumor suppressor
gene in human hepatocellular carcinoma (Huang et al., 2010). Probe 237515 at is
transmembrane protein 56, which is integral to membrane. Probe 237797 at can
contribute to cell communication, mitochondrial fragmentation during apoptosis,
mitochondrial membrane organization and biogenesis, and multicellular organis-
mal development. The protein encoded by this gene is a member of the dynamin
superfamily of GTPases. Recent studies (see Krieg et al. (2010) and the references
therein) show that probe 242758 x at (gene JMJD1A) regulates the expression of
adrenomedullin and growth and differentiation factor 15 (GDF15) under hypoxia.
In addition, hypoxic regulation of JMJD1A can ultimately enhance tumor growth.

7 Discussion
We have presented the boosting procedures for estimating the AFT models, adjust-
ing for censoring with BJ estimator. The proposed BJ twin boosting can generate
more sparse models. It is worth noting that the choice of componentwise linear
least squares as the base learner facilitates the interpretation as the estimated coef-
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Figure 4: Kaplan-Meier survival curves of the testing data with R-CHOP therapy
patients. Models are fitted by boosting methods with different base learner using
training data with CHOP therapy patients: high risk group (solid line); low risk
group (dashed line). Log-rank test p-values are in Table 4.

ficients of covariates are the linear combination of the covariates through the iter-
ation of boosting. We further extended the boosting methods to reflect more com-
plex model structures including non-linear effects and interactions for survival data.
This is an important advantage of boosting over some other regularization methods,
where extensions to nonparametric form become more difficult. Whether to use lin-
ear or non-linear methods is often guided by the relevant scientific theories for the
questions under investigation. In our case study with the DLBCL gene expression
microarray data, we have built non-linear effects models in addition to simple lin-
ear models since there is strong evidence that non-linear effects including complex
interactions exist among cancer genes. A linear model can approximate complex
data, although it might not capture the data structure at a satisfying level, compared
with non-linear effect models. Nevertheless, in our case study, the estimated gene
effects on survival times have the similar impact with linear and non-linear models.
Thus, the BJ methods are robust in our applications. In summary, both the BJ es-
timator and boosting can fit models with a high degree of prediction accuracy. A
combination of these two methods can be utilized to model time-to-event data with
high-dimensional covariates and complex model structures. The results in the paper
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Table 5: Probe set ID, gene symbol, and the estimated coefficient for the model
selected by the BJ twin boosting with componentwise linear least squares (BJ-LS∗)
based on training data with CHOP therapy. The intercept is estimated as -0.596.

Probe set Gene symbol Coefficient
1558999 x at LOC283922 / PDPR -0.104
1561016 at -0.098
1562727 at -0.045
1568732 at 0.116
212713 at MFAP4 0.058
224043 s at UPB1 0.121
229839 at SCARA5 0.112
237515 at TMEM56 -0.019
237797 at DNM1L 0.212
240811 at -0.010
242758 x at JMJD1A 0.112
244346 at 0.111
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Figure 5: Partial plots of overlapping probe sets for DLBCL CHOP patients based
on BJ-Tree with degree=4.
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Figure 6: Interactions between probe sets selected by BJ-Tree with degree=4 for
training data with CHOP therapy patients.

also assure further theoretical investigation.
A corresponding R package bujar for Buckley-James regression with high-

dimensional covariates can be downloaded from the supplementary website.
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Hothorn, T., Bühlmann, P., Dudoit, S., Molinaro, A., and Van Der Laan, M. J.
(2006). Survival ensembles. Biostatistics, 7(3):355–373.

Huang, J. and Harrington, D. (2005). Iterative partial least squares with right-
censored data analysis: A comparison to other dimension reduction techniques.
Biometrics, 61(1):17–24.

Huang, J., Ma, S., and Xie, H. (2006). Regularized estimation in the accelerated
failure time model with high-dimensional covariates. Biometrics, 62:813–820.

Huang, J., Zheng, D. ., Qin, F. ., Cheng, N., Chen, H., Wan, B. ., Wang, Y. .,
Xiao, H. ., and Han, Z. . (2010). Genetic and epigenetic silencing of SCARA5
may contribute to human hepatocellular carcinoma by activating FAK signaling.

28

Statistical Applications in Genetics and Molecular Biology, Vol. 9 [2010], Iss. 1, Art. 24

http://www.bepress.com/sagmb/vol9/iss1/art24
DOI: 10.2202/1544-6115.1550



Journal of Clinical Investigation, 120(1):223–241.
Huang, M., Dinney, C. P., Lin, X., Lin, J., Grossman, H. B., and Wu, X. (2007).

High-order interactions among genetic variants in DNA base excision repair
pathway genes and smoking in bladder cancer susceptibility. Cancer Epidemiol-
ogy Biomarkers and Prevention, 16(1):84–91.

Johnson, B. A. (2009). On lasso for censored data. Electronic Journal of Statistics,
3:485–506.

Krieg, A. J., Rankin, E. B., Chan, D., Razorenova, O., Fernandez, S., and Giac-
cia, A. J. (2010). Regulation of the histone demethylase JMJD1A by hypoxia-
inducible factor 1α enhances hypoxic gene expression and tumor growth. Molec-
ular and Cellular Biology, 30(1):344–353.

Lai, T. L. and Ying, Z. (1991). Large sample theory of a modified Buckley-James
estimator for regression analysis with censored data. The Annals of Statistics,
19:1370–1402.

Lenz, G., Wright, G., Dave, S. S., Xiao, W., Powell, J., Zhao, H., Xu, W., Tan,
B., Goldschmidt, N., Iqbal, J., Vose, J., Bast, M., Fu, K., Weisenburger, D. D.,
Greiner, T. C., Armitage, J. O., Kyle, A., May, L., Gascoyne, R. D., Connors,
J. M., Troen, G., Holte, H., Kvaloy, S., Dierickx, D., Verhoef, G., Delabie, J.,
Smeland, E. B., Jares, P., Martinez, A., Lopez-Guillermo, A., Montserrat, E.,
Campo, E., Braziel, R. M., Miller, T. P., Rimsza, L. M., Cook, J. R., Pohlman,
B., Sweetenham, J., Tubbs, R. R., Fisher, R. I., Hartmann, E., Rosenwald, A., Ott,
G., Muller-Hermelink, H. ., Wrench, D., Lister, T. A., Jaffe, E. S., Wilson, W. H.,
Chan, W. C., and Staudt, L. M. (2008). Stromal gene signatures in large-B-cell
lymphomas. New England Journal of Medicine, 359(22):2313–2323.

Li, H. and Luan, Y. (2005). Boosting proportional hazards models using smoothing
splines, with applications to high-dimensional microarray data. Bioinformatics,
21(10):2403–2409.

Lu, W. and Li, L. (2008). Boosting method for nonlinear transformation models
with censored survival data. Biostatistics, 9:658–667.

Luan, Y. and Li, H. (2008). Group additive regression models for genomic data
analysis. Biostatistics, 9(1):100–113.

Ma, S. (2006). Empirical study of supervised gene screening. BMC Bioinformatics,
7:537.

Malumbres, R., Chen, J., Tibshirani, R., Johnson, N. A., Sehn, L. H., Natkunam, Y.,
Briones, J., Advani, R., Connors, J. M., Byrne, G. E., Levy, R., Gascoyne, R. D.,
and Lossos, I. S. (2008). Paraffin-based 6-gene model predicts outcome in diffuse
large B-cell lymphoma patients treated with R-CHOP. Blood, 111(12):5509–
5514.
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