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Abstract
The metabotropic glutamate receptors (mGluRs) are family C G-protein-coupled receptors that
participate in the modulation of synaptic transmission and neuronal excitability throughout the central
nervous system. The mGluRs bind glutamate within a large extracellular domain and transmit signals
through the receptor protein to intracellular signaling partners. A great deal of progress has been
made in determining the mechanisms by which mGluRs are activated, proteins with which they
interact, and orthosteric and allosteric ligands that can modulate receptor activity. The widespread
expression of mGluRs makes these receptors particularly attractive drug targets, and recent studies
continue to validate the therapeutic utility of mGluR ligands in neurological and psychiatric disorders
such as Alzheimer’s disease, Parkinson’s disease, anxiety, depression, and schizophrenia.
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INTRODUCTION
L-glutamate serves as the neurotransmitter at the majority of excitatory synapses in the
mammalian central nervous system (CNS). The existence of neuromodulatory glutamate
receptors, called metabotropic glutamate receptors (mGluRs), provides a mechanism by which
glutamate can modulate cell excitability and synaptic transmission via second messenger
signaling pathways. The widespread distribution of mGluR proteins suggests that these
neuromodulatory receptors have the ability to participate in numerous functions throughout
the CNS and may represent ideal targets for therapeutic intervention in a wide variety of CNS
disorders.

STRUCTURAL FEATURES OF mGluRs
mGluRs are members of the G-protein-coupled receptor (GPCR) superfamily, the most
abundant receptor gene family in the human genome. GPCRs are membrane-bound proteins
that are activated by extracellular ligands such as light, peptides, and neurotransmitters, and
transduce intracellular signals via interactions with G proteins. The resulting change in
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conformation of the GPCR induced by ligand binding activates the G protein, which is
composed of a heterotrimeric complex of α, β, and γ subunits. In their inactive state, G proteins
are bound to guanosine 5/ - diphosphate (GDP); activation of the G protein causes the exchange
of guanosine 5/-triphosphate (GTP) for GDP within the α subunit. Activated G protein subunits
then modulate the function of various effector molecules such as enzymes, ion channels, and
transcription factors. Inactivation of the G protein occurs when the bound GTP is hydrolyzed
to GDP, resulting in reassembly of the heterotrimer.

The GPCR family contains several subgroupings, and the majority of classical neurotransmitter
GPCRs belong to family A. These receptors are often termed the rhodopsin-like GPCRs and
are structurally similar in that they consist of an extracellular N-terminal domain, seven
transmembrane-spanning domains, and an intracellular C-terminus. In contrast to family A
receptors, mGluRs belong to class C GPCRs. These receptors are distinguished from their
family A relatives by the presence of a large extracellular N-terminal domain that contains the
endogenous ligand-binding site, discussed in more detail below. Family C GPCRs also include
GABAB receptors, calcium-sensing receptors, pheromone receptors, and taste receptors (1).
Genes encoding eight mGluR subtypes have been identified, many with multiple splice variants
that are differentially expressed in distinct cell types throughout the CNS. mGluRs are
subclassified into three groups based on sequence homology, G-protein coupling, and ligand
selectivity. Group I includes mGluRs 1 and 5, Group II includes mGluRs 2 and 3, and Group
III includes mGluRs, 4, 6, 7, and 8 (Table 1).

The Venus Flytrap Domain
As mentioned above, mGluRs contain a large extracellular N-terminal domain, termed the
Venus flytrap domain (VFD), which contains the glutamate-binding site (1) (Figure 1). The
examination of crystal structures of N-terminal domains of mGluR1 (2,3), mGluR3, and
mGluR7 (4) reveals that each VFD consists of two lobes that sit one atop the other and bind
glutamate in a cleft between them. Evidence suggests that two VFDs dimerize together, back
to back, and large conformational changes are induced when agonists bind to one or both VFDs
(5). Three main states of the VFD dimer exist: open-open, open-closed, and closed-closed
(Figure 1). The open-open (inactive) conformation is stabilized by antagonists; the open-closed
and closed-closed conformations are induced by the binding of ligand to one or two protomers.
The mutation of residues that prevent closure of the VFD can switch the pharmacology of
antagonists to agonists (6), indicating that the relative orientation of these domains is important
for receptor activation. For glutamate binding, several conserved residues span lobes 1 and 2
and make critical contacts with the glutamate molecule (1,7,8). In addition to binding
glutamate, VFDs also bind divalent cations such as magnesium and calcium, which can
potentiate or activate the receptor (3,9,10).

Cysteine-Rich Domains
Conformational changes induced by ligand binding are propagated from the VFD via cysteine-
rich domains (CRDs) to the hepatahelical domain (HD)–C-terminal tail. The CRD contains
nine critical cysteine residues, eight of which are linked by disulfide bridges (4). Crystallization
and mutagenesis studies have shown that the signal induced by ligand binding is transmitted
from the VFDs through the CRDs, in part because of a disulfide bridge formed by the ninth
CRD cysteine with a cysteine in lobe 2 of the VFD (4,11). Rondard et al. (11) recently showed
that mutation of Cys234 in the VFD of mGluR2 resulted in a receptor that could be expressed
at the surface, dimerize, and bind ligands appropriately but could not induce intracellular
signaling. The receptor was still functional, however, as shown by normal signal transduction
induced by an allosteric ligand that bound within the HD rather than the VFD. Further studies
identified the CRD-located Cys518 as the partner of Cys234, and similar results were shown
using homologous cysteines within mGluR5. These results suggest that a disulfide bridge
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linking the CRD and the VFD may be globally involved in propagation of signals induced by
orthosteric agonist binding to mGluRs.

Heptahelical Domain and Intracellular Loops
mGluR HDs share very low homology to family A GPCRs, and it has been proposed that the
second intracellular loop (i2) of mGluRs may play a role similar to that of the i3 loop in
rhodopsin-related receptors in regulating G protein coupling specificity (12,13). The i2 loop
is also a site for regulation by kinases, including G-protein-coupled receptor kinase 2 (14). The
majority of characterized allosteric modulators of mGluRs that positively and negatively affect
glutamate activity bind within the HD (reviewed in 15). Positive allosteric modulators (PAMs)
do not activate the receptor directly in most systems but potentiate the response of the receptor
to orthosteric agonists (Figure 2, left). Allosteric agonists bind to a site other than the orthosteric
site and directly activate the receptor. Negative allosteric modulators (NAMs) antagonize the
activity of agonists in a noncompetitive fashion by binding to a site other than the agonist, in
this case glutamate, binding site (Figure 2, right). Interestingly, truncation of the N-terminal
domain of mGluR5 results in a receptor that can be directly activated by PAMs (16). This
suggests that there is a conformational restraint induced by the VFD-CRD region that prevents
PAMs from acting as agonists until glutamate is bound.

C-Terminus
The C-termini of mGluRs are important regions for modulating G protein coupling.
Additionally, this region of several of the mGluRs is subject to alternative splicing, regulation
by phosphorylation, and modulatory protein-protein interactions. These issues are discussed
in more detail in the following sections.

SIGNAL TRANSDUCTION
mGluR Activation

mGluRs, and other family C GPCRs, are constitutive dimers (reviewed in 1). There is some
controversy as to whether binding of glutamate to only one protomer within the dimer is
sufficient to activate the entire complex. In the case of the GABAB receptor, which is a
heterodimer consisting of GABAB1 and GABAB2 subunits, ligand binding to GABAB1 is
sufficient to activate the receptor (17). This may not be the case for mGluRs, however. For
example, glutamate was unable to activate dimers formed by one wild-type and one mutant
form of mGluR1, suggesting that glutamate binding to one protomer is not sufficient for
activation (18). In contrast, Kniazeff et al. (19) showed that one glutamate molecule can activate
mGluR5 homodimers but that occupation of both VFDs with ligand is more effective. Suzuki
et al. showed that glutamate binding to one protomer exerts negative cooperativity for binding
to the second protomer (20), suggesting that glutamate binds to both dimers but that this binding
can induce complexities in receptor pharmacology.

General Signaling Profiles
In general, group I mGluRs couple to Gq /G11 and activate phospholipase Cβ , resulting in the
hydrolysis of phosphotinositides and generation of inositol 1,4,5-trisphosphate (IP3 ) and
diacyl- glycerol (Table 1). This classical pathway leads to calcium mobilization and activation
of protein kinase C (PKC). However, it is now recognized that these receptors can modulate
additional signaling pathways including other cascades downstream of Gq as well as pathways
stemming from Gi/o , Gs , and other molecules independent of G proteins (21). Depending on
the cell type or neuronal population, group I mGluRs can activate a range of downstream
effectors, includ- ing phospholipase D, protein kinase pathways such as casein kinase 1, cyclin-
dependent protein kinase 5, Jun kinase, components of the mitogen-activated protein kinase/
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extracellular receptor kinase (MAPK/ERK) pathway, and the mammalian target of rapamycin
(MTOR)/p70 S6 kinase pathway (22–25). The latter pathways, MAPK/ERK and MTOR/p70
S6 kinase, are thought to be particularly important for the regulation of synaptic plasticity by
group I mGluRs.

In contrast to group I mGluRs, group II and III mGluRs are coupled predominantly to Gi/o
proteins. Gi/o linked receptors are classically coupled to the inhibition of adenylyl cyclase and
directly regulate ion channels and other downstream signaling partners via liberation of Gβγ
subunits. As with group I mGluRs, it is becoming increasingly appreciated that group II and
group III mGluRs also couple to other signaling pathways, including activation of MAPK and
phosphatidyl inositol 3-kinase PI3 kinase pathways (26), providing further complexity
regarding the mechanisms by which these receptors can regulate synaptic transmission.

ALTERNATIVE SPLICING
Several mGluR subtypes undergo alternative splicing; in many cases, this generates different
C-terminal tails (Table 1). The gene for mGluR1a encodes four main distinct C-terminal splice
variants: mGluR1a, b, c, and d; of these, mGluR1a is the longest (reviewed in 21) (Table 1).
mGluR1e encodes an inactive form of mGluR1 that terminates before the transmembrane
domains (27). In rats, another splice variant termed mGluR1f encodes a protein with a sequence
identical to that of mGluR1b (28). mGluR5 exists as two main splice variants: mGluR5a and
mGluR5b (29,30). Whereas no splicing events have been reported for mGluR2, mGluR3 RNA
has recently been shown to undergo alternative splicing to yield at least four variants: full length
mGluR3, GRM3A2 (missing exon 2), GRM3A4 (missing exon 4), and GRM3A2A3 (missing
exons 2 and 3) (31); GRM3A4 appears to be the most abundant. This variant lacks the
transmembrane domain of the receptor but can be translated in cell lines and in vivo, suggesting
that it may function as a unique glutamate receptor. As with mGluR3, three mGluR6 splice
variants can be generated, and two of these terminate within the N-terminal domain [mGluR6b
and mGluR6c (32)]. Additionally, an isoform of mGluR8 in human brain, mGluR8c, is also
predicted to encode only the N-terminal region of the receptor (33). It has been postulated that
these short N-terminal proteins may be secreted and could serve as soluble receptors for
glutamate or as dominant negative receptor variants (32,33).

The C-terminal tails of mGluRs 7 and 8 also serve as key regions for alternative splicing. For
example, five C-terminal isoforms of mGluR7 (mGluR7a-e) have been identified, and two
distinct isoforms of mGluR8 have been cloned (mGluR8a and mGluR8b) that differ at their
C-termini (34,35). Although an mGluR4b splice variant has been reported (36), other accounts
have been unable to replicate this finding (37). Interestingly, there are isoforms of mGluR1
and 4 that lack approximately half of the amino terminus. These receptor variants, known as
taste mGluR1 and taste mGluR4, are located in taste buds (38–40). Owing to the lack of much
of the traditional glutamate-binding domain, glutamate exhibits lower potency when inducing
signaling via these truncated receptors compared with their full-length counterparts;
nevertheless, these isoforms have an emerging role in mediating the taste of monosodium
glutamate, or umami (reviewed in (41).

PROTEIN-PROTEIN INTERACTIONS
Multiple proteins interact directly with the C-terminal tails of each of the mGluR subtypes and
play important roles in regulating mGluR signaling. The most well-characterized are Homer
proteins, which contain PDZ 1 (post-synaptic density 95, discs large, zona occludens 1)
domains that interact with the last several amino acids, PPxxF, of mGluR1a, mGluR5a, and
mGluR5b (42–44). Distinct Homer gene and splice variants can differentially regulate
localization of mGluR1 and mGluR5 receptors in transfected cells and neurons (42,45). Homer
proteins also participate in the assembly of protein complexes at the C-terminal tails of mGluRs
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that are critical for receptor activity or that mediate functional responses downstream of
receptors. For example, the long isoform of protein PI3 kinase enhancer (PIKE-L) associates
with mGluR5 via Homer interactions, allowing agonist activity at mGluR5 to prevent apoptosis
when certain Homer isoforms are present (46).

Although protein-protein interactions between group II receptors and other proteins have not
been as extensively characterized as interactions occurring with group I mGluRs, calmodulin
and protein phosphatase 2C (PP2C) have recently been shown to interact with the C-terminus
of mGluR3 (47). Interestingly, binding of PP2C is inhibited by phosphorylation of serine 845
by protein kinase A (PKA), and PP2C can dephosphorylate this site (47). This suggests that
there is a dynamic regulation of phosphorylation/dephosphorylation of mGluR3 that is
regulated by binding of PKA/PP2C. Another protein, Ran binding protein in the microtubule-
organizing center (RanBPM), binds to group II and certain group III mGluR splice variants in
the retina and may localize these mGluRs to specific synaptic locations in neurons (48).
Isoforms of mGluR8 also interact with proteins in the retina called Band 4.1 proteins, and this
interaction facilitates cell surface expression of receptors and reduces their ability to inhibit
cAMP accumulation (49).

C-terminal tails of mGluR7 splice variants bind to a variety of interacting proteins such as the
PDZ domain clustering protein PICK1 (protein interacting with C kinase 1) (50–53). PICK1
also binds protein kinase Cα (PKCα), and the three proteins form a complex at active zones of
presynaptic terminals (52). The C-terminus of mGluR7a also interacts with Ca2+-calmodulin,
G protein βγ subunits, and the protein MacMARCKS (macrophage myristoylated alanine rich
C kinase substrate; MacM) (54), creating a complex interplay of signaling downstream of
mGluR7 (Figure 3). To add further complexity, it has been shown that PKC phosphorylation
of serine 862 inhibits the binding of Gβγ subunits and Ca2+-calmodulin. This complex signaling
system may provide a way in which mGluR7, which is highly localized to presynaptic active
zones, has extremely low affinity for glutamate and is predicted to only be activated during
periods of intense synaptic activity, can serve as an integrator of multiple presynaptic signaling
events including rises in intracellular calcium.

Recently, an elegant set of studies was performed in which the mGluR7a-PICK1 interaction
was disrupted by employing a viral vector in which the last nine amino acids of the C-terminus
of mGluR7 were used as bait to compete with full-length mGluR7 for the binding of PICK1
(55). Infection of neurons with this construct in vivo inhibited mGluR7-PICK1 interactions
and led to absence seizures and waveform changes specifically within thalamo-cortical brain
regions, areas thought to mediate absence epilepsy phenotypes. Furthermore, knock-in mice
in which the amino acids within the mGluR7 C-terminus that interact with PICK1 were mutated
(56) exhibited spontaneous absence seizures (55), further substantiating that the interaction of
mGluR7 and PICK1 is important for regulating mGluR7 signaling and that this protein-protein
interaction may underlie certain disease states.

PHARMACOLOGICAL PROFILES OF METABOTROPIC GLUTAMATE
RECEPTORS
Group I mGluRs

The first selective orthosteric agonist at group I mGluRs, (S)-3,5-dihydroxyphenylglycine
[(S)-3,5-DHPG], has similar potencies at mGluR1 and mGluR5 and remains the most selective
group I mGluR agonist. Most other group I mGluR agonists have activity at ionotropic
glutamate receptors (i.e., quisqualate) or other mGluR subtypes [(1S,3R)-ACPD] (57). A
related compound, 2-chloro-5-hydroxyphenylglycine (CHPG), is a selective orthosteric
agonist of mGluR5 but has limited utility because of its relatively weak potency and efficacy.
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Multiple orthosteric antagonists for group I mGluRs, including MCPG and related
phenylglycine derivatives, are of low potency but have been widely used in electrophysiology
and other studies. More recently, more potent and selective orthosteric antagonists of group I
mGluRs have emerged from further optimization of the 4-carboxyphenylglycine scaffold.
These include compounds with improved potencies such as LY367385, which is highly useful
as a selective antagonist of mGluR1 relative to mGluR5 (57).

A major advance in the identification of highly selective ligands for group I mGluRs came
with the discovery of CPCCOEt as the first highly selective mGluR1 NAM (58). CPCCOEt
acts in the HD and provided a major breakthrough in demonstrating the utility of targeting
allosteric sites for discovery of highly subtype-selective mGluR antagonists. A large number
of structurally distinct mGluR1-selective NAMs have become available, including Bay36–
7620 (59), JNJ16259685 (60), FTIDC (61), YM 298198 (62), and others (63). Many of these
compounds have nanomolar potencies and are useful for in vivo studies.

Varney et al. reported the discovery of two highly selective mGluR5 NAMs: SIB-1757 and
SIB-1893 (64). Subsequent structural analogs MPEP (65) and MTEP (66) provided increased
potency, selectivity, and brain penetration (67). Many structurally distinct and highly selective
mGluR5 NAMs have now been reported, including compounds that have unique properties
such as selective partial antagonists of mGluR5 (68). MTEP and MPEP, however, remain the
most commonly used and selective mGluR5 antagonists for probing the function of this
receptor in the CNS.

Highly selective PAMs have also been developed for each of these group I mGluR subtypes.
These compounds do not activate the mGluR directly but act at an allosteric site in the HD to
potentiate the response to glutamate, inducing robust leftward shifts of the glutamate
concentration response relationship. Ro 67–7476, Ro 67–4853, and VU71 are selective
mGluR1 PAMs (69,70). Additionally, multiple mGluR5-selective PAMs have been identified
including DFB, CPPHA, CDDPB, VU29, and ADX47273 (reviewed in 71). Whereas DFB
and CPPHA are not sufficiently potent or soluble in physiological buffers to make them useful
for studies of mGluR5 function, other mGluR5 PAMs are proving highly useful for assessment
of the functional roles of mGluR5 in the CNS (72,73).

Group II mGluRs
DCG-IV and (2R,4R)-APDC (abbreviations of all compounds, along with targets and mode of
pharmacology, are defined in Table 2) were the first selective group II mGluR agonists (57).
More recently, systemically active and highly selective agonists of group II mGluRs have been
developed, providing valuable insights into the in vitro and in vivo functions of these receptors.
The prototypical molecule in this series is LY354740, which has been followed by more recent
compounds, including LY379268, now a commonly used tool for studies of group II mGluR
function (57). These compounds are highly selective for group II mGluRs relative to other
mGluR subtypes but do not differentiate between mGluR2 and mGluR3. Recently, an analog
of LY354740 was reported that had mGluR2 agonist and mGluR3 antagonist activity (74).
Thus far, no orthosteric antagonists have been discovered that are entirely specific for group
II mGluRs among other family members, although LY341495 provides relatively high
selectivity with nanomolar potency as a group II mGluR antagonist with submicromolar to
micromolar potencies at all other mGluR subtypes (57).

Multiple selective PAMs of mGluR2 have now been identified, with the majority being
structurally related to either LY487379 or BINA, two prototypical mGluR2 PAMs (71,75).
Many of these compounds are highly selective for mGluR2 and do not potentiate responses to
activation of mGluR3 or any other mGluR subtype. In addition, group II mGluR NAMs have
been reported that block both mGluR2 and mGluR3 (76–78). As with group I mGluR allosteric
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modulators, mutation analysis and molecular pharmacology studies have revealed that these
compounds interact with the receptor in the HD (76,79,80).

Group III mGluRs
The prototypical orthosteric agonist of group III mGluRs is L-AP4, which is highly selective
for group III mGluRs relative to other mGluRs or ionotropic glutamate receptors (57). L-AP4
has submicromolar to low micromolar potencies at mGluRs 4, 6, and 8 but submillimolar to
millimolar potency at mGluR7 (57). Multiple related compounds have provided additional
group III mGluR agonists, but most have the same selectivity profile as L-AP4 (57,81,82).
(S)-3,4-DCPG has recently emerged as a novel agonist with 100-fold selectivity for mGluR8
over mGluR4 (83,84). Additionally, several L-AP4 analogs, including Z-cyclopentyl AP4,
have been shown to have some selectivity for mGluR4 compared with other group III mGluRs
(85–87). Several orthosteric antagonists have been reported to have high selectivity for group
III mGluRs (i.e., CPPG, MAP4, and others) (57). However, these compounds exhibit low
potencies for antagonizing group III mGluRs, and in some cases have no effect even at high
concentrations (88). In cell lines expressing the cloned rat receptors, the group II–preferring
antagonist LY341495 has been shown to be the most potent antagonist across group III
mGluRs, followed by CPPG (88).

As with group I and group II mGluRs, exciting progress has been made in identifying selective
allosteric modulators of group III mGluRs. PHCCC is an mGluR4 PAM (89,90) that has no
direct agonist activity at mGluR4 but increases the potency of glutamate at mGluR4. Two
mGluR5 NAMs, SIB-1893 and MPEP, also possess mGluR4 PAM activity (91), although these
compounds have relatively low potency and efficacy at mGluR4. Recently, a high-throughput
screening approach identified VU0155041 and VU0080421 as structurally distinct mGluR4
PAMs (92,93). VU0155041 exhibits significant improvements in aqueous solubility, potency,
and selectivity for mGluR4 relative to PHCCC. Additionally, in contrast to PHCCC,
VU155041 exhibits allosteric agonist activity at mGluR4 when assessed in vitro (92),
suggesting that these two ligands may induce potentiation of mGluR4 in mechanistically
distinct ways.

AMN082 has been reported as a selective allosteric agonist of mGluR7 (94). Whereas AMN082
is becoming widely used as a putative mGluR7 agonist in vivo, subsequent studies suggest that
the activity of this compound is complex. For instance, in contrast to L-AP4, AMN082 does
not induce calcium mobilization downstream of mGluR7 in a cell line coexpressing the receptor
with a promiscuous G protein (95), does not induce mGluR7-mediated activation of GIRK
potassium channels in human embryonic kidney (HEK) cells (87), and does not activate
mGluR7 at the Shaffer collateral-CA1 synapse (87). Thus, activity of AMN082 on mGluR7
may be context-specific and may only be observed in some systems, perhaps depending on the
specific signaling pathways engaged.

Similar complexities have been observed with recently discovered mGluR7 NAMs. MMPIP
is an mGluR7-selective NAM that inhibits L-AP4-induced calcium mobilization in cells
expressing mGluR7 and Gα15 (95,96). Interestingly, MMPIP does not appear to effectively
block coupling of mGluR7 to inhibition of cAMP accumulation, activation of G-protein-
activated inwardly rectifying potassium channels (GIRK) potassium channels, or L-AP4-
mediated inhibition of synaptic transmission at the Shaffer collateral-CA1 synapse (96). Thus,
as with AMN082, MMPIP may only have activity on mGluR7 in some cellular contexts or
may block specific signaling pathways while permitting signaling through others, an idea
recently coined permissive antagonism (97).
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FUNCTIONAL ROLES OF mGluRs
mGluRs are broadly distributed throughout the CNS and are specifically localized at discrete
synaptic and extrasynaptic sites in both neurons and glia in virtually every major brain region.
Activation of mGluRs results in diverse actions on neuronal excitability and synaptic
transmission by modulation of a variety of ion channels and other regulatory and signaling
proteins. Discussion of the physiological roles of mGluRs has been presented in detail in
multiple previous reviews (98–103). While broad generalizations should be avoided, there are
common roles for the major subgroups of mGluRs. Group I mGluRs are often localized
postsynaptically, and their activation often leads to cell depolarization and increases in
neuronal excitability (Table 1;Figure 4). Modulation of neuronal excitability results from
modulation of a number of ion channels and can range from robust excitation to more subtle
changes in patterns or frequency of cell firing or responses to excitatory inputs (98–101). In
contrast, group II and group III mGluRs are often localized on presynaptic terminals or
preterminal axons where they inhibit neurotransmitter release (Figure 4). This occurs at
excitatory (glutamatergic), inhibitory (GABAergic), and neuromodulatory (i.e., monoamines,
ACh, peptides) synapses.

Whereas these generalizations hold in many instances, there are many exceptions, and the
physiological roles of different mGluR subtypes are highly specific to the neuronal population
and even subcellular localization. For instance, activation of mGluR1 induces
hyperpolarization of some neuronal populations such as midbrain dopamine neurons (101).
Also, group I mGluRs can act presynaptically to either increase or decrease neurotransmitter
release. In some cases, this is mediated by postsynaptic group I mGluRs and release of
retrograde messengers, such as endocannabinoids. However, in others, it is likely mediated by
group I mGluRs that are local- ized presynaptically (100,102,103). Also, different group I
mGluR subtypes often have different physiological roles in a single neuronal population. For
instance, in CA1 pyramidal cells mGluR1 activation leads to somatic calcium transients and
neuronal depolarization, whereas mGluR5 activation inhibits IAHP (slow after
hyperpolarization potential) potassium currents and potentiates NMDA receptor currents
(104). Group I mGluRs also play important roles in induction of long-lasting forms of synaptic
plasticity, including long-term depression (LTD) and long-term potentiation (LTP) of
transmission at multiple glutamatergic synapses and induce long-lasting changes in neuronal
excitability (87,100,102,105).

All of the mGluRs have been genetically deleted in mice. Results of studies with these animals
have revealed potential roles for each of the receptors in cell function and in various disease
states. mGluR1 was the first mGluR to be knocked out in mice. These animals show normal
gross brain morphology but exhibit several phenotypes. For example, the high expression of
mGluR1 in the hippocampus points to a potential role in learning and memory. Indeed,
electrophysiological recordings from mGluR1 –/– mice show that these animals exhibit
abnormal induction of long- term potentiation and that this phenotype correlates with deficits
in context-specific learning (106). Recently, Gil-Sanz et al. recorded activity occurring at
hippocampal CA3-CA1 synapses in mice as the animals were learning an associative task
(107). These studies revealed that mGluR1 knockout mice were unable to learn this task and
showed significant impairments in the ability to induce LTP.

Additionally, these mice showed cerebellar gait problems; in contrast to the effects seen in the
hippocampus, mGluR1 deficiency leads to deficits in long-term depression in the cerebellum
(108). A recent extension of this initial work showed that mice deficient in mGluR1 showed
abnormal levels of regression of climbing fibers from cerebellar Purkinje cells (109). Normally,
these fibers regress during development such that one fiber maintains a strong excitatory input
to an individual Purkinje cell, and the remaining cells regress. The authors suggest a critical
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role for mGluR1 in maintaining proper levels of innervations of cerebellar neurons.
Interestingly, it has recently been shown that several spontaneous mutations giving rise to
spontaneous ataxia in mice genetically map to the mGluR1 locus (110). These mutations alter
the ligand-binding domain of mGluR1, suggesting that mGluR1 function is critical for this
ataxic phenotype.

mGluR5 knockout mice have been intensely studied in models of learning and memory,
addiction, motor regulation, and obesity. Most recently, mGluR5 has emerged as a novel player
in the treatment of fragile X syndrome based, in part, on studies with knockout animals
(discussed further in the following section). Both mGluR1 and mGluR5 knockout animals
show deficits in prepulse inhibition (111,112), which is a measure of sensorimotor gating that
is impaired in schizophrenic patients and can be reversed by antipsychotic agents. In models
of drug abuse and addiction, mGluR5 knockout mice do not self-administer cocaine or increase
their locomotor activity after cocaine administration (113). mGluR5 knockout mice weigh less
than littermate controls, eat less than control mice when challenged with a starvation and
refeeding paradigm, and are resistant to effects induced by a high-fat diet such as weight gain
and increases in plasma insulin and leptin levels (114).

The physiological roles of group II and group III mGluRs are also more complex than a simple
role in acute presynaptic regulation of neurotransmitter release. Group II mGluRs can be
localized postsynaptically where they can induce hyperpolarization (115), and mGluR4 and -8
have also both been shown to be expressed postynaptically in certain areas such as the
hippocampus and retina (116,117). Both group II and group III mGluRs play important roles
in induction of LTD (102,103). In addition to their roles in regulating neuronal excitability and
synaptic transmission, mGluRs play other important roles, including regulation of metabolism,
gene transcription, and multiple aspects of glial function and glial-neuronal communication.

Both mGluR2 and mGluR3 have been separately deleted from the mouse genome, and these
animals are critically important for several reasons. For example, the high conservation of
mGluR2 and mGluR3 makes it difficult to develop selective ligands that can be used to
differentiate the function of one receptor versus the other, although the emergence of more
selective allosteric modulators is helping to define the roles of these receptors. In terms of
functional correlates of learning and memory, mGluR2 knockout mice show normal regulation
of basal synaptic transmission and LTP at mossy fiber-CA3 synapses in the hippocampus, but
these animals are severely impaired in terms of LTD induced by low-frequency stimulation at
this synapse (118). In other studies using knockout mice combined with other pharmacological
tools, mGluR2 activation has been postulated to result in cognitive impairment, suggesting a
potential role for mGluR2 antagonists in cognitive disorders (119). mGluR2 has also been
implicated in addiction to drugs of abuse because mGluR2 knockout mice show increased
responsiveness to cocaine (120), and this receptor has also been shown to selectively mediate
the beneficial effects of group II agonists in rodent models of psychosis (121,122).

A potentially important role for mGluR3 in astrocytes is emerging from studies with knockout
animals. For example, mixed cultures of cortical neurons and astrocytes from wild-type,
mGluR2, and mGluR3 knockout mice have shown that an agonist of group II receptors,
LY379268, is neuroprotective when cultures are challenged with NMDA (123). This
neuroprotection is lost, however, if mGluR3 is missing from atrocytes in the culture. In these
same experiments, the authors found that activation of mGluR2 might actually be harmful in
terms of excitotoxicity (123).

Each of the group III mGluRs has also been genetically deleted in mice, and these animals
show several interesting phenotypes. mGluR6 exhibits the most restricted expression of all of
the mGluRs and is found primarily in retinal ON bipolar cells (124). The mGluR6 activation
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cascade has been shown to involve Go protein subunits (125). When mGluR6 is deleted from
mice, bipolar cells from homozygous mutants show deficits in ON responses to light, which
appears to be manifested by a delayed and decreased ON response to light stimulation (126,
127).

mGluR4 is very highly expressed in the cerebellum, with lower levels of expression in the
hippocampus, basal ganglia, and olfactory bulb (reviewed in 128 and references therein).
mGluR4 is predominantly expressed presynaptically (37,129). As mentioned above, a splice
variant of mGluR4, termed taste mGluR4, is located in taste buds, and the longer, brain version
of mGluR4 is also expressed in this location(130). mGluR4 protein is also expressed
peripherally in tissues such as pancreatic islets (131). Consistent with the high expression of
mGluR4 in cerebellum, mice lacking this receptor show impairments in cerebellar synaptic
plasticity and in learning complicated motor tasks (132). These animals also show impaired
abilities in spatial memory performance (133). mGluR4 has also been shown to modulate
GABA(A) receptor-mediated seizure activity (134), and mGluR4–/– mice also lack motor
stimulatory effects induced by ethanol (135).

mGluR7 exhibits a wide distribution throughout the entire brain. mGluR7 has an extremely
low affinity for glutamate and is highly localized to the active zones of synapses (136,137). It
has been proposed that mGluR7 serves a low pass filter role in neurotransmission, only
becoming active when glutamate levels are very high and thus serving as a brake for
overstimulation by glutamate. In support of this hypothesis, knockout of mGluR7 results in
animals with an epileptic phenotype (138). mGluR7–/– mice also show abnormalities in
learning tasks (139–144), and mGluR7 function appears to be particularly important in
mediating amygdala-dependent learning (139). Additionally, these mice have revealed roles
for mGluR7 in CNS disorders such as anxiety and depression (144–146).

mGluR8 is expressed at lower levels than mGluR4 and mGluR7 but is widely distributed in
the brain. As for mGluR4, mGluR8 has been localized predominantly presynaptically but has
been identified in some postsynaptic locations and in the periphery (reviewed in 128). The
mGluR8 gene is exceptionally large, spanning approximately 1000 kilobases of genomic DNA
in a region that maps to the same location as mutations causing two human disorders, Smith-
Lemli-Optiz syndrome and retinitis pigmentosa (147). mGluR8 knockout mice show enhanced
anxiety and weight gain compared to controls (148–150), suggesting that mGluR8 activators
may be of benefit in anxiety disorders. Additionally, expression and function of mGluR8 in
peripheral locations such as the gut and pancreas suggests that this receptor is involved in
gastrointestinal motility and insulin secretion in vivo (151,152).

THERAPEUTIC POTENTIAL OF mGluRs
The wide diversity and heterogeneous distribution of mGluR subtypes provides an opportunity
for selectively targeting individual mGluR subtypes involved in only one or a limited number
of CNS functions for the development of novel treatment strategies for psychiatric and
neurological disorders. A large body of preclinical studies now suggests that ligands for specific
mGluR subtypes have potential for the treatment of multiple CNS disorders, including
depression (153), anxiety disorders (154), schizophrenia (71,155), pain syndromes (156),
epilepsy (157), Alzheimer’s disease (158), and Parkinson’s disease (159), among others. Data
from clinical studies with mGluR ligands are beginning to emerge and are providing strong
proof of concept for clinical efficacy of some of these compounds. Whereas each of these
therapeutic areas has been extensively reviewed, several exciting advances are especially
noteworthy and are discussed here.
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Allosteric Modulators of mGluR5
A major focus of many efforts to discover novel mGluR5 ligands has been the discovery of
mGluR5 antagonists for the treatment of anxiety disorders. This receptor increases neuronal
excitability and NMDA receptor currents in brain regions thought to be involved in anxiety,
such as the amygdala (160), leading to the hypothesis that an antagonist of mGluR5 might
dampen the hyperactivity of glutamatergic transmission believed to underlie anxiety disorders.
Consistent with this, MPEP and related mGluR5 NAMs have robust efficacy in several animal
models of anxiolytic activity (154), and the clinically validated anxiolytic agent fenobam
(161) acts as a selective mGluR5 NAM (162). Animal studies suggest that selective mGluR5
NAMs also have potential utility in the treatment of fragile X syndrome (FXS) (163–165) as
well as chronic pain, addictive disorders, depression, gastroesophogeal reflux (GERD),
migraine, and some neurodegenerative disorders (166). Exciting new clinical studies have now
established the efficacy of mGluR5 NAMs in treatment of GERD (167) and migraine (168).

Potential for mGluR5 NAMs for the treatment of FXS also has a strong clinical basis because
the primary mutation giving rise to the disorder leads to increased mGluR5 signaling (163,
169). FXS is the most common inherited form of mental retardation and a leading cause of
autism (170). FXS is caused by genetic defects in the gene encoding the fragile X mental
retardation protein (FMRP), a translational repressor that regulates local protein translation in
neuronal dendrites; these proteins promote LTD. In mouse models of FXS, the group I mGluR-
dependent LTD is excessive, suggesting that antagonists of mGluR1 or mGluR5 might
represent novel mechanisms for FXS treatment (163). Consistent with this, studies examining
the phenotypes of FXS mice interbred with mGluR5 knockout animals have revealed that many
of the phenotypes of FXS can be rescued when mGluR5 levels are reduced (164). Early work
with the mGluR5 NAM MPEP has also validated the use of mGluR5 antagonists as a possible
treatment for FXS; MPEP administration can suppress several phenotypes, such as seizures
and anxiety, present in FXS mice (165). Intense efforts are now underway to develop highly
selective mGluR5 antagonists for clinical trials in FXS patients.

In addition to the utility of mGluR5 NAMs, mGluR5 PAMs may have potential utility in the
treatment of schizophrenia and other disorders that involve impaired cognitive function (71,
155). Multiple mGluR5 PAMs have been identified and can potentiate mGluR5-mediated
electrophysiological responses in midbrain and forebrain circuits, including potentiation of
NMDA receptor currents (68,171,172), a response that is thought to be relevant for
schizophrenia and cognitive function. Furthermore, two mGluR5 PAMs, CDPPB and
ADX47273, have robust antipsychotic-like effects and improve cognitive function in animal
models (72,73,173). Although lacking the clinical validation of mGluR5 NAMs, these exciting
findings suggest that that mGluR5 PAMs have potential utility as novel antipsychotic and
cognition-enhancing agents.

Agonists and PAMs of Group II mGluRs
Preclinical and clinical studies provide strong evidence that agonists of group II mGluRs have
potential as a novel approach for the treatment of anxiety disorders and schizophrenia. Selective
group II mGluR agonists such as LY354740 and related compounds have robust anxiolytic
(154,174) and antipsychotic-like effects in animal models (175), and clinical studies reveal
that group II mGluR agonists have efficacy in treatment of both anxiety and schizophrenia
(71,154). Group II mGluR agonists also have robust efficacy in human models of panic attacks
and fear-potentiated startle and improve symptoms of generalized anxiety disorder (154,176).
Furthermore, a selective group II mGluR agonist improves positive and negative symptoms in
patients suffering from schizophrenia (177). These clinical findings represent a major
breakthrough and could ultimately lead to the introduction of group II mGluR activators as a
fundamentally novel approach to the treatment of anxiety disorders and schizophrenia.
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Interestingly, the effects of mGluR2 and -3 agonists in animal models of anxiety disorders and
schizophrenia can be observed with highly selective mGluR2 PAMs (reviewed in 71). These
studies raise the possibility that selective mGluR2 PAMs may also provide a novel approach
to the treatment of these disorders.

Recently, a direct interaction between mGluR2 and the serotonin 5-HT2A receptor has been
proposed as providing a mechanism for antipsychotic effects of mGluR2 agonists (178). 5-
HT2A receptors are activated by hallucinogens such as lysergic acid diethylamide (LSD) and
inhibited by atypical antipsychotics such as clozapine. Activation of 5-HT2A receptors induces
a dramatic increase in spontaneous excitatory postsynaptic potentials at thalamo-cortical
synapses in the medial prefrontal cortex (179), and increased spontaneous activity at this
synapse has been postulated to participate in some aspects of schizophrenia (155,179).
Interestingly, it has been shown that 5HT2A receptors can heterodimerize with mGluR2
(178), and activation of mGluR2 dramatically reduces serotonin-stimulated increases in
spontaneous excitatory postysynaptic potentials at thalamocortical synapses (179,180). Based
on this, it is possible that heterodimerization and functional interactions between 5HT2A
receptors and mGluR2 may be important for the antipsychotic activity of group II mGluR
agonists. Additionally, this raises the possibility that more examples of heterodimers between
mGluRs and other GPCRs exist, providing further complexity to mGluR biology.

In addition to schizophrenia and anxiety, ligands at group II mGluRs have also been suggested
as therapeutic directions for other CNS disorders, including mGluR2 and mGluR3 agonists
and mGluR2 PAMs for treatment of pain, addictive disorders, depression, and epilepsy
(reviewed in 181). Whereas less is known about the potential utility of mGluR3-selective
compounds, agonists of these receptors appear to be neuroprotective, and this effect has been
attributed to mGluR3 with the use of knockout animals (123). The future development of more
selective compounds that differentiate between mGluR2 and mGluR3 is anticipated to advance
the understanding of the individual roles of these receptors in various disease states.

mGluR4 PAMs
Another mGluR subtype, mGluR4, has emerged as an exciting new target for the treatment of
Parkinson’s disease (PD) (159). Activation of mGluR4 reduces GABAergic transmission at
the striato-pallidal synapse (182–184), a synapse that is overactive after the loss of dopamine
neurons in patients suffering from PD (185). Agonists of group III mGluRs have robust efficacy
in rodent models of PD (182,186–190). Furthermore, a highly selective mGluR4 PAM,
PHCCC, potentiates mGluR4 responses at the striato-pallidal synapse (90), and
intracerebroventricular injection of PHCCC as well as several other mGluR4 PAMs have
antiparkinsonian effects in rodent models (90,92,191,192). In addition to providing
symptomatic relief for PD patients, a number of studies suggest that mGluR4 activation could
also provide a neuroprotective effect and slow disease progression by reducing excessive
excitatory drive onto dopamine neurons and potential excitotoxicity, which may contribute to
loss of these neurons (193,194).

Group III mGluRs also have potential for the treatment of other CNS disorders. For example,
mGluR4 knockout animals appear to be resistant to several of the features of alcohol addiction
(135), and mGluR8 levels are regulated by cocaine and amphetamine administration,
suggesting roles for group III receptors in drug abuse (195,196). mGluR7 appears to have a
role in mediating seizures based on studies with knockout mice (138) as well as mouse models
examining interacting proteins (55). Additionally, emerging studies suggest roles of group III
mGluRs in depression and anxiety (153), neuroblastoma (197), and neuronal differentiation
(198).
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SUMMARY AND CONCLUSIONS
Our understanding of the mGluR field has grown exponentially within the past decade. Novel
insights into the mechanism of activation of receptors, detailed studies regarding interacting
proteins that modulate receptor function, and the identification of many new ligands available
to probe receptor biology have all contributed to the growth of this area from both basic science
and therapeutic perspectives. Advances in selective compound discovery, spanning orthosteric
and allosteric binding sites, have promoted the development of highly selective tools and, in
some cases, compounds that can be tested in the clinical setting. It is anticipated that the fast-
paced development in the mGluR field will continue to enhance our understanding of CNS
function and will soon open additional possibilities for treatments of neurological and
psychiatric disorders.
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Figure 1.
Schematic diagram of the mGluR dimer in different activity states. mGluR dimers contain two
large extracellular domains called the Venus flytrap domains (VFDs), which bind glutamate
and other orthosteric ligands. The cysteine-rich domain links the VFDs to seven
transmembrane-spanning domains; the C-terminus faces intracellularly and is often subject to
alternative splicing to generate different C-terminal protein tails. The open-open state (left) is
the inactive state and can be stabilized by antagonists. Either one or two VFDs can then bind
glutamate, resulting in active receptor conformations.
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Figure 2.
Simple schematic representation of the positive allosteric regulator (PAM) and negative
allosteric regulator (NAM) activity using an in vitro functional assay. (a) Monitoring of a
functional assay such as calcium mobilization shows that increasing PAM concentrations
progressively shift the glutamate concentration response for an mGluR to the left. Depending
on the assay used, PAMs can also cause an increase in the maximal agonist response. (b)
Increasing NAM concentrations progressively shift the magnitude of the concentration
response curve and produce little change in potency, indicating a noncompetitive form of
antagonism.
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Figure 3.
Protein-protein interactions mediating the activity of mGluR7. It is proposed that in the resting
state, mGluR7 binds PICK1, MacMARCKs (MacM), and Gβγ subunits; this binding prevents
Gβγ subunits from inhibiting voltage-sensitive calcium channels (VSCCs; blue). Rises in
calcium induce displacement of MacMARCKs and Gβγ subunits by calcium-calmodulin
(Ca2+-CaM), promoting Gβγ subunit inhibition of VSCCs. Adapted from (52,54).
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Figure 4.
Schematic representation of mGluRs at the synapse. In general, group I mGluRs (green) are
localized postsynaptically, and group II (blue) and III (red) receptors are localized in
presynaptic locations, although exceptions occur. In presynaptic locations, mGluRs 2, 3, 4, and
8 are generally found in extrasynaptic locations, and mGluR7 is highly localized to the active
zone (136). Group II and III receptors inhibit release of glutamate (left, yellow circles) or GABA
(right, red circles), whereas group I receptors promote release when present. At the
postsynaptic terminal, the glutamate gated ion channels N-methyl-D-asparate (NMDA), α-
amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) and kainate respond to
glutamate with increases in intracellular sodium or calcium, promoting cell excitability. Group
I mGluRs signal via Gq proteins to increase intracellular calcium; additionally, mGluR5 and
NMDA receptors are closely linked signaling partners reciprocally regulated by
phosphorylation (black circle) (71). Postsynaptic mGluR2/3 and GABAB1/2 receptors couple
to cAMP inhibition. GABAA chloride channels (pink) modulate intracellular chloride.
Expression of mGluR3 and mGluR5 on glia is now emerging as another key site for mGluR
regulation of synaptic activity, although the signaling pathways and consequences of receptor
activation on these cells are not presently well understood.
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Table 1

Key features of mGluRs

Group Receptor/splice
variants

CNS expression Synaptic localization Signaling pathways of group

Group I mGluR1
a,b,c,d,e,f
Taste mGluR1

Widespread in neurons
Taste buds

Predominantly
 postsynaptic

Phospholipase C stimulation
Stimulation of adenylyl cyclase
(some systems)
MAP kinase phosphorylation

mGluR5
a,b

Widespread in neurons,
 astrocytes

Group II mGluR2 Widespread in neurons Presynaptic and
 postynaptic

Inhibition of adenylyl cylcase
Activation of K+ channels
Inhibition of Ca++ channelsmGluR3

GRM3A2
GRM3A4
GRM3A2A3

Widespread in neurons,
 astrocytes

Group III mGluR4 Widespread in neurons,
 High in cerebellum

Predominantly
 presynaptic

Inhibition of adenylyl cylcase
Activation of K+ channels
Inhibition of Ca++ channelsTaste mGluR4

Taste buds

mGluR6
a,b,c

Retina Postsynaptic in
 ON-bipolar retinal cells

Stimulation of cGMP
 phosphodiesterase (mGluR6)

mGluR7
a,b,c,d,e

Widespread in neurons Active zone of presynaptic
 terminals

mGluR8
a,b,c

Lower and more restricted
 expression than
 mGluR4/7

Predominantly
 presynaptic
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Table 2

Names, abbreviations, and actions of the drugs mentioned in text

Nonselective Ligands

Compound Chemical name Target Activity

L-glutamate (S )-1-Aminopropane-1,3-dicarboxylic acid Group I/Group
II>Group III Orthosteric agonist

(1S,3R)-ACPD (1S,3R)-1-Aminocyclopentane-1,3-dicarboxylic acid Group I/II>Group III Orthosteric agonist

LY341495 (2S)-2-Amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid Group II>Group
III>Group I Orthosteric antagonist

Group I preferring ligands

Compound Chemical name Target Activity

(S)-3,5-DHPG (S)-3,5-dihydroxyphenylglycine mGluR1/5 Orthosteric agonist

L-quisqualate (L)-(+)-a-Amino-3,5-dioxo-1,2,4-oxadiazolidine-2-propanoic acid mGluR1/5/glutamatergic ion
 channels

Orthosteric agonist

CHPG (RS)-2-chloro-5-hydroxyphenylglycine mGluR5 Orthosteric agonist

(S)-MCPG (S)-a-Methyl-4-carboxyphenylglycine Group I/II Orthosteric antagonist

LY367385 (S)-(+)-a-Amino-4-carboxy-2-methylbenzeneacetic acid mGluR1 Orthosteric antagonist

CPCCOEt 7-(Hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester mGluR1 NAM

Bay 36–7620 (3aS,6aS)-Hexahydro-5-methylene-6a-(2-naphthalenylmethy l)-
 1H-cyclopenta[c]furan-1-one

mGluR1 NAM

JNJ16259685 3-4-Dihydro-2H-pyrano[2,3-b]quinolin-7-yl-(cis-4-methoxycyclohexyl)-methanone mGluR1 NAM

FTIDC 4-[1-(2-fluoropyridin-3-yl)-5-methyl-1H-1,2,
 3-triazol-4-yl]-N-isopropyl-N-methyl-3,6-dihydropyridine-1(2H)-carboxamide

mGluR1 NAM

YM 298198 6-Amino-N-cyclohexyl-N,3-dimethylthiazolo[3,2-a]benzimi dazole-2-carboxamide mGluR1 NAM

SIB-1757 6-Methyl-2-(phenylazo)-3-pyridinol mGluR5 NAM

SIB-1893 2-Methyl-6-(2-phenylethenyl)pyridine mGluR5/mGluR4 NAM/PAM

MPEP 2-Methyl-6-(phenylethynyl)pyridine mGluR5/mGluR4 NAM/PAM

MTEP 3-[(2-Methyl-1,3-thiazol-4-yl)ethynyl]pyridine mGluR5 NAM

Ro 67–7476 (S)-2-(4-fluorophenyl)-1-(toluene-4-sulfonyl)pyrrolidine mGluR1 PAM

Ro 67–4853 Butyl (9H-xanthene-9-carbonyl)carbamate mGluR1 PAM

VU71 4-nitro-N-(1,4-diphenyl-1H-pyrazol-5-yl)benzamide mGluR1 PAM

DFB [(3-Fluorophenyl)methylene]hydrazone-3-fluorobenzaldehyde mGluR5 PAM

CPPHA N-{4-chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl}-
 2-hydroxybenzamide

mGluR5 PAM

CDDPB 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide mGluR5 PAM

VU29 4-nitro-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide mGluR5 PAM

ADX47273 [S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-
 methanone]

mGluR5 PAM

Group II preferring ligands

Compound Chemical name Target Activity

DCG-IV (2S,2/ R,3/ R)-2-(2/ ,3/ )-Dicarboxycyclopropyl)glycine Group II Orthosteric agonist

(2R,4R)-APDC (2R,4R)-4-Aminopyrrolidine-2,4-dicarboxylate Group II Orthosteric agonist

Annu Rev Pharmacol Toxicol. Author manuscript; available in PMC 2010 July 15.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Niswender and Conn Page 30

Group II preferring ligands

Compound Chemical name Target Activity

LY354740 (1S,2S,5R,6S)-2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid Group II Orthosteric agonist

LY379268 (1R,4R,5S,6R)-4-Amino-2-oxabicyclo[3.1.0]hexane-4,6-dicarboxylic acid Group II Orthosteric agonist

LY487379 2,2,2-Trifluoro-N-[4-(2-methoxyphenoxy)phenyl]-N-
 (3-pyridinylmethyl)ethanesulfonamide

mGluR2 PAM

BINA Biphenyl-indanone A mGluR2 PAM

Group III preferring ligands

Compound Chemical name Target Activity

L-AP4 L-(+)-2-Amino-4-phosphonobutyric acid mGluR4,6,8>mGluR7 Orthosteric agonist

(S)-3,4-DCPG (S)-3,4-Dicarboxyphenylglycine mGluR8>mGluR4/6 Orthosteric agonist

Z-cyclopentyl AP4 cis-( ± )-1-Amino-3-phosphonocyclopentane carboxylic acid mGluR4>other Group
III receptors

Orthosteric agonist

CPPG (RS)-a-Cyclopropyl-4-phosphonophenylglycine Group III Orthosteric antagonist

MAP4 (S)-2-Amino-2-methyl-4-phosphonobutanoic acid Group III Orthosteric antagonist

PHCCC N-Phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide mGluR4 PAM

VU0155041 cis-2-[[(3,5-Dichlorophenyl)amino]carbonyl] cyclohexanecarboxylic acid mGluR4 PAM

AMN082 N,N/ -Bis(diphenylmethyl)-1,2-ethanediamine mGluR7 Allosteric agonist

MMPIP 6-(4-Methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo
 [4,5-c]pyridin-4(5H)-one hydrochloride

mGluR7 NAM
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