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Abstract
We report the first high-resolution structural data for the β/γ-peptide 13-helix (i,i+3 C=O···H-N H-
bonds), a secondary structure that is formed by oligomers with a 1:1 alternation of β- and γ-amino
acid residues. Our characterization includes both crystallophaphic and 2D NMR data. Previous
studies suggested that β/γ-peptides constructed from conformationally flexible residues adopt a
different helical secondary structure in solution. Our design features preorganized β- and γ-residues,
which strongly promote 13-helical folding by the 1:1β:γ backbone.

Identification of new types of foldamers with strong and discrete secondary structural
propensities is a subject of ongoing research.1 These studies enhance our understanding of the
relationship between local conformational preferences and molecular shape. In addition, new
folding patterns can be valuable for specific applications.2,3 Foldamers that contain more than
one type of subunit, i.e., oligomers that have heterogeneous backbones, have been a subject of
extensive recent interest.1e Most examples involve combination of α-amino acid residues with
other types of subunits, including those derived from β-4 or γ-amino acids5 or other building
blocks.6 Heterogeneous backbones that do not include α-amino acid residues have received
relatively limited attention,5e,7 perhaps because α-amino acids are far more available than are
other building blocks. Backbones with alternating β- and γ-amino acid residues (β/γ-peptides)
are of particular interest because a β/γ-dipeptide has the same number of atoms between the
N- and C-termini as an α-tripeptide.5b An extended β/γ-peptide can in principle form a helix
containing 13-membered ring backbone H-bonds (C=O(i)--H-N(i+3)) that are analogous to
the 13-membered ring backbone H-bonds characteristic of the α-helix (C=O(i)--H-N(i+4)).
However, Sharma, Kunwar et al.5e have recently reported that flexible β/γ-peptides adopt a
different type of helical conformation in solution. Here we show that β/γ-peptides containing
appropriately preorganized subunits do indeed adopt the 13-helix in solution and the solid state.

The β/γ-peptide 13-helix is predicted by Hofmann et al.5d to have g+,g+ or g−,g− local
conformations about the Cα−Cβ (ζ) and Cβ−Cγ (θ) bonds in the γ-residues and a Cα−Cβ torsion
angle of ~90° in the β-residues. Based on these predictions and available data for the
conformational propensities of constrained β-and γ-residues in other contexts, we concluded
that combining (R,R,R) γ-residue 1 (Figure 1), which has recently become available,5i,8 with
(R,R)-trans-2-aminocyclopentanecarboxylic acid (ACPC, 2) should favor formation of the left-
handed β/γ-peptide 13-helix (the right-handed helix should be favored by residues with S
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configurations). This hypothesis was tested by preparation and analysis of tetramer 3, pentamer
4 and hexamer 5 (Figure 1).

The crystal structure of β/γ-peptide 3 contains two molecules in the asymmetric unit; the two
conformations are very similar (Figure 2). Each independent molecule forms one 13-atom H-
bonded ring, involving the NH group of the second ACPC residue and the carbonyl of the N-
terminal Boc group. The other possible 13-atom ring H-bond does not form in either case [N--
O distance~ 4.9Å]; instead, each molecule contains an 8-atom ring H-bond involving the
carbonyl of the first γ-residue and the NH group of second γ-residue. Despite this deviation
from the 13-helical H-bonding pattern, the backbone torsion angles for the β- and γ-residues
in 3 generally fall in ranges predicted by Hofmann et al.5d for the β/γ-peptide 13-helix.9

Pentamer 4, containing β- and γ-residues with S configurations, adopts the right-handed 13-
helix in the crystalline state. All three of the possible C=O(i)--H-N(i+3) H-bonds are formed
(Figure 2). Table 1 compares backbone torsion angles for the β- and γ-residues in pentamer
4 with analogous values from the computational work of Hofmann et al.5d and from the NMR
analysis of flexible β/γ-peptides in organic solvent by Sharma, Kunwar et al.5e The
preorganized γ-residues in 4 display g+,g+ local conformations about the Cα−Cβ (ζ) and
Cβ−Cγ (θ) bonds, and ψ and φ near −120°, with a somewhat wider distribution for the latter
torsion angle. These values are consistent with the predictions for the 13-helical conformation
from Hofmann et al.5d In contrast, the helical conformations deduced via NMR for flexible β/
γ-peptides feature opposite signs for the ζ and θ torsion angles (g−,g+), and opposite signs for
the ψ and φ torsion angles. The helical conformation deduced for these flexible β/γ-peptides
has a distinctive H-bonding pattern with two types of interaction: C=Oγ (i)--H-Nγ (i−1) and
C=Oγ (i)--H-Nγ (i+3).

Hexamer 5 did not produce high-quality crystals, but 2D 1H NMR analysis in pyridine-d5
solution indicated that the 13-helix is significantly populated under these conditions. Among
the unambiguous NOEs involving backbone protons, six strong NOEs were observed between
protons from residues that are not adjacent in the sequence: CβH(1)--NH(3), CβH(1)--CαH(3),
CγH(2)--NH(4), CβH(3)--NH(5), CβH(3)--CαH(5), and CγH(4)--NH(6) (Figure 3). These
NOEs are consistent with intramolecular proton-proton distances in the crystal structure of
pentamer 4: CβH(1)--NH(3) = 3.5 Å, CβH(1)--CαH(3) = 2.7 Å, CγH(2)--NH(4) = 2.8 Å, CβH
(3)--NH(5) = 2.3 Å and CβH(3)--CαH(5) = 2.2 Å. Thus, the three NOE patterns observed for
5, CβH(i)--NH(i+2) and CβH(i)--CαH(i+2) for β-residues and CγH(i)--NH(i+2) for γ-residues,
appear to be general indicators of β/γ-peptide 13-helical secondary structure.

The β/γ-peptide helix we have documented is interesting because of its relationship to the α-
helix formed by pure α-residue backbones. Both helices contain 13-atom ring H-bonds.
Detailed comparison of the two helices reveals further similarities: both have a rise-per-turn
of 5.4 Å, and the radii are similar (2.5 vs. 2.3 Å).9 These parameters suggest that the β/γ-peptide
13-helix may be a promising scaffold for functional mimicry of natural α-helices.2b,3

Our results show that appropriately preorganized residues promote the formation of the 13-
helical conformation in short β/γ-peptides. This secondary structure was anticipated (along
with alternative helices) in computational studies,5c,d and hints of 13-helical propensity can be
found in the local conformations observed in crystal structures for isolated β-γ segments,5b,g

but the only previous analysis of β/γ-peptide oligomer folding indicated the formation of a
different helical conformation, containing both 11- and 13-membered ring H-bonds.5e

Conformationally constrained β-amino acid residues have been shown to induce novel
secondary structures,1a,e,10 and the present studies highlight the prospect that constrained γ-
amino acid residues will be similarly useful in controlling molecular shape.
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Figure 1.
Structures of β/γ peptides 3, 4, 5 (arrows indicate H-bonds in the crystal structures of 3 and
4)
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Figure 2.
Crystal structures of 3 (left) and 4 (right): (top) views perpendicular to helical axis; (bottom)
views along the helical axis.

Guo et al. Page 6

J Am Chem Soc. Author manuscript; available in PMC 2011 June 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Characteristic NOEs patterns observed for the 1:1 β/γ-peptide hexamer 5 in pyridine-d5.
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