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Abstract
In many applications, covariates possess a grouping structure that can be incorporated into the
analysis to select important groups as well as important members of those groups. This work
focuses on the incorporation of grouping structure into penalized regression. We investigate the
previously proposed group lasso and group bridge penalties as well as a novel method, group
MCP, introducing a framework and conducting simulation studies that shed light on the behavior
of these methods. To fit these models, we use the idea of a locally approximated coordinate
descent to develop algorithms which are fast and stable even when the number of features is much
larger than the sample size. Finally, these methods are applied to a genetic association study of
age-related macular degeneration.
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1. INTRODUCTION
In this paper we consider regression problems in which the covariates can be grouped; our
interest is in selecting important groups as well as identifying important members of these
groups. We refer to this as bi-level selection. Here, we propose a new framework for
thinking about grouped penalization, develop fast algorithms to fit group-penalized
regression models, and apply these models to a genetic association study.

Variable selection is an important issue in regression analysis. Typically, measurements are
obtained for a large number of potential predictors in order to avoid missing a potentially
important link between a predictive factor and the outcome. However, to reduce variability
and obtain a more interpretable model, we are often interested in selecting a smaller number
of important variables.

There is a large body of available literature on the topic of variable selection, but the
majority of this work is focused on the selection of individual variables. In many regression
problems, however, predictors are not distinct but arise from common underlying factors.
Categorical factors are often represented by a group of indicator functions; likewise for
continuous factors and basis functions. Groups of measurements may be taken in the hopes
of capturing unobservable latent variables or of measuring different aspects of complex
entities. Some specific examples include measurements of gene expression, which can be
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grouped by pathway, and genetic markers, which can be grouped by the gene or haplotype
that they belong to. Methods for individual variable selection may perform inefficiently in
these settings by ignoring the information present in the grouping structure, or even give rise
to models that are not sensible.

A common approach to variable selection is to identify the best subset of variables
according to some criterion. However, this approach is unstable (Breiman, 1996) and
becomes computationally infeasible as the number of variables grows to even moderate
sizes. For these reasons, penalized approaches to regression have gained popularity in recent
years.

In addition to penalties designed for individual variable selection such as the lasso
(Tibshirani, 1996), bridge (Frank and Friedman, 1993), smoothly clipped absolute deviation
penalty (SCAD, Fan and Li (2001)) and minimax concave penalty (MCP, Zhang (2007)),
several methods have been developed that accommodate selection at the group level. Yuan
and Lin (2006) proposed the group lasso, in which the penalty function is comprised of L2
norms of the groups. This has the effect of encouraging sparsity at the group level while
applying ridge regression-like shrinkage within a group. Meier et al. (2008) extend this idea
to logistic regression, and Zhao et al. (2006) extend the idea to overlapping and hierarchical
groups. These approaches perform at group level but not at an individual level variable
selection. The group bridge (Huang et al., 2007), in contrast, applies a bridge penalty to the
L1 norm of the groups, performing bi-level selection by encouraging sparse solutions at the
group and individual variable levels.

Group lasso and group bridge are not without their shortcomings, however. Group lasso is
incapable of variable selection at the individual level and heavily shrinks large covariates.
Meanwhile, group bridge suffers from a number of practical difficulties due to the fact that
the bridge penalty is not everywhere differentiable. Furthermore, both methods make
inflexible grouping assumptions that can cause the methods to suffer when groups are
misspecified or sparsely represented.

Given the wide variety of problems that can give rise to grouped covariates, we feel that
there is a need for a larger array of tools that perform bi-level selection. This paper takes two
large steps towards that aim: by proposing a general framework through which the behavior
of group penalties can be better understood, and by developing an efficient set of algorithms
that can be used to fit models with grouped penalties.

The algorithms that have been proposed thus far to fit models with grouped penalties are
either (a) inefficient for models with large numbers of predictors, or (b) limited to linear
regression models, models in which the members of a group are orthogonal to each other, or
both. We combine the ideas of coordinate descent optimization and local approximation of
penalty functions to introduce a new, general algorithm for fitting models with grouped
penalties. The resulting algorithm is stable and very fast even when the number of variables
is much larger than the sample size. We apply the algorithm to models with grouped
penalties, but note that the idea may be applied to other penalized regression problems in
which the penalties are complicated but not necessarily grouped. We provide these
algorithms as an R package, grpreg (available at http://cran.r-project.org).

In Section 2, we describe our proposed group penalization framework, show how group
lasso and group bridge fit into this framework, and use the framework to motivate a new
method for bi-level selection which we call group MCP. In Section 3, we discuss our
computational approach to fitting group penalized models based on coordinate descent
algorithms. Group lasso, group bridge, and group MCP are then compared via simulation
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studies in Section 4, applied to a genetic association study in Section 5, and discussed in
Section 6.

2. SPECIFICATION OF MODELS WITH GROUPED PENALTIES

Suppose we have data , where yi is the response variable and xi is a p-dimensional
predictor containing groups that the analyst wishes to select among. We denote xi as being
composed of an unpenalized intercept and J groups xij, with Kj denoting the size of group j.
Covariates that do not belong to a group may be thought of as a group of one. The problem
of interest involves estimating a sparse vector of coefficients β using a loss function L which
quantifies the discrepancy between an observation yi and a linear predictor

, where βj represents the coefficients belonging to the jth group.

To ensure that the penalty is applied equally, covariates are standardized prior to fitting such

that  and . We assume without loss of generality that the
covariates are standardized in this way during the model fitting process and then
transformed back to the original scale once all models have been fit.

2.1 Grouped penalization framework for squared error loss
The effect of a penalty upon the solution is determined by its gradient. The derivatives of
several common penalties are plotted in Fig. 1. The left panel depicts penalties of the form
λβγ. As the plot illustrates, the ridge regression (γ = 2) rate of penalization increases with β,
which has the effect of applying little to no penalization near 0 while strongly discouraging
large coefficients. Meanwhile, the lasso (γ = 1) rate of penalization is constant. Finally,
setting γ = 1/2 results in a rate of penalization that is very high near 0 but steadily diminishes
as β grows larger.

The solution to the group lasso is defined to be the value β that minimizes the objective
function

(1)

where ||·|| is the L2 norm. The group bridge estimate minimizes

(2)

where ||·||1 is the L1 norm. Throughout this paper, we take γ = 1/2 for group bridge.

To greater understand the action of these penalties and to illuminate the development of new
ones, we can consider grouped penalties to have a form in which an outer penalty fO is
applied to a sum of inner penalties fi. The penalty applied to a group of covariates is

(3)
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and the partial derivative with respect to the jkth covariate is

(4)

Note that both group lasso and group bridge fit into this framework with an outer bridge
penalty; the former possesses an inner ridge penalty, while the latter has an inner lasso
penalty. We have intentionally left the above framework general in the sense of not rigidly
specifying the role of constants or tuning parameters such as λ, γ, or . A more specific
framework would obscure the main point as well as create the potential of excluding useful
forms.

From (4), we can understand group penalization to be applying a rate of penalization to a
covariate that consists of two terms: the first carrying information regarding the group; the
second carrying information about the individual covariate. Variables can enter the model
either by having a strong individual signal or by being a member of a group with a strong
collective signal. Conversely, a variable with a strong individual signal can be excluded
from a model through its association with a preponderance of weak group members.

However, one must be careful not to let it oversimplify the situation. Casually combining
penalties will not necessarily lead to reasonable results. For example, using the lasso as both
an inner and outer penalty is equivalent to the conventional lasso, and makes no use of the
grouping structure. Furthermore, properties may emerge from the combination that are more
than the sum of their parts. The group lasso, for instance, possesses a convex penalty despite
the fact that its outer bridge penalty is nonconvex. Nevertheless, the framework described
above is a helpful lens through which to view the problem of group penalization which
emphasizes the dominant feature of the method: the gradient of the penalty and how it varies
over the feature space.

2.2 Group MCP
Zhang (2007) proposes a nonconvex penalty called MCP which possesses attractive
theoretical properties. MCP and its derivative are defined on [0, ∞) by

(5)

for λ ≥ 0. The rationale behind the penalty can again be understood by considering its
derivative: MCP begins by applying the same rate of penalization as the lasso, but
continuously relaxes that penalization until, when θ > aλ, the rate of penalization drops to 0.
MCP is motivated by and rather similar to SCAD. The connections between MCP and
SCAD are explored in detail by Zhang (2007); we will briefly discuss the connections from
a grouped penalty perspective in Section 6. The derivatives of MCP and SCAD are plotted
in Fig. 1.

The goal of both penalties is to eliminate the unimportant variables from the model while
leaving the important variables unpenalized. This would be equivalent to fitting an
unpenalized model in which the truly nonzero variables are known in advance (the so-called
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“oracle” model). Both MCP and SCAD accomplish this asymptotically and are said to have
the oracle property (Fan and Li, 2001; Zhang, 2007).

From Fig. 1, we can observe that λ is the regularization parameter that determines the
magnitude of penalization and a is a tuning parameter that affects the range over which the
penalty is applied. When a is small, the region in which MCP is not constant is small; when
a is large, MCP penalty has a broader influence. Generally speaking, small values of a are
best at retaining the unbiasedness of the MCP penalty for large coefficients, but they also
run the risk of creating objective functions with problematic nonconvexity that are difficult
to optimize and yield solutions that are discontinuous with respect to λ. It is therefore best to
choose an a that is big enough to avoid problems but not too big. For linear regression
models, when the response and covariates are standardized to have standard deviation 1, we
recommend using a = 3. In our simulations, we have found this works well. It should be
noted, however, that a is not scale-invariant with respect to y. If the standard deviation of the
response were dramatically larger or smaller, a = 3 will not work well. As practical advice,
we recommend always standardizing the variables and using a = 3. For further discussion
regarding the choice of a, see Zhang (2007).

The group MCP estimate minimizes

(6)

where b, the tuning parameter of the outer penalty, is chosen to be Kjaλ/2 in order to ensure
that the group level penalty attains its maximum if and only if each of its components are at
their maximum. In other words, the derivative of the outer penalty reaches 0 if and only if |
βjk| ≥ aλ ∀ ∈ {1, . . . , Kj}. The relationship between group lasso, group bridge, and group
MCP is illustrated for a two-covariate group in Fig. 2.

One can see from Fig. 2 that the group MCP penalty is capped at both the individual
covariate and group levels, while the group lasso and group bridge penalties are not. This
illustrates the two rationales of group MCP: (1) to avoid overshrinkage by allowing
covariates to grow large, and (2) to allow groups to remain sparse internally. Group bridge
allows the presence of a single large predictor to continually lower the entry threshold of the
other variables in its group. This property, whereby a single strong predictor drags others
into the model, prevents group bridge from achieving consistency for the selection of
individual variables. Group MCP, on the other hand, limits the amount of signal that a single
predictor can contribute towards the reduction of the penalty applied to the other members
of the group.

2.3 Other loss functions
In generalized linear models (McCullagh and Nelder, 1999), the negative log-likelihood is
used as the loss function. The usual approach to model fitting is to make a quadratic
approximation to the loss function using the current estimate of the linear predictors η(m),
and update coefficients using an iteratively reweighted least squares algorithm:
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where v and W are the first and second derivatives of L(η) with respect to η, evaluated at
η(m). Now, letting z = η(m)-W−1v and dropping terms that are constant with respect to β, we
can complete the square to obtain

(7)

For generalized linear models, W is a diagonal matrix, and the quadratic approximation
renders the loss function equivalent to squared error loss in which the observations are
weighted by w = diag(W). For the sake of clarity, we will present the algorithms in Section
3 primarily from the perspective of squared error loss, but mention the steps in the algorithm
that are altered by iterative reweighting.

For group MCP penalties applied to logistic regression loss functions, we use the value a =
30 throughout. In logistic regression, the response variable is always on the same scale;
consequently, a = 30 seems to be an appropriate value for all of the logistic regression
problems we have encountered, both simulated and real.

3. LOCAL COORDINATE DESCENT
The approach that we describe for minimizing Q(β) relies on obtaining a first-order Taylor
series approximation of the penalty. This approach requires continuous differentiability.
Here, we treat penalties as functions of |β|; from this perspective, penalties like the lasso are
continuously differentiable, with domain [0, ∞).

Coordinate descent algorithms optimize a target function with respect to a single parameter
at a time, iteratively cycling through all parameters until convergence is reached. The idea is
simple but efficient—each pass over the parameters requires only O(np) operations. Since
the number of iterations is typically much smaller than p, the solution is reached faster even
than the np2 operations required to solve a linear regression problem by QR decomposition.
Furthermore, since the computational burden increases only linearly with p, coordinate
descent algorithms can be applied to very high-dimensional problems. Only recently has the
power of coordinate descent algorithms for optimizing penalized regression problems been
fully appreciated; see Friedman et al. (2007) and Wu and Lange (2008) for additional history
and a fuller treatment.

Coordinate descent algorithms are ideal for problems like the lasso where deriving the
solution is simple in one dimension. The group penalties discussed in this paper do not have
this feature; however, one may approximate these penalties to obtain a locally accurate
representation that does. The idea of obtaining approximations to penalties in order to
simplify optimization of penalized likelihoods is not new. Fan and Li (2001) propose a local
quadratic approximation (LQA), while Zou and Li (2008) describe a local linear
approximation (LLA). The LQA and LLA algorithms can also be used to fit these models,
but as we will see in Section 4, the LCD algorithm is much more efficient.

Letting β represent the current estimate of β, the overall structure of the local group
coordinate descent (LCD) algorithm is as follows:

1. Choose an initial estimate 

2. Approximate loss function, if necessary

3. Update covariates:
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a. Update 

b.
For j ∈ {1, . . . , J}, update 

4. Repeat steps 2 and 3 until convergence

First, let us consider the updating of the intercept in step (3)(a). The partial residual for

updating  is , where the −0 subscript refers to what remains of X or  after

the 0th column or element has been removed, respectively. The updated value of  is
therefore the simple linear regression solution:

An equivalent but computationally more efficient way of updating  is to take advantage of

the current residuals  (Friedman et al., 2008). Here, we note that ;
thus, our update becomes

(8)

Updating  in this way costs only 2n operations: n operations to calculate  and n
operations to update . In contrast, obtaining  requires n(p - 1) operations. Meanwhile, for
iteratively reweighted optimization, the updating step is

(9)

requiring 3n operations.

Updating  in step (3)(b) depends on the penalty. We discuss the updating step separately
for group MCP, group bridge, and group lasso.

3.1 Group MCP
Group MCP has the most straightforward updating step. We begin by reviewing the
univariate solution to the lasso. When the penalty being applied to a single parameter is λ|β|,
the solution to the lasso (Tibshirani, 1996) is

where S(z, c) is the soft-thresholding operator (Donoho and Johnstone, 1994) defined for
positive c by

Breheny and Huang Page 7

Stat Interface. Author manuscript; available in PMC 2010 July 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Group MCP does not have a similarly convenient form for updating individual parameters.

However, by taking the first order Taylor series approximation about , the penalty as a

function of βjk is approximately proportional to , where

(10)

and f, f’ were defined in equation (5). Thus, in the local region where the penalty is well-
approximated by a linear function, step (3)(b) consists of simple updating steps based on the

soft-thresholding cutoff : for k ∈ {1, . . . , Kj},

(11)

or, when weights are present,

(12)

3.2 Group bridge
The local coordinate descent algorithm for group bridge is rather similar to that for group
MCP, only with

(13)

The difficulty posed by group bridge is that, because the bridge penalty is not everywhere

differentiable,  is undefined at  for γ < 1. This is not a problem caused by the
algorithm; 0 presents a fundamental issue with the penalty itself. For any positive value of λ,
0 is a local minimum of the group bridge penalty. Clearly, this complicates optimization.

Our approach is to begin with an initial value away from 0 and, if  reaches 0 at any point

during the iteration, to restrain  at 0 thereafter. Obviously, this incurs the potential
drawback of dropping groups that would prove to be nonzero when the solution converges.

There are alternatives to this approach, such as adding a small constant to  in (13).
However, doing so would prevent the algorithm from taking advantage of sparsity and
greatly reduce computational efficiency for large, sparse problems. In comparing the
algorithm we propose with this alternative, we did not observe a large enough difference in
the quality of the fitted models to justify the increase in computational burden.
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3.3 Group lasso
Updating is more complicated in the group lasso because of its sparsity properties: group

members go to 0 all at once or not at all. Thus, we must update  at step (3)(b) in two steps:

first, check whether  and second, if , update  for k ∈ {1, . . . , Kj}.

The first step is performed by noting that  if and only if

(14)

The logic behind this condition is that if βj cannot move in any direction away from 0
without increasing the penalty more than the movement improves the fit, then 0 is a local
minimum; since the group lasso penalty is convex, 0 is also the unique global minimum. The
conditions defined by (14) are in fact the Karush-Kuhn-Tucker conditions for this problem,
and were first pointed out by Yuan and Lin (2006).

If this condition does not hold, then we can set  and move on. Otherwise, we once again
make a local approximation to the penalty and update the members of group j. However,
instead of approximating the penalty as a function of |βjk|, for group lasso we can obtain a

better approximation by considering the penalty as a function of . Now, the penalty

applied to βjk may be approximated by , where

(15)

This approach yields a shrinkage updating step instead of a soft-thresholding step:

(16)

or, for weighted optimization,

(17)

Note that, like (13), (15) is undefined at 0. Unlike group bridge, however, this is merely a
minor algorithmic inconvenience. The penalty is differentiable; its partial derivatives simply
have a different form at 0. This issue can be avoided by adding a small positive quantity δ to
the denominator in equation (15).

It should be noted that Meier et al. (2008) have also proposed a coordinate descent algorithm
for fitting group lasso models, and several of the ideas above are similar to ones they
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present. However, Meier et al. (2008) consider only the special case in which groups are
orthonormal, whereas we present a more general algorithm.

3.4 Convergence of the LCD algorithm
Let β(m) denote the value of the coefficients at a given step of the algorithm, and let β(m+1)

be the value after the next updating step has occurred. With the exception of the sparsity
check during the first stage of the group lasso algorithm, β(m+1) and β(m) will differ by, at
most, one element.

Proposition 1—At every step of the algorithms described in Sections 3.1–3.3,

(18)

Thus, all three algorithms decrease the objective function at every step and therefore are
guaranteed to converge.

This result follows from the general theory of MM (majorization-minimization) algorithms
(Lange et al., 2000). A function h is said to majorize a function g if h(x) ≥ g(x) ∀x and there
exists a point x* such that h(x*) = g(x*). All that remains to prove the proposition is to show
that the approximations referred to by (10), (13), and (15) majorize their respective penalty
functions. This is straightforward for group bridge and group MCP, as both penalties are
concave on [0, ∞). They are therefore majorized by any tangent line. For group lasso, one
can demonstrate majorization through inspection of second derivatives by observing that h”
(βjk) - g”(βjk) ≥ 0 on (0, ∞).

The LCD algorithm is therefore stable and guaranteed to converge, although not necessarily
to the global minimum of the objective function. The group bridge and group MCP penalty
functions are nonconvex; group bridge always contains local minima and group MCP may
have them as well. Furthermore, coordinate descent algorithms for penalized squared error
loss functions are guaranteed to converge to minima only when the penalties are separable.
Group penalties are separable between groups, but not within them. Convergence to a
minimum cannot be guaranteed, then, for the one-at-a-time updates that we propose here.
Nevertheless, we have not observed this to be a significant problem in practice. Comparing
the convergence of the LCD algorithms to LQA/LLA algorithms (which update all
parameters simultaneously) for the same data, the algorithms rarely converge to different
values, and when they do, the differences are quite small.

3.5 Pathwise optimization and initial values
The local coordinate descent algorithm requires an initial value β(0). Usually, we are
interested in obtaining β ̂ not just for a single value of λ, but for a range of values and then
applying some criterion to choose an optimal λ.

Usually, the range of λ values one is interested in extends from a maximum value λmax for
which all penalized coefficients are 0 down to λ = 0 or to a minimum value λmin at which the
model becomes excessively large or ceases to be identifiable. The estimated coefficients
vary continuously with λ and produce a path of solutions regularized by λ. Example
coefficient paths for group lasso, group bridge, and group MCP over a fine grid of λ values
are presented in Fig. 3; inspecting the path of solutions produced by a penalized regression
method is often a very good way to gain insight into the methodology.
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Figure 3 reveals much about the behavior of grouped penalties. In particular, we note the
following. (1) Even though each of the nonzero coefficients is of the same magnitude, the
coefficients from the more significant solid group enter the model much more easily than the
lone nonzero coefficient from the dashed group. (2) This phenomenon is less pronounced for
group MCP, as it makes weaker assumptions about grouping. (3) For group MCP at λ ≈ 0.4,
all of the variables with true zero coefficients have been eliminated while the remaining
coefficients are unpenalized. In this region, the group MCP approach is performing as well
as the oracle model. (4) In general, the coefficient paths for these group penalization
methods are continuous, but are not piecewise linear, unlike those for the lasso.

Because the paths are continuous, a reasonable approach to choosing initial values is to start
at one extreme of the path and use the estimate β ̂ from the previous value of λ as the initial
value for the next value of λ.

For group MCP and group lasso (and in general for any penalty function that is
differentiable at 0), we can easily determine λmax, the smallest value for which all penalized
coefficients are 0. From (14), it is clear that

where the current residuals and likelihood approximation (if necessary) are obtained using a
regression fit to the intercept-only model. For group MCP,

For these methods, we can start at λmax using β(0) = 0 and proceed towards λmin.

This approach does not work for group bridge, however, because  must be initialized away
from 0. We must therefore start at λmin and proceed toward λmax (i.e., work in the opposite
direction as group MCP and group lasso). For the initial value at λmin, we suggest using the
unpenalized univariate regression coefficients.

For all the numerical results in this paper, we follow the approach of Friedman et al. (2008)
and compute solutions along a grid of 100 λ values that are equally spaced on the log scale.

3.6 Regularization parameter selection
Once a regularization path has been fit, we are typically interested in selecting an optimal
point along the path. Three widely used criteria are:

(19)

(20)

and
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(21)

where dfλ is the effective number of parameters. The optimal value of λ is chosen to be the
one that minimizes the criterion.

We propose the following estimator for dfλ. Let β ̂ denote the fitted value of βjk and 

denote the unpenalized fit to the partial residual: . Then

(22)

This estimator is attractive for a number of reasons. For linear fitting methods such that ŷ =
Sy, there are several justifications for choosing d̂f = trace(S) (Hastie et al., 2001). Ridge
regression is an example of a linear fitting method in which S = X(X’X + λI)−1X’. For the
special case of an orthonormal design, (22) is equal to the trace of S. The estimator also has
an intuitive justification, in that it makes a smooth transition from an unpenalized coefficient
with df = 1 to a coefficient that has been eliminated with df = 0. Another attractive feature is
convenience: the estimator is obtained as a byproduct of the coordinate descent algorithm
with no additional calculation.

Yuan and Lin (2006) propose an estimator for the effective number of parameters of the
group lasso, but it involves the ordinary least squares estimator, which is undefined in high
dimensions, so we do not consider it here. Another common approach is to set d̂f equal to
the number of nonzero elements of β ̂ (Efron et al., 2004; Zou et al., 2007). However, this has
two drawbacks. One is that the estimator (and, hence, the model selection criterion) is not a
continuous function of λ. The other is that this approach is inappropriate for methods that
perform a heavy amount of coefficient shrinkage like the group lasso. We examine the
performance of this estimator and estimator (22) using simulation studies in Section 4.

3.7 Adding an L2 penalty
Zou and Hastie (2005) have suggested that incorporating an additional, small L2 penalty can
improve the performance of penalized regression methods, especially when the number of
predictors is larger than the number of observations or when large correlation exists between
the predictors. This does not pose a complication to the above algorithms. When minimizing

the previously defined objective functions plus , the updating step (11) becomes

for group MCP and group bridge and the updating step (16) becomes
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for group lasso. We use λ2 = .001λ for the numerical results in Sections 4 and 5.

4. SIMULATION STUDIES
4.1 Efficiency

We will examine the efficiency of the LCD algorithm by measuring the average time to fit
the entire path of solutions for group lasso, group bridge, and group MCP, as well as the
lasso as a benchmark. Besides LCD, we consider the following algorithms: lars (Efron et al.,
2004), the most widely used algorithm for fitting lasso paths as of this writing; glmnet
(Friedman et al., 2008), a very efficient coordinate descent algorithm for computing lasso
paths; glmpath (Park and Hastie, 2007), an approach to fitting lasso paths for GLMs not
based on coordinate descent; and the LQA (Fan and Li, 2001) and LLA (Zou and Li, 2008)
algorithms mentioned in Section 3.

We will consider three situations:

• Linear regression with n = 500, p = 200

• Logistic regression with n = 1000, p = 200

• Linear regression with n = 500, p = 2000

For the data sets with n > p, paths were computed down to λ = 0; for the p > n data sets,
paths were computed down to 5% of λmax.

The results of these efficiency trials are presented in Tables 1, 2, and 3. All entries are the
average time in number of seconds, averaged over 100 randomly generated data sets.

These timings dramatically verify the efficiency of coordinate descent algorithms for high-
dimensional penalized regression. The LCD algorithm is not only much faster than LLA/
LQA for small p, its computational burden increases in a manner that is roughly linear with
p as opposed to the polynomial increase suffered by LLA/LQA. Indeed, the LCD algorithms
are, generally speaking, even faster than the LARS algorithm, a somewhat remarkable fact
considering that the latter takes explicit advantage of special piecewise linearity properties
of linear regression lasso paths.

Among the grouped penalties, group lasso is the slowest due to its two-step updating
procedure. Group bridge was timed here to be the fastest, although this is potentially
misleading. Group bridge saves time by not updating groups that reach 0 with no guarantee
of converging to the true minimum. This is a weakness of the method, not a strength,
although it does result in shorter computing times.

4.2 Regularization parameter selection
In this section, we will conduct a simulation study to compare the performance of our
proposed estimator of the number of effective model parameters versus using the number of
nonzero covariates as an estimator. In this section and the next, we study penalized linear
regression and use BIC as the model selection criterion; simulations we have conducted for
logistic regression and using AIC and GCV all illustrate the same basic trends.
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We simulated data from the generating model

(23)

with 100 observations and 10 groups, each of which containing 10 members (n = p = 100).
We set β4 = · · · = β10 = 0, and randomly generated the elements of β1 through β3 in such a
way as to have the models span signal-to-noise (SNR) ratios over the range (0.5, 3) in a
roughly uniform manner. Data sets were generated independently 500 times. Model error
was chosen as the outcome; lowess curves were fit to the results and plotted in Fig. 4. We
define model error and SNR as follows:

and

As Fig. 4 illustrates, the performance of estimator (22) is similar to (perhaps slightly better
than) that of counting the nonzero elements of β for group bridge and group MCP, but much
better for the more ridge-like penalty group lasso. We consider this sufficient justification
for the use of (22) throughout the remainder of this article; however, further study of this
approach to estimating model degrees of freedom is warranted.

4.3 Performance
In this section, we will compare the performance of the group lasso, group bridge, and group
MCP methods across a variety of independently generated data sets. Once again, data are
generated from (23) with n = p = 100, J = 10. However, the sparsity of the underlying
models varied over a range of true nonzero groups J0 ∈ 2, 3, 4, 5 and over a range of
nonzero members within a group K0 ∈ 2, 3, . . . , 10. Furthermore, the magnitude of the
coefficients was determined according to

where a was chosen such that the SNR of the model was approximately one (actual range
from 0.84 to 1.45). This specification ensures that each model covers a spectrum of groups
ranging from those with with small effects to those with large effects, and that each group
contains large and small contributors.

We note the average number of groups and coefficients selected by the approaches for two
representative cases in Table 4, and plot model errors in Fig. 5.

The most striking difference between the methods is the extent to which the form of the
penalty enforces grouping: group lasso forces complete grouping, group MCP encourages
grouping to a rather slight extent, and group bridge is somewhere in between. This is seen
most clearly by observing the average number of variables selected per group for the cases
listed in Table 4. For group lasso, of course, this number is always 10. For group MCP,
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approximately two or three variables were selected per group, while group bridge selected
four or five per group. We will address the underlying causes of this in the discussion.

Because group MCP makes rather cautious assumptions about grouping, the method
performs well when there are a larger number of rather sparse groups – situations in which
the underlying model exhibits less grouping. However, it suffers in comparison to the other
methods when the nonzero coefficients are tightly clustered into groups as group MCP tends
to select too many groups and make insufficient use of the grouping information. Group
lasso exhibits the opposite trend in its performance, overshrinking individual coefficients
when groups are sparsely populated.

5. GENETIC ASSOCIATION STUDY
Genetic association studies are an increasingly important tool for detecting links between
genetic markers and diseases. The example that we will consider here involves data from a
case-control study of age-related macular degeneration consisting of 400 cases and 400
controls. We confine our analysis to 30 genes that previous biological studies have
suggested may be related to the disease. These genes contained 532 markers with acceptably
low rates of missing data (< 20% no call rate) and high minor allele frequency (> 10%).

We analyzed the data with the group lasso, group bridge, and group MCP methods by
considering markers to be grouped by the gene they belong to. Logistic regression models
were fit assuming an additive effect for all markers (homozygous dominant = 2,
heterozygous = 1, homozygous recessive = 0). Missing (“no call”) data was imputed from
the nearest non-missing marker for that subject. In addition to the group penalization
methods, we analyzed these data using a traditional one-at-a-time approach, in which
univariate logistic regression models were fit and marker effects tested using a p < .05
cutoff. For group lasso and group bridge, using BIC to select λ resulted in the selection of
the intercept-only model. Thus, more liberal model selection criteria were used for those
methods: AIC for group lasso and GCV for group bridge.

To assess the performance of these methods, we computed 10-fold cross-validation error
rates for the methods. For the one-at-a-time approach, predictions were made from an un-
penalized logistic regression model fit to the training data using all the markers selected by
individual testing. The results are presented in Table 5.

Table 5 strongly suggests the benefits of using group penalized models as opposed to one-at-
a-time approaches: the three group penalization methods achieve lower test error rates and
do so while selecting fewer groups. Although the error rates of ≈ .42 indicate that these 30
genes likely do not include SNPs that exert an overwhelming effect on an individual’s
chances of developing age-related macular degeneration, the fact that they are well below
0.5 demonstrates that these genes do contain SNPs related to the disease. In particular, bi-
level selection methods seem to perform quite well for these data. Group bridge identifies 3
promising genes out of 30 candidates, and group MCP achieves a similarly low test error
rate while identifying 10 promising SNPs out of 532.

There are a number of important practical issues that arise in genetic association studies that
are beyond the scope of this paper to address. Nearby genetic markers are linked; indeed,
this is the impetus for addressing these problems using grouped penalization methods.
However, genetic linkage also results in highly correlated predictors. We have observed that
the choice of λ2 for group bridge and group MCP has a noticeable impact on the SNPs
selected. Furthermore, most genetic association studies are conducted on much larger scales
than we have indicated here: moving from hundreds of SNPs to hundreds of thousands of
SNPs presents a new challenge to both the computation and the assigning of group labels.
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The handling of missing data, the search for interactions, and the incorporation of non-
genetic covariates are also important issues. The fact that signals from markers are known to
be grouped in genetic association studies is a strong motivation for the further development
of bi-level selection methods.

6. DISCUSSION
High-dimensional problems in which p exceeds n are increasingly common as automated
data collection and storage becomes cheaper to obtain and easier to implement. For these
problems, traditional likelihood methods break down and the need to introduce additional
structure into the problem arises. Regression problems with grouped covariates are an
important class of these types of problems. Furthermore, because we are often interested not
only in selecting groups but in identifying the important members of groups, methods that
can perform bi-level selection are needed.

This paper introduces a framework that sheds light on the behavior of grouped penalization
methods, describes a fast, stable algorithm for implementing group penalty approaches to
this problem, and applies them to an important application: genetic association studies. In
addition, we describe a novel type of group penalty, group MCP, in which the effects of
group and individual variable penalization are localized. The behavior of this penalty raises
interesting questions about the nature of group penalization.

The derivatives of the bridge, SCAD, and MCP penalties were plotted in Fig. 1. Suppose
there are 10 covariates in a group, one of which is large (i.e., at least aλ for MCP); what
happens to the rate of penalization applied to the rest? For MCP, the group penalty drops to
9/10 of the initial rate. This produces rather weak grouping effects. By comparison, the
derivative of the bridge penalty drops rapidly upon the introduction of any nonzero
elements; this produces the stronger grouping effects seen in group bridge. The SCAD
penalty, by contrast, might not drop at all; indeed, our work with a group SCAD method
reveals that it displays even less grouping than group MCP.

The bridge penalty is attractive from the perspective of performing bi-level selection while
still producing grouped solutions, but it introduces complications into the optimization
process. The efficiency of the LCD algorithm provides a powerful incentive to work with
penalties that are continuously differentiable; this was indeed one of the motivating factors
behind the development of group MCP. To develop continuously differentiable penalties
that can perform bi-level variable selection while producing strongly grouped solutions is an
important next step. That these methods remain robust even when grouping is less
pronounced is also desirable. This seemingly requires penalties whose derivatives look like
that of the bridge penalty, but that do not suffer from a singularity at 0; to the knowledge of
the authors, these tools have not yet been developed or studied.

Another area for the further development of these methods is their extension to cases in
which groups may be overlapping. This case would arise, for instance, in gene expression
studies where genes may be grouped by pathways that are not mutually exclusive.

Nevertheless, group lasso, group bridge, and group MCP can all be valuable tools depending
on the application. Furthermore, using the LCD algorithm, these grouped penalization
methods can be conveniently applied to large data sets that, not long ago, would have been
deemed infeasible to analyze using penalized regression.
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Figure 1. Derivatives of penalty functions referenced in this paper. Left: Ridge (gray line), lasso
(dashed line) and bridge (γ = 1/2, solid black line) penalties. Right: MCP (solid black line) and
SCAD (dashed line) penalties
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Figure 2. Penalties applied to a two-covariate group by the group lasso, group bridge, and group
MCP methods. Note that where the penalty comes to a point or edge, there is the possibility that
the solution will take on a sparse value; all penalties come to a point at 0, encouraging group-
level sparsity, but only group bridge and group MCP allow for bi-level selection
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Figure 3. Coefficient paths from 0 to λmax for group lasso, group bridge, and group MCP for a
simulated data set featuring two groups, each with three covariates. In the underlying model, the
solid line group has two covariates equal to 1 and the other equal to 0; the dotted line group has
two coefficients equal to 0 and the other equal to −1
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Figure 4. Model error for each method after selecting λ with BIC using one of two estimators for
the effective number of model parameters. Solid line: Estimator (22). Dashed line: Using number
of nonzero elements of β
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Figure 5. Model error simulation results. In each panel, the number of nonzero groups is
indicated in the strip at the top. The x-axis represents the number of nonzero elements per
group. At each tick mark, 500 data sets were generated. A lowess curve has been fit to the points
and plotted
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Table 1
Linear regression with n = 500, p = 200

Penalty Algorithm Average Time (s)

Lasso glmnet .03

Lasso lars .43

Group lasso LQA 3.54

Group bridge LLA 7.02

Group MCP LLA 5.13

Group lasso LCD .63

Group bridge LCD .11

Group MCP LCD .10
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Table 2
Logistic regression with n = 1000, p = 200

Penalty Algorithm Average Time (s)

Lasso glmnet 0.24

Lasso glmpath 13.77

Group lasso LQA 21.78

Group bridge LLA 29.77

Group MCP LLA 15.08

Group lasso LCD 1.80

Group bridge LCD 0.67

Group MCP LCD 0.47

Stat Interface. Author manuscript; available in PMC 2010 July 15.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Breheny and Huang Page 25

Table 3
Linear regression with n = 500, p = 2000. For the LQA and LLA algorithms, only one
replication was performed; this is noted with an asterisk

Penalty Algorithm Average Time (s)

Lasso glmnet 1.60

Lasso lars 22.69

Group lasso LQA 1900.49*

Group bridge LLA 1985.19*

Group MCP LLA 1823.32*

Group lasso LCD 23.00

Group bridge LCD 1.46

Group MCP LCD 3.47
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Table 5
Application of the three group penalization methods and a one-at-a-time method to a
genetic association data set. The first three columns refer to the analysis of the actual data
set; the last is the average test error over the 10 cross-validations

# of
groups

# of
covariates

Error
rate

Test
error rate

One-at-a-time 19 49 .312 .441

Group lasso 10 190 .321 .429

Group bridge 3 19 .342 .421

Group MCP 7 10 .364 .418

Stat Interface. Author manuscript; available in PMC 2010 July 15.


