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In the race between DNA sequencing throughput and computer speed, sequencing is 

winning by a mile. Sequencing throughput has recently been improving at a rate of about 5-

fold per year1, while computer performance generally follows “Moore's Law,” doubling 

only every 18 or 24 months2. As this gap widens, the question of how to design higher-

throughput analysis pipelines becomes critical. If analysis throughput fails to turn the corner, 

research projects will continually stall until analyses catch up.

How do we close the gap? One option is to invent algorithms that make better use of a fixed 

amount of computing power. Unfortunately, algorithmic breakthroughs of this kind, like 

scientific breakthroughs, are difficult to plan or foresee. A more practical option is to 

concentrate on developing methods that make better use of multiple computers and 

processers. When many computer processors work together in parallel, a software program 

can often finish in significantly less time.

While parallel computing has existed for decades in various forms3–5, a recent manifestation 

called “cloud computing” holds particular promise. Cloud computing is a model whereby 

users access compute resources from a vendor over the Internet1, such as from the 

commercial Amazon Elastic Compute Cloud6, or the academic DOE Magellan Cloud7. The 

user can then apply the computers to any task, such as serving web sites, or even running 

computationally intensive parallel bioinformatics pipelines. Vendors benefit from vast 

economies of scale8, allowing them to set fees that are competitive with what users would 

otherwise have spent building an equivalent facility, and potentially saving all the ongoing 

costs incurred by a facility that consumes space, electricity, cooling, and staff support. 

Finally, because the pool of resources available “in the cloud” is so large, customers have 

substantial leeway to “elastically” grow and shrink their allocations.

Cloud computing is not a panacea: it poses problems for developers and users of cloud 

software, requires large data transfers over precious low-bandwidth Internet uplinks, raises 

new privacy and security issues, and is an inefficient solution for some types of problems. 

On balance, though, cloud computing is an increasingly valuable tool for processing large 

datasets, and it is already used by the US federal government9, pharmaceutical10 and 

Internet companies11, as well as scientific labs12 and bioinformatics services13, 14. 

Furthermore, several bioinformatics applications and resources have been developed to 

specifically address the challenges of working with the very large volumes of data generated 

by second-generation sequencing technology (Table 1).
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MapReduce and Genomics

Parallel programs run atop a parallel “framework” to enable efficient, fault-tolerant parallel 

computation without making the developer's job too difficult. The Message Passing 

Interface (MPI) framework3, for example, gives the programmer ample power to craft 

parallel programs, but requires relatively complicated software development. Batch 

processing systems such as Condor4, are very effective for running many independent 

computations in parallel, but are not expressive enough for more complicated parallel 

algorithms. In between, the MapReduce framework15 is efficient for many (although not all) 

programs, and makes the programmer's job simpler by automatically handling duties such as 

job scheduling, fault tolerance, and distributed aggregation.

MapReduce was originally developed at Google to streamline analyses of very large 

collections of webpages. Google's implementation is proprietary, but Hadoop16 is a popular 

open source alternative maintained by the Apache Software Foundation. Hadoop/

MapReduce programs comprise a series of parallel computational steps (Map and Reduce), 

interspersed with aggregation steps (Shuffle). Despite its simplicity, Hadoop/MapReduce 

has been successfully applied to many large-scale analyses within and outside of DNA 

sequence analysis17–21.

In a genomics context, Hadoop/MapReduce is particularly well suited for common “Map-

Shuffle-Scan” pipelines (Figure 1) that use the following paradigm:

1. Map: many reads are mapped to the reference genome in parallel on multiple 

machines.

2. Shuffle: the alignments are aggregated so that all alignments on the same 

chromosome or locus are grouped together and sorted by position.

3. Scan: the sorted alignments are scanned to identify biological events such as 

polymorphisms or differential expression within each region.

For example, the Crossbow22 genotyping program leverages Hadoop/MapReduce to launch 

many copies of the short read aligner Bowtie23 in parallel. After Bowtie has aligned the 

reads (which may number in the billions for a human re-sequencing project) to the reference 

genome, Hadoop automatically sorts and aggregates the alignments by chromosomal region. 

It then launches many parallel instances of the Bayesian SNP caller SOAPsnp24 to 

accurately call SNPs from the alignments. In our benchmark test on the Amazon cloud, 

Crossbow genotyped a human sample comprising 2.7 billion reads in ~4 hours, including the 

time required for uploading the raw data, for a total cost of $85 USD22.

Programs with abundant parallelism tend to scale well to larger clusters; i.e., increasing the 

number of processors proportionally decreases the running time, less any additional 

overhead or non-parallel components. Several comparative genomics pipelines have been 

shown to scale well using Hadoop19, 22, 25, 26, but not all genomics software is likely to 

follow suit. Hadoop, and cloud computing in general, tends to reward “loosely coupled” 

programs where processors work independently for long periods and rarely coordinate with 

each other. But some algorithms are inherently “tightly coupled,” requiring substantial 
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coordination and making them less amenable to cloud computing. That being said, 

PageRank20 (Google's algorithm for ranking web pages) and Contrail27 (a large-scale 

genome assembler) are examples of relatively tightly coupled algorithms that have been 

successfully adapted to MapReduce in the cloud.

Cloud computing obstacles

To run a cloud program over a large dataset, the input must first be deposited in a cloud 

resource. Depending on data size and network speed, transfers to and from the cloud can 

pose a significant barrier. Some institutions and repositories connect to the Internet via high-

speed backbones such as Internet2 and JANET, but each potential user should assess 

whether their data generation schedule is compatible with transfer speeds achievable in 

practice. A reasonable alternative is to physically ship hard drives to the cloud vendor28.

Another obstacle is usability. The rental process is complicated by technical questions of 

geographic zones, instance types, and which software image the user plans to run. 

Fortunately, efforts such as the Galaxy project29 and Amazon's Elastic MapReduce service30 

enhance usability by allowing customers to launch and manage resources and analyses 

through a point-and-click web interface.

Data security and privacy are also concerns. Whether storing and processing data in the 

cloud is more or less secure than doing so locally is a complicated question, depending as 

much on local policy as on cloud policy. That said, regulators and Institutional Review 

Boards are still adapting to this trend, and local computation is still the safer choice when 

privacy mandates apply. An important exception is HIPAA; several HIPAA-compliant 

companies already operate cloud-based services31.

Finally, cloud computing often requires re-designing applications for parallel frameworks 

like Hadoop. This takes expertise and time. A mitigating factor is that Hadoop's “streaming 

mode” allows existing non-parallel tools to be used as computational steps. For instance, 

Crossbow uses the non-cloud programs Bowtie and SOAPsnp, albeit with some small 

changes to format intermediate data for the Hadoop framework. New parallel programming 

frameworks, such as DryadLINQ32 and Pregel33 can also help in some cases by providing 

richer programming abstractions. But for problems where the underlying parallelism is 

sufficiently complex, researchers may have to develop sophisticated new algorithms.

Recommendations

With biological datasets accumulating at ever faster rates, it is better to prepare for 

distributed and multi-core computing sooner rather than later. The cloud provides a vast, 

flexible source of computing power at a competitive cost, potentially allowing researchers to 

analyze ever-growing sequencing databases while relieving them of the burden of 

maintaining large computing facilities. On the other hand, the cloud requires large, possibly 

network-clogging data transfers, it can be challenging to use, and it isn't suitable for all types 

of analysis tasks. For any research group considering the use of cloud computing for large-

scale DNA sequence analysis, we recommend a few concrete steps:
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1. Verify that your DNA sequence data will not overwhelm your network connection, 

taking into account expected upgrades for any sequencing instruments.

2. Determine whether cloud computing is compatible with any privacy or security 

requirements associated with your research.

3. Determine whether necessary software tools exist and can run efficiently in a cloud 

context. Is new software needed, or can existing software be adapted to a parallel 

framework? Consider the time and expertise required.

4. Consider cost: what is the total cost of each alternative?

5. Consider the alternative: is it justified to build and maintain, or otherwise gain 

access to a sufficiently powerful non-cloud computing resource?

If these prerequisites are met, then computing “in the cloud” can be a viable option to keep 

pace with the enormous data streams produced by the newest DNA sequencing.
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Figure 1. Map-Shuffle-Scan framework used by Crossbow
Users begin by uploading the sequencing reads into the cloud storage. Hadoop, running on a 

cluster of virtual machines in the cloud, then maps the unaligned reads to the reference 

genome using many parallel instances of Bowtie. Hadoop then automatically shuffles the 

alignments into sorted bins determined by chromosome region. Finally, many parallel 

instances of SOAPsnp scan the sorted alignments in each bin. The final output is a stream of 

SNP calls stored within the cloud that can be downloaded back to the user's local computer.
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Table 1

Bioinformatics Cloud Resources

Applications

CloudBLAST34 Scalable BLAST in the Clouds http://www.acis.ufl.edu/~ammatsun/mediawiki-1.4.5/index.php/CloudBLAST_Project

CloudBurst19 Highly Sensitive Short Read Mapping http://cloudburst-bio.sf.net

Cloud RSD26 Reciprocal Smalest Distance Ortholog Detection http://roundup.hms.harvard.edu

Contrail27 De novo assembly of large genomes http://contrail-bio.sf.net

Crossbow22 Alignment and SNP Genotyping http://bowtie-bio.sf.net/crossbow/

Myrna25 Differential expression analysis of mRNA-seq http://bowtie-bio.sf.net/myrna/

Quake35 Quality guided correction of short reads http://github.com/davek44/error_correction/

Analysis Environments & Datasets

AWS Public Data Cloud copies of Ensembl, GenBank, 1000 Genomes Data, etc… http://aws.amazon.com/publicdatasets/

CLoVR Genome and metagenome annotation and analysis http://clover.igs.umaryland.edu

Cloud BioLinux Genome Assembly and Alignment http://www.cloudbiolinux.com/

Galaxy29 Platform for interactive large-scale genome analysis http://galaxy.psu.edu
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