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Abstract

Background: Adult mammalian muscle retains incredible plasticity. Muscle growth and repair involves the activation of
undifferentiated myogenic precursors called satellite cells. In some circumstances, it has been proposed that existing
myofibers may also cleave and produce a pool of proliferative cells that can re-differentiate into new fibers. Such myofiber
dedifferentiation has been observed in the salamander blastema where it may occur in parallel with satellite cell activation.
Moreover, ectopic expression of the homeodomain transcription factor Msx1 in differentiated C2C12 myotubes has been
shown to induce their dedifferentiation. While it remains unclear whether dedifferentiation and redifferentiaton occurs
endogenously in mammalian muscle, there is considerable interest in induced dedifferentiation as a possible regenerative
tool.

Methodology/Principal Findings: We previously showed that the homeobox protein Barx2 promotes myoblast
differentiation. Here we report that ectopic expression of Barx2 in young immature myotubes derived from cell lines
and primary mouse myoblasts, caused cleavage of the syncytium and downregulation of differentiation markers.
Microinjection of Barx2 cDNA into immature myotubes derived from primary cells led to cleavage and formation of
mononucleated cells that were able to proliferate. However, injection of Barx2 cDNA into mature myotubes did not cause
cleavage. Barx2 expression in C2C12 myotubes increased the expression of cyclin D1, which may promote cell cycle re-entry.
We also observed differential muscle gene regulation by Barx2 at early and late stages of muscle differentiation which may
be due to differential recruitment of transcriptional activator or repressor complexes to muscle specific genes by Barx2.

Conclusions/Significance: We show that Barx2 regulates plasticity of immature myofibers and might act as a molecular
switch controlling cell differentiation and proliferation.
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Introduction

Adult mammalian muscle has the potential to regenerate by

activation of undifferentiated myogenic precursor cells (satellite

cells), which are normally quiescent and situated between the basal

membrane and the myofibers [1,2,3,4]. Upon activation, satellite

cells divide asymmetrically producing daughter cells with different

fates [5,6]. One daughter cell proceeds to proliferation and

myogenic differentiation and the other may return to the quiescent

satellite cell pool [7,8]. Urodele amphibians show much greater

regenerative plasticity than that of mammals, undergoing

epimorphic regeneration in which whole structures, rather than

isolated tissues are reformed [9,10]. This ability has been described

for many urodele organs, including lens, retina, intestine, tail and

limbs [11,12]. Previous experiments have shown that after

amphibian limb amputation, stump tissues form a structure called

the blastema in which cellular dedifferentiation occurs, producing

a pool of progenitor-like cells that participate in regeneration

[13,14]. For example, dedifferentiation of damaged amphibian

myofibers produces a pool of proliferating progenitor cells that can

re-differentiate to form new muscle.

It was previously suggested that dedifferentiated muscle cells

became multipotent and could contribute to development of not

only new muscle but also cartilage and bones [15]; however, more

recent work refutes this [16,17]. Although all cells in the newly

formed blastema have a very similar morphology, immunostaining

with tissue-specific markers has revealed heterogeneity of the

blastema cells [10,18]. In particular, a very recent study showed

that the blastema is a heterogeneous collection of progenitor cells

with restricted fates [16]. These experiments indicate that

dedifferentiating muscle remains restricted to the muscle lineage

[16]. Moreover, recent work suggests that the regeneration of

muscle during epimorphic limb regeneration involves not only

dedifferentiation of damaged myofibers, but also the activation of
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muscle satellite cells as in mammals [12,19]. These data suggest

that amphibian and mammalian regeneration share more

similarity than was originally apparent.

Factors controlling dedifferentiation in newt limb are not well

understood; however, expression of the muscle segment homeobox

gene msx-1 is induced in the blastema [20] and also in regenerating

amputated mammalian digits [21], suggesting a role in dediffer-

entiation. This transcription factor is also expressed in migrating

limb muscle precursors preventing them from premature differ-

entiation [22,23,24]. While mammalian myofibers appear much

less plastic than those of the amphibian, it has been demonstrated

that ectopic expression of msx1 in mouse C2C12 myotubes induces

cleavage of myotubes into proliferating, mononucleated cells [25].

Moreover these cells appear able to re-differentiate into new

myofibers [25,26]. This suggests that the molecular and cellular

machinery that underpins functional dedifferentiation is present in

mammalian muscle. There is currently no convincing evidence

that dedifferentiation occurs naturally after injury of mammalian

muscle in vivo, and if it occurs it is unlikely to be a major

contributor to normal muscle regeneration. However, as recent

work on induced pluripotent stem cells (iPS cells) has shown, even

synthetic approaches to reprogramming differentiated cells can

have important ramifications for basic biology and lead to new

avenues in regenerative medicine [27,28]. Thus defining the

molecular mechanisms and factors involved in induced dediffer-

entiation in mammals may lead to development of new techniques

for control of cell and tissue plasticity.

In this study we investigated the role of the homeodomain

transcription factor Barx2 in regulation of myofiber plasticity.

During early embryonic stages of mouse development, Barx2 is

widely expressed in proliferating and differentiating cartilage and

muscle tissue [29]. However, in adult mice Barx2 expression was

found to be restricted to the joint region [29] and also to muscle

satellite cells [30]. We recently reported that Barx2 cooperates with

other muscle-expressed transcription factors to regulate cytoskel-

etal remodeling events of early myoblast differentiation [30].

Here we show that ectopic expression of Barx2 in C2C12

myotubes and MyoD-induced C3H10T1/2 myotubes induced

apparent dedifferentiation indicated by myotube cleavage and

concomitant down-regulation of muscle differentiation markers.

We also extended these studies to differentiated primary mouse

muscle cell cultures; we observed two types of myotubes in primary

cultures: thin slowly contracting myotubes with nuclei aligned

along the middle of the fiber (immature myotubes), and thicker,

faster contracting myotubes often with small or large nuclei

clusters (mature myotubes). Microinjection of Barx2 cDNA into

the immature myotubes induced cleavage and formation of

mononucleated cells that were able to proliferate, whereas

injection of Barx2 cDNA into mature myotubes induced myotube

contraction but not cleavage. Thus our data indicate that only

immature myotubes can dedifferentiate in response to Barx2 over-

expression, while more mature myotubes appear to have lost this

ability. These results also suggest that Barx2, like Msx1, can

regulate muscle plasticity and that homeobox factors could be a

part of a general mechanism that controls the susceptibility of cells

to reprogramming.

Results

We previously found that Barx2 is expressed in embryonic

myoblasts and satellite cells in vivo and is upregulated early during

differentiation of C2C12 and C3H10T1/2 cells and primary

myoblasts in culture. However, we do not observe Barx2 in the

nuclei of mature myofibres ([30,31] and unpublished data). To

examine the effects of ectopic Barx2 expression in differentiated

muscle cells, a Barx2 expression construct or control vector were

transfected into serum-deprived C2C12 cultures that were

comprised primarily of early-stage myotubes. Expression of GFP

demonstrates the high efficiency of transfection (Fig. 1A). Within

3–4 days, Barx2-expressing cultures showed a remarkable

reduction in myotube numbers due to apparent myotube

fragmentation (Fig. 1A). In contrast, control pcDNA3-transfected

cultures showed only maturing myotubes. Consistent with this

result, cultures ectopically expressing Barx2 showed decreased

levels of the differentiation-associated proteins myogenin and

myosin heavy chain (MyHC) (Fig.1B).

To further explore these phenomena, we performed similar

experiments with C3H10T1/2 mesenchymal progenitor cells that

were induced to undergo terminal differentiation and form

myotubes by transfection of MyoD and subsequent serum

withdrawal (Fig. 1C). As with C2C12 cells, coexpression of Barx2

and MyoD in these cells reduced myogenin (Fig. 1C) and MyHC

expression (Fig. 1C and 1D) and caused apparent cleavage of

myotubes with many shorter myotubes and mononucleated cells

present.

BrdU labeling showed the expected decrease in proliferating

cells in MyoD-transfected C3H10T1/2 cultures relative to

pcDNA3-transfected cells after several days in differentiation

media. This decrease was completely blocked by co-expression of

Barx2 (Fig.1E). This could indicate that Barx2 impairs differenti-

ation; however, our previous work has shown that Barx2 in fact

stimulates the earliest phases of differentiation in cooperation with

MyoD [30]. Thus we suggest that this result, together with our

observations of myotube fragmentation, further supports the idea

that Barx2 promotes dedifferentiation of terminally differentiated

myotubes. However, a clear caveat of the proliferation analysis is

that a subpopulation of mononucleated cells is always present in

the myotube cultures and proliferating cells may derive from these

cells rather than dedifferentiated myotubes. To specifically address

this concern we performed further experiments with a single-cell-

tracing technique and primary muscle cells as described below.

Satellite cells were isolated from postnatal day four mouse

skeletal muscle [30,32] and cultured as proliferating myoblasts.

Activation of primary myoblasts by serum withdrawal [30]

induced the expected rapid changes in cell shape, remodeling of

the actin cytoskeleton and expression of differentiation markers

(Fig. 2A). Specifically, within 1–3 hours after serum withdrawal,

myogenin expression was induced in activated myoblasts that were

undergoing cytoskeletal rearrangement as indicated by phalloidin

staining for F-actin [30] (Fig. 2A). We observed that myotube

formation/maturation in primary cultures happened in two

distinct stages. First long, thin, myotubes were formed. In these

myotubes nuclei were aligned toward the middle of the fiber (see

Fig. 2B) and the myotubes showed slow, infrequent contractions.

We considered these stage 1 or immature (young) fibers. These

immature myotubes appeared to be quite stable and did not show

any signs of spontaneous disassembly, such as we have observed in

forming myotubes by time-lapse microscopy [30]. Later the

majority of myotubes thickened and the nuclei moved along the

axis of the tube and often formed local aggregations either in the

middle or towards the end of the myotube (see Fig. 2C and D).

These more mature myotubes contracted more strongly and

frequently and appeared to represent the final stage (stage 2) of

primary myoblast differentiation. Our observations are presented

schematically in Figure 2E. Interestingly, even in very long-term

(two week) cultures, thin, slowly contracting myotubes without

nuclei clusters persisted in the culture. The existence of two similar

types of myotubes with and without nuclei clustering was
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described previously [33]. Moreover more myotubes with nuclei

clusters and larger nuclei aggregates were observed when

myotubes were co-cultured with neurons [33]. We also analyzed

Barx2 expression during primary myotube formation; specifically

Barx2 mRNA levels were measured by RT-PCR at different times

after activation of differentiation by serum withdrawal. Undiffer-

entiated proliferating primary myoblasts expressed Barx2 and its

expression was increased at least 3-fold by 6–9 hours after serum

withdrawal (Fig. 2F). Subsequently Barx2 expression levels were

reduced several fold below that of undifferentiated myoblasts

(Fig. 2F). This is consistent with our previous work [30,31]

indicating that Barx2 is important early in the myoblast

differentiation process and is subsequently downregulated in

mature myotubes. In particular, we previously found that ectopic

Barx2 expression in both undifferentiated C2C12 myoblasts and

primary cells increased proliferation and accelerated differentia-

tion [30], however it remained unclear why Barx2 expression is

strongly downregulated in myofibers.

To assess whether Barx2 can regulate plasticity of primary

myotubes, we isolated primary mouse myoblasts [32] and induced

their differentiation by serum withdrawal as described above. The

analysis of these cultures showed that even fully differentiated

cultures retain some undifferentiated mononucleated cells even

72–96 hours after induction of differentiation. As with the

experiments presented in Figures 1 and 2, this heterogeneity

could confound our results, i.e. newly proliferating cells might

derive from dedifferentiation of myotubes or from amplification of

existing mononucleated cells. To overcome this problem we

decided to perform experiments on single myotubes using

microinjection of plasmid DNA together with a cell tracing dye

(Fig. 3).

We performed injections of Barx2 cDNA or control plasmid

(empty pcDNA3 vector) into immature (stage 1) or mature (stage 2)

myotubes (Fig. 3A–E, and 3F–H respectively). Injections were

performed using a patch-clamp apparatus (see Materials and

Methods). To visualize and track injected myotubes, pcDNA3-

Barx2 or empty pcDNA3 (control) expression plasmids were

mixed with Alexa FluorH 488-conjugated dextran. To maximize

any proliferative response, both sets of injected myotubes were

subsequently stimulated with growth medium and medium was

replaced daily. Dedifferentiation was assessed by morphologic

examination of fluorescently labeled myotubes for signs of

cleavage, and by the appearance of myotube-derived (i.e.

fluorescently-labeled) mononucleated cells. Cleavage of young

myotubes was observed at day 4 after injection of the Barx2

plasmid yielding labeled, mononucleated cells (Figure 3A–D). An

example of a young injected multinucleated myotube that cleaved

to form five adjacent fluorescently labeled mononucleated cells is

shown in Figure 3B. Some of these fluorescently labeled

mononucleated cells derived from injected myofiber incorporated

Figure 1. Ectopic expression of Barx2 in differentiated myotubes causes their dedifferentiation. A. Serum-deprived C2C12 cultures
contaning many early myotubes were transfected with either Barx2/pcDNA, empty pcDNA3, or GFP-expressing plasmids. Images of maturing or
apparently fragmenting myotubes were taken after 3–4 days, B. Levels of the differentiation-associated proteins myogenin and myosin heavy chain
(MyHC) were measured by immunoblotting of total protein from Barx2-expressing and control cultures corresponding to those shown in A.
Untransfected myoblast and myotube cultures were also analysed as a reference. C. C3H10T1/2 mesenchymal progenitor cells were transfected with
either MyoD/pcDNA3 or a combination of MyoD/pcDNA3 and Barx2/pcDNA3 plasmids and differentiation was subsequently induced by serum
withdrawal for 2–3 days. The proportion of cells expressing myogenin and MyHC and appearance of myotubes was assessed by immunostaining. D.
MyHC protein was assessed by immunoblotting of total protein from cultures corresponding to those shown in C and D. Analysis of BrdU
incorporation was performed in C3H10T1/2 cultures corresponding to those shown in C; co-expression of Barx2 with MyoD increased numbers of
proliferating cells relative to MyoD alone - E.
doi:10.1371/journal.pone.0011612.g001
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BrdU (Fig. 3E). This finding suggests that the mononucleated cells

that arise from fragmentation of Barx2-injected myotubes are

viable and able to proliferate. Unfortunately the dye did not persist

long enough in the cells to assess whether they would be able to re-

differentiate if serum was withdrawn again.

In contrast to the results in immature myotubes, injections of

Barx2-plasmid into mature myotubes did not induce cleavage

(Fig. 3F–H); however, it did tend to induce contraction, nuclei

segregation and often myotube death. There was no sign of

myotube cleavage or contractions in either immature or mature

myotubes injected with empty plasmid DNA (not shown). Overall

these data indicate that Barx2 can promote dedifferentiation of

single immature myotubes.

Because our BrdU incorporation data suggested that Barx2 could

induce re-entry of myotube-derived cells into the cell cycle, we

examined whether Barx2 might affect cell cycle genes directly.

Quantitative RT-PCR analysis of C2C12 cells stably transfected

with a Barx2-expression plasmid showed that the cyclin D1 gene

was upregulated approximately 9-fold relative to control-transfected

cells (Fig. 4A). The D-type cyclins drive cells through the G0-G1-S

checkpoint, thus allowing quiescent cells to reenter the cell cycle

[34], which would be consistent with a role for reactivating

previously quiescent myonuclei after myotube dedifferentiation.

The data presented here combined with our previous work

[30,31] suggest that ectopic expression of Barx2 can have different

effects at different stages of myoblast differentiation. At an early

stage of myoblast differentiation, increased expression of Barx2

upregulates the expression of several myoblast differentiation

markers including a-smooth muscle actin (SMA) and accelerates

differentiation [30,31], while in myotubes, ectopic expression of

Figure 2. Differentiating myoblasts and maturating myotubes have different levels of Barx2 expression. A. Cultured primary myoblasts
were induced to differentiate by serum withdrawal and changes in cell shape, actin remodeling and myogenin expression were monitored over the
first 6 hours. B–D. Myotube maturation was examined between 24 and 72 hours post serum-withdrawal. At 24 hours myotubes were thin and
appeared immature (B). Between 48 and 72 hours, thicker myotubes appeared often with local aggregations of nuclei (C and D) and frequent strong
contractions. E. Observations of myotube maturation in culture presented schematically. F. Barx2 expression was measured by RT-PCR at different
stages of differentiation. Scale bars represent (A–C) - 20 mm, D–50 mm.
doi:10.1371/journal.pone.0011612.g002
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Barx2 appears to suppress the expression of differentiation-

associated genes (Fig. 1, 3). To further explore this notion of

differential gene regulation, we compared the regulation of a SMA

promoter-luciferase reporter construct by Barx2 in undifferentiat-

ed myoblasts or differentiated myotubes (Fig. 4B). Endogenous

SMA expression is known to be upregulated at an early stage of

myoblast differentiation, possibly to facilitate migration and

remodeling, and is subsequently downregulated and replaced by

skeletal muscle actin [35]. Moreover, we have previously shown

that Barx2 regulates the endogenous SMA gene and can directly

bind to the SMA promoter together with MyoD and increase

transcriptional activation of the promoter by MyoD in undiffer-

entiated myoblasts [30].

The regulation of the SMA promoter by Barx2 and MyoD was

examined by co-transfection of the SMA promoter-luciferase

construct with Barx2, MyoD, or empty pcDNA3 expression

plasmids in C2C12 cells (Fig. 4B). Consistent with our previous

studies [30], Barx2 increased activation of the SMA promoter by

MyoD in undifferentiated cell cultures. However, when promoter

activity was assayed after differentiation into myotubes, Barx2 was

found to moderately inhibit activation of the SMA promoter by

MyoD (Fig. 4B). This suggests that Barx2 may promote muscle

gene expression in myoblasts, yet repress the same and/or other

genes after differentiation.

We previously showed that Barx2 contains both an N-terminal

repression domain and a C-terminal activation domain [36] that

may recruit various co-repressors and co-activators respectively.

We also found that Barx2 interacts directly with positive regulators

of myogenesis including the bHLH factor MyoD, and its

coactivators including CREB-binding protein (CBP) [30]. Our

new observation that Barx2 can both up and downregulate the

SMA promoter depending on the state of cellular differentiation

prompted us to examine whether it may also interact with negative

bHLH regulatory factors.

The Hairy-enhancer of split (HES) family of bHLH factors act

as transcriptional repressors and have roles in maintaining

progenitor cells in an undifferentiated state and regulating cell

fate decisions during embryogenesis. For example, lack of certain

HES genes leads to premature differentiation in the nervous system

[37,38,39]. Hes6 has been previously shown to be an inhibitor of

myoblast differentiation in C2C12 myoblasts [40]. To assess

whether Barx2 and Hes6 can interact, co-immunoprecipitation

was performed after expression of both Barx2 and Hes6 proteins

in COS1 cells and C2C12 cells. We found that Barx2 can co-

immunoprecipitate Hes6 in both contexts (Fig. 4C). Taken

together with our previous work [30], we conclude that Barx2

can form complexes with both positive (i.e. MyoD) and negative

(i.e, Hes6) bHLH myogenic regulators. We also examined the

relative expression of Hes6 in C2C12 myoblasts and myotubes

using RT-PCR and found that Hes6 expression was relatively low

in undifferentiated C2C12 cells and was moderately upregulated

in both immature and mature myotubes (Fig. 4D). This result is

consistent with a previous non-quantitative analysis of Hes6

expression in C2C12 cells showing increased Hes6 mRNA after

induction of differentiation [40]. Our data prompt the hypothesis

that differential expression of factors such as Hes6, or other Barx2-

interacting repressors yet to be identified, could contribute to the

dual function of Barx2 at different stages of muscle development.

Discussion

The homeobox protein Barx2 is expressed during development of

skeletal and smooth muscle [41,42]. Barx2 is expressed in primary

myoblasts and its expression is upregulated soon after induction of

differentiation, while differentiated myotubes express virtually no

Barx2. This not only suggested a role for Barx2 early in myoblast

differentiation as previously investigated [30,31], but also that

subsequent repression of endogenous Barx2 in myofibres might be

Figure 3. Barx2 induces cleavage of mouse myotubes. A–D. Barx2/pcDNA3 or empty pcDNA3 plasmids were mixed with Alexa FluorH488-
conjugated dextran and then injected into immature (stage 1) myotubes. Cultures were stimulated with growth medium and fluorescently labeled
myotubes were monitored for signs of cleavage and appearance of labeled mononucleated cells. Scale bar represent 10 mm. E. BrdU labeling after
microinjection of myotubes. Single Alexa FluorH488-conjugated dextran-labeled cells occasionally incorporated BrdU suggesting they has re-entered
the cell cycle. Scale bar represent 10 mm. F–H. Mature (stage 2) myotubes were microinjected and examined as in A-D. No myotube cleavage was
observed. Scale bars represent F–10 mm, G - 50 mm, H–20 mm.
doi:10.1371/journal.pone.0011612.g003
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important for their function and/or integrity. Here we found that

ectopic expression of Barx2 in differentiated myotubes originating

from either cell lines or isolated muscle progenitors induced

myotube cleavage and downregulated differentiation markers. We

were also able to demonstrate increased cell proliferation after

ectopic Barx2 expression and using microinjection and cell tracing

show that proliferative cells arose from dedifferentiated myotubes.

These finding were similar to the previously described functions

of another homeodomain transcription factor - Msx1 [9,25].

Moreover, the regenerative plasticity of isolated urodele myofibers

is dependent on Msx1 [9] and Msx1 is involved in epimorphic digit

tip regeneration in both humans and mice [21,23]. It is possible

that Barx2 and Msx1 share similar pathways and even target genes

in the regulation of dedifferentiation. However, an important

difference between the functions of Barx2 and Msx1 is that Barx2 is

also able to promote the early stages of myoblast differentiation in

cooperation with MyoD [30]. This has not been reported for Msx1;

on the contrary expression of Msx1 in undifferentiated C2C12

myoblasts downregulates MyoD expression and inhibits differen-

tiation into myotubes [22,25,43]. Ectopic expression of Msx1 in

the forelimb and somites of chicken embryos also inhibits MyoD

expression and muscle differentiation [22].

Figure 4. Regulatory connections of Barx2 during muscle differentiation. A. Quantitative RT-PCR analysis of cyclin D1 expression in C2C12
cells stably transfected with a Barx2-expression plasmid or control plasmid. B. The SMA promoter-luciferase construct was co-transfected with
combinations of Barx2, MyoD, or empty pcDNA3 expression plasmids in C2C12 cells. Barx2 increased SMA promoter activation in undifferentiated cell
cultures yet inhibited activation in myotubes. C. Co-immunoprecipitation was performed after expression of both Barx2 and Hes6 proteins in COS1
cells and C2C12 cells. Barx2 co-immunoprecipitated Hes6 in both contexts. D. Expression of Hes6 was compared in C2C12 myoblasts and myotubes
using RT-PCR. Hes6 is upregulated in myotubes. E. Graphical representation of the RT PCR data shown in D (n – number of experiments).
doi:10.1371/journal.pone.0011612.g004
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It is interesting that in addition to Msx1 a number of homeobox

factors are capable of suppressing myogenic differentiation. These

include Mohawk which is a transcriptional repressor that blocks the

myogenic conversion of C3H10T1/2 cells [44]. The Pax3 and

Pax7 paired homeodomain transcription factors have also been

shown to suppress myogenic differentiation and both the paired

domain and homeodomain of Pax3 are required for this anti-

myogenic effect [45]. Thus, the Msx1, Mohawk, and Pax3/7

homeobox containing transcription factors appear to be general

repressors of myoblast differentiation. In contrast our previous and

current studies indicate that Barx2 positively regulates the early

steps of myoblast differentiation; however, its subsequent down-

regulation may be necessary for maintenance of the differentiated

state of myofibers.

The upregulation of cyclin D1 expression after overexpression

of Barx2 in C2C12 cells could be an important factor in promoting

cell cycle re-entry by myonuclei derived from dedifferentiated

myofibres. Re-entry into the cell cycle has been also induced in

terminally differentiated cultured cardiomyocytes by expression of

G1 cell cycle factors [46]. It is also of note that the highly

regenerative ‘scarless’ MRL mouse, which shares some properties

with newts and zebrafish in the formation of wound blastema and

apparent regeneration of heart muscle, was recently shown to lack

expression of p21 in regenerating tissue [47]. Moreover, p21 null

mice were recently shown to have a highly regenerative phenotype

similar to that of MRL mice. p21 is an inhibitor of cdk2, which is

involved in G1-S transition [48], supporting the idea that

modulation of genes that control cell cycle checkpoints might

alter the program of differentiated cells and allow increased

plasticity. Future work will examine how Barx2 regulates a

transcriptional program that allows cellular remodeling to be

coordinated with cell cycle re-entry.

Although mechanisms underlying differential gene regulation by

Barx2 at early and late stages of muscle differentiation are unclear,

they are very likely to involve differential recruitment of activator

or repressor complexes by Barx2 [36]. As we showed in previous

[30,36] and current studies, Barx2 can form complexes with both

positive and negative bHLH regulators of myogenesis; i.e. MyoD

and Hes6. The ratios between these complexes may thus be

important for determining Barx2 function at different stages of

myogenic differentiation.

Enforced expression of Hes6 has been found to inhibit

differentiation, leading to a higher proportion of thin, immature

myotubes relative to thickened, mature myotubes. Hes6 expression

also reduced the proportion of cells undergoing cell cycle

withdrawal and allowing more cells to re-enter the cell cycle after

differentiation [40]. These activities were independent of the DNA

binding domain of Hes6 and most likely depend on protein-

protein interactions [40]. Moreover, when injected into Xenopus

embryos, Hes6 increased the size of the myotome due to increased

proliferation; it also decreased markers of terminal muscle

differentiation [40]. While upregulated early in differentiation,

Hes6 is reported to be absent in mature myofibers in vivo, leading

to the suggestion that downregulation of Hes6 is required for

acquisition of a stable terminal differentiated state [40]. This

closely parallels the situation that we observe with Barx2.

Our corroborating finding of increased Hes6 expression in

C2C12 myotubes relative to myoblasts [40], together with the

interaction of Barx2 and Hes6, suggests that Hes6 may be one of

the repressors that interact with ectopic Barx2 in immature

myotubes and helps suppress muscle specific gene expression. This

interaction could contribute to suppression of myotube maturation

and allow immature myotubes to undergo dedifferentiation.

Consistent with the idea of functional cooperation between Barx2

and Hes6, previous work showed that the repression domain of

Barx2 binds directly to the transducin-like enhancer of split (TLE)

corepressor family [49]. TLEs are also essential corepressors for

Hes6 and other HES family repressors [49]. The role of Barx2-

Hes-TLE interactions in repression of gene expression is under

further investigation. Moreover, additional mechanisms for

repression of myogenic gene expression and reversal of the

differentiated state are also likely.

Homeodomain transcription factors regulate gene expression in

response to a large variety of extracellular stimuli, and act as

molecular switches for controlling cell differentiation, proliferation,

and apoptosis. Particular homeobox genes (Oct, Nanog) have been

shown to be important in induction of pluripotent stem cells (iPS

cells). Recent work comparing zebrafish regeneration blastema with

iPS cells showed that, although blastemal cells are not pluripotent,

some of the key iPS reprogramming factors including the Pou5

homeobox protein are also important for regeneration, presum-

ably due to their role in generating a multipotent cell state. This

suggests some common mechanisms may be involved in induced

cellular reprogramming and in the natural dedifferentiation

process observed in the blastema [50]. We now add Barx2 to the

list of homeobox regulators of adult cellular plasticity. In future

work it would be of considerable interest to assess the role of Barx2

in blastemal regeneration of muscle, perhaps in the zebrafish

context.

Materials and Methods

Cell cultures
Mouse C3H10T1/2 (clone 8) and C2C12 (ATCC) cells were

grown in Dulbecco’s Modified Eagle’s Medium (DMEM) supple-

mented with 10% heat-inactivated fetal bovine serum (FBS) at 37C

in a humidified 5% CO2 atmosphere without antibiotics.

Preparation of primary myoblasts and immunostaining
Primary myoblast cultures were prepared as described previously

[32]. Cells were grown on collagen-coated plates or chamber slides

and maintained in growth medium (1:1 Ham’s F10/DMEM,

supplemented with 20% FBS and 2.5 ng/ml of basic FGF). Cells

were differentiated by transfer into differentiation medium (DMEM

supplemented with 2% horse serum). Cells were fixed with 2% of

paraformaldehyde at various time points after induction of

differentiation and processed for immunostaining. Antibodies to

myogenin (clone F5D; BD Bioscience Pharmingen), a-smooth

muscle actin (SMA) (clone 1A4; Sigma) or fast myosin heavy chain

(clone MF20 Developmental Studies Hybridoma Bank), were used

for immunostaining. Secondary antibodies (Molecular Probes,

Invitrogen) were conjugated to Alexa-488 or Texas Red. Rhoda-

mine-conjugated phalloidin was used to visualize F-actin.

Microscopy and image analysis
The Zeiss LSM 710 laser scanning confocal microscope

(LSCM) was used to obtain images. IMARIS software was used

for image analysis.

Cell transfections and promoter assays
16107 C2C12 cells were transfected with either 10 mg of

Barx2/pcDNA3 expression vector or pcDNA3 control plasmid

using Lipofectamine2000 reagent (Invitrogen). The Barx2 expres-

sion plasmid contains an in-frame NH2-terminal Myc tag and was

described previously [41]. In other experiments, an expression

plasmid bearing mCherry fluorescent protein linked to Barx2 via a

‘self-cleaving’ 2A peptide sequence was used to generate stable

lines by selection with puromycin in C2C12 cells. C3H10T1/2
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cells were co-transfected with MyoD and Barx2-pcDNA3 or with

MyoD and pcDNA3 plasmids. For analysis of smooth muscle actin

(SMA) promoter activity, a SMA promoter-luciferase construct

[30] was co-transfected with the Barx2-pcDNA3 expression vector

or pcDNA3 control plasmid and harvested either before or after

differentiation. The data shown were derived from at least three

independent experiments. Luciferase activity was analyzed as

previously described [30].

Western blotting
Total protein was prepared from C2C12 and C3H10T1/2 cells

using RIPA lysis buffer and sonicated. Equal aliquots of protein

were resolved by SDS-PAGE, transferred to polyvinylidene

difluoride membrane, and probed with antibodies to MyoD (clone

MoAb5.8A; BD PharMingen), skeletal fast myosin (clone MY-32;

Sigma), myogenin (clone F5D; BD Bioscience Pharmingen) and a

custom-made Barx2 anti-peptide polyclonal antibody (Covance). b-

actin, antibody was used as a reference. HRP conjugated secondary

antibodies and a chemiluminescent detection system was used to

visualize proteins. All experiments were performed in duplicates.

Co-Immunoprecipitation
Co-immunoprecipitation of Barx2 with Hes6 was performed as

essentially as described in [Zorn, 1999] Briefly, COS1 or C2C12

cells were co-transfected with the Barx2/pcDNA3 and Hes6/

pCMVSport6 (Open Biosystems) expression plasmids using

Lipofectamine-2000 (Invitrogen). Cell lysates were prepared

48 hours after transfection, pre-cleared with Protein A-Sepharose

and then incubated overnight at 4uC with 5 mg of anti-Barx2

rabbit antibody or preimmune serum. Complexes were precipi-

tated with Protein A-Sepharose, washed four times and resolved

by SDS-PAGE and immunoblotted with anti-Hes6 polyclonal goat

antibody (Santa Cruz Biotechnologies) antibody.

RNA isolation and RT PCR
RNA was isolated from undifferentiated C2C12 cells and

C2C12 young and mature myotubes using the RNeasy Plus Mini

Kit (Qiagen). The RNA was quantified using a Beckman DU 640

Spectrophotometer. 1 mg of each RNA sample was used to

synthesize cDNA using a First-Strand cDNA Synthesis kit and

SuperScript III/RNaseOUT Enzyme mix and 50 ng/ul random

hexamer primers. The RT PCR was performed using Perkin

Elmer 9600 PCR machine. Each sample was amplified with Hes6

primers: forward: ctcctgaaccacctgctagaatcc, reverse: ctaaggatgta-

gacaccaaatccggc, and GAPDH primers: forward: gtgaaggtcggtgt-

gaacggatttggccg; reverse: ccatggtggtgaagacaccagtagactcc. The

Hes6 primer set amplified a 252 base-pair DNA segment of the

Hes6 cDNA. The PCR products were resolved by agarose

electrophoresis, bands were quantified by densitometry, and the

ratio of Hes6/GAPDH PCR products was calculated. Three

experiments were performed, and the results were normalized

to the values from undifferentiated myoblast cultures. Statistical

(t-test) analysis was performed using Microsoft Exel.

Quantitative RT-PCR
RNA was prepared from primary myoblast or C2C12 cell

cultures using Trizol reagent (Gibco). Cells were lysed directly in

Trizol and RNA was prepared according to manufacturer protocol

(Invitrogen). RNA was treated with DNase using the DNA-free kit

(Ambion) and reverse transcribed using random primers and

MMluV reverse transcriptase (New England Biolabs). Quantitative

RT-PCR reactions were performed on an ABI 7300 machine using

Superarray Biosciences RT2 SYBR green reagent and the following

primers. Mouse Barx2 F: gtatttgtctaccccagacaggtt, R: tcatcctgc-

gattctgatacc; mouse Cyclin D1 F: tctttccagagtcatcaagtgtg, R:

gactccagaagggcttcaatc. Mouse GAPDH (NM_008084) (QIAGEN

SaBiosciences) and mouse ribosomal protein S26 (RPS26) F:

aggtgcagaaggctgagg, R: ggttctcccgagtgatgaag, were used as controls.

Intracellular injections
Injections into myofibers were performed using traditional patch-

clamp electrophysiology equipment [51]. Glass micropipettes (1 mm

outer diameter/0.58 internal diameter, WPI Inc., Sarasota, FL) were

pulled on a Sutter P97 Flaming/Brown puller (Sutter Instruments,

Novato, CA). Tips were approximately 1 mm in diameter, and had a

resistance in the bath of 2–5 MW. Micropipettes were backfilled with

internal patch solution containing (in mM) K-gluconate 110, KCl 10,

HEPES 10, Phosphocreatine 10, Mg-ATP 4, Na-GTP 0.3, Biocytin

0.1%, pH 7.3, with and osmolarity of 280–290 mOsm. The Barx2-

pcDNA3 and pcDNA (control) plasmids were mixed with fixable

Alexa FluorH 488-conjugated dextran; 10,000 kDa; (Invitrogen) and

added at a concentration of 0.5 mg/ml. Bath solution contained (in

mM) NaCl 124, KCl 3, NaPO4 1.25, NaHCO3 26, MgCl2 1,

Glucose 25, CaCl2 2.

BrdU labeling experiments
In experiments to assess the proliferation of cells derived from

microinjected myotubes, the cultures were maintained for an

additional 4–5 days and then incubated with 5-bromo-2-

deoxyuridine (BrdU) (Cell Proliferation Kit RPN20; Amersham

Biosciences) for one hour. Cultures were then fixed and BrdU

detection was performed using an Alexa FluorH 594-conjugated

secondary antibody according to the manufacturers protocol.

Proliferating BrdU-labeled cells were detected as fluorescein-

positive cells by confocal microscopy.
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