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Summary

Permutation tests are widely used in genomic research as a straightforward way to obtain reliable
statistical inference without making strong distributional assumptions. However, in this paper we
show that in genetic association studies it is not typically possible to construct exact permutation
tests of gene-gene or gene-environment interaction hypotheses. We describe an alternative to the
permutation approach in testing for interaction, a parametric bootstrap approach. Using
simulations, we compare the finite-sample properties of a few often-used permutation tests and the
parametric bootstrap. We consider interactions of an exposure with single and multiple
polymorphisms. Finally, we address when permutation tests of interaction will be approximately
valid in large samples for specific test statistics.
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Introduction

Permutation tests (Ernst (2004), Higgins (2004)) are very popular in genomic research
(Leak, et al. (2009), Hu, et al. (2008), Faulkner, et al. (2009)). They are simple to compute
where analytic approaches may be intractable, and can be exact where analytic results may
be only approximate. Rather than comparing the observed value of a test statistic to its
distribution under repeated sampling, a permutation test compares the observed value to a
distribution generated by a group of permutations that would not affect the distribution if the
null hypothesis were true (Cox & Hinkley 1997, Chap. 6.2). The main limitation of
permutation tests is that they are only applicable when the null hypothesis being tested
specifies a suitable group of permutations under which the distribution of the data would be
unaffected.

The use of permutation methods for testing in the regression model with one main effect (or,
more simply, in tests of association of two variables) dates back at least to Fisher's exact test
(Fisher 1935). From data vectors G and Y we create a new data set either by permuting the
entries of G to give data (G*, Y) or permuting the entries of Y to give data (G, Y*). The test
statistic is evaluated on the new data to give a sample from the permutation distribution, and
this procedure is repeated to estimate the permutation distribution as accurately as is desired.
A p-value of the test statistic is computed based on the permutation distribution. The
procedure is the same whether the predictor variable is continuous or categorical (Ernst
2004).
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When there are two predictors G and Z, permutation testing can become more complicated
(Anderson & Robinson 2001). Testing for both main effects being zero is possible, by
permuting the outcome Y and leaving G and Z unchanged, and using datasets (G, Z, Y*) to
compute the permutation distribution of a test statistic. However, an exact test for one
specific main effect being zero, i.e., testing partial regression coefficients, typically does not
exist, as it would require the true value of the other main effect to be known. Anderson &
Robinson (2001) compare four approximate permutation tests for partial regression
coefficients in models with two main effects, highlighting the Freedman & Lane (1983)
method. They note that, typically, the exact test for both main effects is not even
approximately valid for testing one main effect. One special case of an available exact test
for a main effect of G is when Z is categorical, with several replicates of each of the fixed
values. In this case, permutations of Y or G can be done within the groups defined by Z. In
genetic applications, a binary covariate Z such as treatment or a categorical genotype at a
single nucleotide polymorphism can be used in this way.

A summary of permutation testing in regression for a non-statistical audience can be found
in Anderson (2001). The article summarizes permutation testing in models with one and two
main effects, and notes that in a model with two main effects and an interaction term there is
no exact permutation method for testing the interaction term. For tests of interactions, even
with categorical G and Z no exact permutation method is available (Anderson 2001). This is
because permutation of Y within levels of G and levels of Z generates new data with the
interaction effect unchanged — not removed, as we require for testing. In fact, for all models
with one or two main effects and an interaction, Anderson (2001) notes that in general there
is no exact permutation method for testing the interaction term.

Though well-established in the statistical literature on experimental design, this result is not
widely known in genetic epidemiology or pharmacogenetics. Permutation-based tests for
interaction have in fact been used frequently without any rationale given for their exact or
approximate validity (Andrulionyte, et al. (2007), Mei, et al. (2007), Rana, et al. (2007),
Chase, et al. (2005)). In this paper we show that these permutation tests need not even be
approximately valid. We describe an alternative, the parametric bootstrap, which can give
valid tests with moderate sample sizes, and which requires similar computational effort to a
permutation test. Parametric bootstrap techniques have been correctly used in a genetic
setting, e.g. in (Chen, et al. 2007). We will discuss the choice of test statistic and show that a
standardized statistic, such as a z-score or p-value instead of a difference in means, can
improve the accuracy of parametric bootstrap, and improve adherence of the Type | error
rate to the nominal level.

The rest of the paper is organized as follows. In the next section we introduce models with
an interaction term, and permutation concepts. We contrast the problem of testing for
interaction with the problem of testing for overfitting in a model including interactions,
where methods such as logic regression and multifactor-dimensionality reduction (MDR) do
validly use permutation tests. We subsequently describe a parametric bootstrap approach to
testing for interaction, and evaluate the performance of the parametric bootstrap compared to
two types of permutations used commonly in interaction testing. Finally, we consider
scenarios where permutation tests of interaction will be approximately valid in large samples
for specific test statistics. These scenarios include some of the practical applications of
permutation tests for interaction in genetic association studies.
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Models and permutation tests

Interaction is a complex phenomenon, as described in an extensive review by Cox (Cox
1984). We first consider a test for interaction between the effects of a single genetic
polymorphism G and a environmental exposure E on an outcome Y. The null hypothesis is
that the interaction term is zero. An alternative statement of the null is that while G and E
may have effects, these are specifically additive on the scale given by the model.

If Y is binary, as in a case-control study, the typical null hypothesis is that

logitP [ Y=1] =a+B,G+B, E. n

If Y is continuous, a typical null hypothesis is that

E[Y]=a+B,G+B.E. 2)

An alternative hypothesis of interest in the binary case may be that

logit P[Y=1] =a+B,G+B,E+YE x G 3)

and, in the continuous case, that

E[Y]=a+B,G+B,E+YE XG. (4)

Thus, the null hypothesis of no interaction is that y= 0 in models (3) and (4).

For either type of Y and a single genetic polymorphism, two natural test statistics are; v, the
estimate of the interaction parameter y, and the z statistic obtained by dividing y by its
estimated standard error. Although y may appear to test the null hypothesis more directly, it
is actually well-established that the bootstrap performs better for statistics such as the z-
statistic, whose null distribution is approximately pivotal (Davison & Hinkley 1997). For
this reason we investigate both the parameter estimate and the z-statistic.

When considering multiple genetic polymorphisms, there may be many polymorphism-
specific estimates (y;) and corresponding z;. For an omnibus test of no interaction between E
and any polymorphism, we use test statistics maximum |yj, and the maximum |z;| or
equivalently minimum p; value. While similar properties hold as for a single genetic
polymorphism, we defer extended discussion of testing with multiple genetic
polymorphisms until our simulation study.

A simple permutation test would fix G and E and permute all outcomes Y to give Y*, as used
in Andrulionyte et al. (2007), Rana et al. (2007). Fixing G and E and permuting Y generates
data in which Y* is independent of G and E. However, in equations (1) and (2), Y is not
independent of G and E, unless g = g = 0, so the permuted data satisfy a much more
restrictive null hypothesis than no-interaction. The permutation test will therefore be exact
only for this more restrictive null hypothesis, that fg = fg = y = 0. Our simulations (in the
Results section) show this permutation test being anti-conservative when equation (1) holds,
and conservative when equation (2) holds but Sg or Sg is non-zero.
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Null hypothesis of one main effect—No difficulty arises in constructing a permutation
test for the null hypothesis of one categorical main effect. For example, if we know that drug
E (presumed binary) has an effect on binary outcome Y we may be interested in comparing
the null hypothesis

logit P[Y=1] =a+B.E (5)

to the full alternative (3), testing fg =y = 0.

Permuting Y within individual strata defined by E maintains the difference between Y |E = 1
and Y |E = 0. The estimates for a and fg under the null hypothesis model in equation (5) will
be the same in the permuted data as in the observed data. This permutation test examines
whether G affects Y, without making any prior restriction on how E and G might interact.
For example, if G and E are both genetic polymorphisms, a test such as this may be useful in
building models of genetic effects in biological pathways where epistasis is likely to be
important.

If there is only a single variable G to be considered, a permutation approach may not be
necessary for reliable testing, as the usual y2 approximation to the likelihood ratio test is
likely to be adequate at any sample size where there is useful power. We note that in logistic
regression in some cases the likelihood approximation may not work well, a feature often
referred to as the Hauck-Donner phenomenon (Hauck & Donner 1977).

The particular value of the permutation test in this context is that it is applicable with
multiple polymorphisms. For example, computing the likelihood ratio p-value for testing Sg;
=y; = 0 across several polymorphisms G; and taking their minimum gives a test statistic for
the null hypothesis that no G has an effect on Y adjusted for E. This minimum p-value will
not itself have a uniform distribution, but it can be compared to its permutation distribution
to give a valid test.

A permutation testing approach along these lines is used in MDR (Ritchie, et al. 2001), a
method for reducing the dimensionality of multilocus information. Another example is logic
regression (Ruczinski, et al. 2003), which construct predictors from Boolean combinations
of binary covariates, and avoids overfitting using permutation applied to models that may
contain many interaction terms. Permutation tests are also a very useful tool in situations of
multiple testing problems when testing thousands of SNPs.

With a single environmental variable E a maximum z-statistic or minimum p-value can be
computed across all SNPs. Comparing this test statistic to its distribution Y within individual
strata defined by E controls the family-wise error rate, testing that no SNPs have effects on Y
(Dudoit, et al. 2003). However, this permutation test is not valid for testing specifically no-
interaction, i.e., y = 0, when fg is non-zero, and may give Type | error rate that are too large
or too small (Anderson 2001).

Null hypothesis of two main effects—~For a valid permutation test of the hypothesis of
no interaction, we would require a group of permutations that exactly preserves both g and

PE in equation (1) and (2), but also ensures y = 0. In general it is impossible to construct such
a group of permutations, as demonstrated by Edgington (1987, Chap. 6). If the permutations

fix G and E they will not give y = 0, and if they do not fix G and E they will not preserve the
relationship between G and E and so will not preserve g and SE.
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In situations where G and E are known to be independent, however, it is possible to
construct valid permutation tests for interaction in certain models. A linear model can be
reparametrized by centering G and E at their means

E[Y]=a+B, (G— {;) B, (E~ E) +y<E— é) X (G— E;)

so that the estimated interaction v is uncorrelated with Bg and pg if the model errors are
independent and identically-distributed. Permuting G and E independently will then give a
valid permutation test for y = 0.

An approach like this is used in the Family Based Association Tests (FBAT, (FBAT Toolkit
Team 2004), based on Laird, et al. (2000)). The FBAT-I permutation test for gene-
environment interaction on a multiplicative scale in case-parent trios. Laird et al assume that
genetic variant G does not affect environmental exposure E, and condition on parental
genotypes to remove any correlation between G and E due to population admixture. Their
test statistic is

T:ZZ (Gis - (_;5) (Eis - Es) 5

where s indexes parental genotypes and i indexes cases within a parental genotype stratum.
They then permute (Gis — Gs) and (Ejs — Es) independently, fixing the stratum s. This is an
exact test of the null hypothesis that G and E are uncorrelated in cases, which is equivalent
to the hypothesis of no interaction under the log-relative-risk model assumed in Laird et al.
(2000):

log P[Y=1]=a+B,G+B,E.

This approach cannot be used to construct exact tests in a logistic regression model, as
independence of G and E in the population then implies dependence among cases. However,
if the event being studied is sufficiently rare, the logistic regression model will be well-
approximated by a log relative risk model and the FBAT-I test will be approximately valid.
The same approach of permuting E and G separately with strata defined by Y can be used in
a case-only or case-control study of unrelated individuals when the disease is rare and G and
E are independent. In studies of unrelated individuals, however, the test lacks the resistance
to confounding by population admixture. In addition, the assumption that E and G are
independent, which is unavoidable in case-parent trio studies, is restrictive in case-control
studies (Mukherjee & Chatterjee 2008, Sec. 5).

Parametric bootstrap

Testing in a regression model framework requires computing the distribution of the test
statistic under sampling from the null-hypothesis model. For instance, when testing the
interaction term in a logistic regression model (3) with two main effects and an interaction
term, the null hypothesis is

logit P[Y=1] =a+B,G+B,E,

as in equation (1). In moderate to large sample sizes, a good approximation to the
distribution of the test statistic under sampling from the true null-hypothesis model is the
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distribution of the test statistic under sampling from the fitted null-hypothesis model. That
is, we fix G and E and generate Y* for each individual as a binary variable satisfying

logit P[Y*=1] =G+B,G+B,E, ®)

where o and fg, fE are estimated from the original data, under the null model (1). We then
compute the test statistic for this simulated sample, and repeat this process many times. The
empirical distribution these provide is an estimate of the test statistic's distribution under the
null. Correspondingly, p-values are calculated as the proportion of simulated test statistics
that are most extreme than the observed value.

If the distribution of the test statistic depends smoothly on the regression parameter values,
which is true in all standard examples, this ‘parametric bootstrap’ approach gives an
asymptotically valid test(Davison & Hinkley 1997, 4.2.3). Like the classical bootstrap, it
samples from a distribution based on the observed data, but the simulations are from a fitted
parametric model rather than the empirical distribution. To obtain a valid test, the fitted
parametric model is chosen so that the null hypothesis is satisfied.

The algorithm for the parametric bootstrap can be summarized in the following steps:

1. Obtain parameter estimates from the original data by fitting a null-hypothesis
model, such as equation (1).

2. Sample responses from the model obtained in Step 1.

3. Compute the test statistic, based on fitting the alternative-hypothesis model such as
equation (3) to the samples obtained in Step 2.

4. Repeat Steps 2 and 3 many times, to obtain an approximate distribution of the test
statistic.

5. Compute the test statistic for the original data, based on fitting the alternative-
hypothesis model such as equation (3).

6. Compute the p-value, by comparing the test statistic in Step 5 to the distribution in
Step 4.

Using simulation, we explore tests of no-interaction in regression models. These are for
univariate outcomes, in samples of unrelated individuals.

We consider two types of genetic data (single and multiple polymorphisms), and of outcome
(binary and continuous). We compare use of three resampling approaches, for a range of
sample sizes.

Data generated for single polymorphisms—We assume G to be a binary exposure,
such as a genetic polymorphism with dominant or recessive inheritance. It is assumed
independent between subjects, and we denote P [G = 1] = pg. We also assume binary E,
independent between subjects, where P [E = 1] = pg and logit pg = a + bG. Hence, b denotes
the log odds ratio of association between G and E.

For binary outcomes, we generate data using the model

Ann Hum Genet. Author manuscript; available in PMC 2012 January 1.
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logit P[Y=1]=a+B.G+B,.E+YE X G.

We set pg = 0.4, a = logit(0.2), b = log(2), resulting in pgjg=0 = 0.2, pgje=1 = 0.333 and
marginal pg = 0.253. We set o = 0.6, g = 0.3 and g = 3, resulting in marginal py = 0.770.
To simulate data under the null hypothesis of no interaction, we set y= 0.

We generate the continuous outcomes as Y ~ N(uy, 1), where the model for the mean py is

E[Y] =G’+,3<;G+ﬁ,5E+~yE X G.

We set pg = 0.8, a = logit(0.2), b = log(2), resulting in pgjg= = 0.2, pgjg=1 = 0.333 and
marginal pg = 0.307. We set a = 2, fg = 2 and fig = 3, resulting in marginal xy = 5.014.
Again, y =0.

Data generated for multiple polymorphisms—Here, the genetic data consists of five
polymorphisms G4, Gy, ...Gs. To induce correlation among the various G;, for each subject
they were generated from the following hierarchical model;

GoBern (0.2)
logit (p;) =logit (0.2) +Gy
G|GoBern (p;) .

Hence, conditional on the latent polymorphism G, the individual G; are independent and
identically distributed, but they are marginally dependent.

We again assume binary E, independent between subjects, where P[E = 1] = pg and logit pg
=a + bGg, with a = logit(0.2), b = log(2). We generated independent binary outcomes Y
where

5 5
logit P[Y=1]=a+ X B, Gi+f,E+ v, EGi.
i= ! : i= !

We generate continuous outcome with Y ~ N(x, 1) where

5 5
p=a+ LB, GitB, E+ X v, EGi.
i=1 i H=S

For both the binary and the continuous outcome we set (84, Sy, Ac3: Bos Bas) = (3, 2, 1,
3, 1) and g = 2. We set o = 0.6 for binary outcome and « = 2 for continuous outcome. To
simulate under the null hypothesis of no interaction we set yG; =0, i € {1, ..., 5}.

Resampling approaches—We compare three resampling approaches. These are;

» A: Keep covariate pairs (G, E) in the single polymorphism situation or covariate 6-
tuples (G, Gy, ..., Gs, E) in the multiple polymorphism situation and permute Y ;

e B: Keep covariate pairs (G, E) in the single polymorphism situation or covariate 6-
tuples (G, Gy, ..., Gs, E) in the multiple polymorphism situation and permute Y
within levels of E;

Ann Hum Genet. Author manuscript; available in PMC 2012 January 1.
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»  C: Follow the algorithm on page 10.

Approach C is the parametric bootstrap; Approaches A and B are non-parametric
permutation methods which might be often used in practice, perhaps erroneously.

In approach C, the null-model used in Steps 1 and 2 of the algorithm on page 10 differs for
single and multiple polymorphisms, and also for binary and continuous outcomes. For a
single polymorphism, we use the models given by fitting equation (1) for binary outcomes,
and fitting the classical linear model with mean as in equation (2) for continuous outcomes.
For multiple polymorphisms, we fit 5 separate models under the null. The models for the
mean of binary outcome are

logitP [ Y=1]=a;+B,, Gi+B,.E, @

and for continuous outcomes we fit classical linear models with mean

E[Y] :(r,—+ﬁ’.(;‘_ Gi+B,.E. (8)

For each simulated dataset, the sample responses for Step 2 of the parametric bootstrap are
then simulated under these fitted models.

Test statistics and significance—Under approaches A, B and C, and for single and
multiple polymorphisms, we compare two types of test statistic. Both are obtained by fitting
models which include interaction terms.

For a single polymorphism, we first fit the model specified in equation (1) for binary
outcomes, and equation (2) for continuous outcomes. We then consider test statistics y and
its corresponding z-statistic, in both cases.

For multiple polymorphisms, we first fit 5 separate models. For binary outcomes model has
mean

logit P[Y=1]=a;+B,, G+, E+yiE X Gi. ©)

For continuous outcomes we fit classical linear models, with mean

E [Y] :(Yi+ﬁi(iiGi+ﬂiEE+)/iE X G;. (10)

The test statistics considered are the maximum of y;, the maximum among the 5 estimates of
the interaction parameters y; obtained above, and the minimum p; obtained testing each y;.

In permutation testing, the empirical p-value is calculated as

(1+.izvll<|s,-| > so))/<1+N>,

where s, is the test statistic from the (unpermuted) original data, s; is the statistic from
permutation i, and N is the number of permutations performed.

Under the parametric bootstrap, the empirical p-value is

Ann Hum Genet. Author manuscript; available in PMC 2012 January 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Bizkova et al.

Page 9

N
'Z]I(|S,‘| > Su) /Ns
i=

where s, is the test statistic from the original data, s; is the statistic under bootstrap i from
the fitted data, and N is the number of bootstrapped datasets.

For valid tests, under the null hypothesis the empirical p-values should be uniformly
distributed on the set i/(N + 1), which for large N is close to the uniform distribution on (0,
1). We will use quantile-quantile plots to compare the distribution of the computed p-values
to the continuous uniform (0, 1) ideal. These are plotted on the — logyg scale to emphasize
the area of interest, i.e. the small p-values. We highlight p-values of 0.05 and 0.01.

Our results are based on 10000 simulations for single polymorphisms, and on 1000
simulations for multiple polymorphisms. Within each simulation we took N = 1000
resamples. Reported results are for sample size n=20, 100 and 500. The patterns of results
were similar for n = 50 and 200, and are omitted. Simulations were performed in R (R
Development Core Team 2007).

Simulation results—Figures 1, 2 and 3 show the results for a single polymorphism and
binary outcomes. The parametric bootstrap approach is systematically conservative for n=20
(i.e. too-big p-values and too-small Type | error rate) but provides acceptable performance
for sample sizes of n=50 and higher. The y statistic slightly outperforms the z statistic. The
performance of the parametric bootstrap further improves with increasing sample size, for
both statistics y and z. Permutation method A, using statistic y results in poor performance
across the range of sample sizes. For sample size of n = 20 it is conservative. For higher
sample sizes it is anti-conservative (i.e. too-small p-values and too-large Type I error rate)
Using the z statistic is conservative up until n=200, when the size is approximately nominal.
Permutation method B, using statistic y results in poorly-behaved anti-conservative tests
across the whole range of sample sizes. Using the z statistic it provides invalid answers up to
a sample size of n=200, where it starts being approximately correct.

For multiple polymorphisms and binary outcomes, seen in Figure 4, the parametric bootstrap
performance was acceptable for n=100 and larger under either test statistic. Methods A gave
acceptable performance for n=500 and above using z but not y, as did Method B.

For single polymorphisms and continuous outcomes, shown in Figures 5, 6 and 7, the
parametric bootstrap proves to be a valid approximate approach throughout, using either y or
z. The accuracy of the p-values increases with sample size, though the performance is fairly
good even for n = 20. For methods A and B, using test statistic y is again inappropriate over
the whole range of sample sizes, being systematically conservative. Using z provides
approximately valid answers, over the whole range of sample sizes.

For multiple polymporphisms and continuous outcomes, the results were similar to the
single polymorphism setting. The parametric bootstrap provides approximately valid test
using both statistics, with the accuracy increasing with sample size. Using the maximum y
test statistic, methods A and B both provide conservative tests for all sample sizes. Using
methods A and B, the minimum p statistic provides approximately valid tests for all studied
sample sizes. Figure 8 illustrates this for a sample size of 500.

Ann Hum Genet. Author manuscript; available in PMC 2012 January 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Bizkova et al.

Rationale

Page 10

The difficulty in constructing permutation tests of interaction arises because the distribution
of the test statistic will typically depend on g and g and the association between G and E,
and it is not usually possible to construct permutations that preserve these main effects. The
parametric bootstrap evaluates the distribution of the test statistic at the estimated Sg and fg
and the observed G and E, and so will be valid when these estimates are close to the true
value and the observations are representative of the population. In our simulations, it appears
that this is practically the case, even with modest sample sizes.

If the test statistic had a distribution that was exactly or approximately the same for all (5,
PE) a permutation test that was valid for one value of (S, fg) would be exactly or
approximately valid for all (5g, Sg). This is the case for the FBAT-I test. Permuting G and E
separately will preserve the association between G and E, when they are independent, and
the distribution of the test statistic does not depend on (fg, fg).

In a linear or logistic regression model, the parameter estimate y has an asymptotically
Normal distribution. Dividing y by its estimated standard error gives a test statistic that,
asymptotically, has a standard Normal distribution under the null, regardless of the value of
other parameters in the model. This result extends to multiple parameters such as the set of k
estimated interaction coefficients between E and many polymorphisms Gy, G, ..., G,
which asymptotically have a multivariate Normal distribution. Dividing each parameter
estimate by its standard error gives a multivariate Normal distribution where each
standardized parameter estimate is N(O, 1) under the null, and with correlation between
estimates depending on the correlations among E, Gy, ..., Gy.

If, with multiple polymorphisms, the test statistic is the minimum p-value, its distribution
will depend only on the distribution of the standardized parameter estimates. In large
samples this distribution will be the same for all (g, Sg), and even in small samples it will
be approximately free of (yg, fg). Now, a permutation test that fixes E and G and permutes
Y will have the correct associations among E, Gy, ..., Gy but not the correct (8, SE), S0 as
the test statistic's distribution does not depend on (8g, Sg) in large samples, the tests will be
asymptotically valid.

For tests of main effects, permutation approaches are exactly in any size sample, and for
arbitrary test statistics. As we have seen, permutation tests for interaction are only
approximately valid, and departures from accuracy will depend on both sample size and
choice of test statistic.

We believe that the permutation tests are conservative for linear regression because setting
the main effects to zero puts the variation explained by the main effects back into the
residual variance. Therefore, the variance is too large and this makes the p-value too large,
resulting in a conservative test. We believe the permutation tests tend to be liberal for
logistic regression because of the non-collapsibility of the logistic model.

Discussion

The statistical literature shows that exact permutation tests for interactions are not available
in most situations. We have described two permutation tests that have been used in practice
for interaction testing, and showed that they are not exact. The error in the tests can be
substantial. A practical alternative for interaction testing is the parametric bootstrap. In our
simulations the parametric bootstrap, while not exact, always outperformed the invalid
permutation tests. Since the parametric bootstrap performs better and does not require
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greater computational effort, it could be recommended for scenarios similar to our
simulations.

We contrasted two types of test statistics, based on approximately pivotal (i.e. based on z)
and not pivotal (i.e. based on 7). For the parametric bootstrap these test statistics gave
similar performance in our simulations, but the Type | error rate using permutation methods
was substantially less accurate when using non-pivotal quantities. Permutation methods did
perform acceptably when the sample size was large, and when approximately-pivotal test
statistics were used.

It is important to remember that neither the parametric bootstrap nor the permutation tests
are exact tests for interaction in small samples. It is also important to remember that, in
contrast to the hypothesis of no association, the hypothesis of no interaction is intrinsically
dependent on the form of the model. Any approach to testing for interaction must therefore
be model-based to some extent.

References

Anderson MJ. Permutation tests for univariate and multivariate analysis of variance and regression.
Can. J. Fish. Aquat. Sci. 2001; 58:626-639.

Anderson MJ, Robinson J. Permutation tests for linear models. Australian & New Zealand Journal of
Statistics. 2001; 43:75-88.

Andrulionyte L, et al. Single Nucleotide Polymorphisms of the Peroxisome Proliferator Activated
Receptor-a Gene (PPARA) Influence the Conversion From Impaired Glucose Tolerance to Type 2
Diabetes. Diabetes. 2007; 56:1181-1186. [PubMed: 17317762]

Chase K, et al. Interaction between the X chromosome and an autosome regulates size sexual
dimorphism in Portuguese Water Dogs. Genome Res. 2005; 15:1820-1824. [PubMed: 16339380]

Chen J, et al. A Partially Linear Tree-based Regression Model for Assessing Complex Joint Gene—
gene and Gene—environment Effects. Genetic Epidemiology. 2007; 31:238-251. [PubMed:
17266115]

Cox DR. Interaction (with discussion). International Statistical Review. 1984; 52:1-31.
Cox DR, Hinkley DV. Theoretical Statistics. 1997 CRC Press.

Davison, AC.; Hinkley, DV. Bootstrap Methods and Their Applications. Cambridge University Press;
1997.

Dudoit S, et al. Multiple hypothesis testing in microarray experiments. Statistical Science. 2003;
18:71-103.

Edgington, ES. Randomization Tests. Marcel Dekker; New York: 1987.
Ernst MD. Permutation methods: A basis for exact inference. Statistical Science. 2004; 19:676-685.

Faulkner GJ, et al. The regulated retrotransposon transcriptome of mammalian cells. Nature Genetics.
2009; 41:563-571. [PubMed: 19377475]

FBAT Toolkit Team. Family Based Association Testing software. 2004

Fisher, RA. The Design of Experiments. Edinburgh; Oliver and Boyd: 1935.

Freedman D, Lane D. A nonstochastic interpretation of reported significance levels. J. Bus. Econom.
Statist. 1983; 1:292-298.

Hauck WW, Donner A. Wald's Test as Applied to Hypotheses in Logit Analysis. Journal of the
American Statistical Association. 1977; 72:851-853.

Higgins, JJ. An Introduction to Modern Nonparametric Statistics. Thomson, Brooks/Cole; Pacific
Grove, CA: 2004.

Hu Y, et al. Identification of Association of Common AGGF1 Variants with Susceptibility for Klippel-
Trenaunay Syndrome Using the Structure Association Program. Annals of Human Genetics. 2008;
72:636-643. [PubMed: 18564129]

Laird NM, et al. Implementing a Unified Approach to Family-Based Tests of Association. Genetic
Epidemiology. 2000; 19(Suppl 1):36-42.

Ann Hum Genet. Author manuscript; available in PMC 2012 January 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Bizkova et al.

Page 12

Leak TS, et al. Variants in Intron 13 of the ELMO1 Gene are Associated with Diabetic Nephropathy in
African Americans. Annals of Human Genetics. 2009; 73:152-159. [PubMed: 19183347]

Mei L, et al. Evaluating gene x gene and gene x smoking interaction in rheumatoid arthritis using
candidate genes in GAW15. BMC Proceedings. 2007; 17

Mukherjee B, Chatterjee N. Exploiting Gene-Environment Independence for Analysis of Case—Control
Studies: An Empirical Bayes-Type Shrinkage Estimator to Trade-Off between Bias and
Efficiency. Biometrics. 2008; 64:685-694. [PubMed: 18162111]

R Development Core Team. R: A language and environment for statistical computing. R Foundation
for Statistical Computing; Vienna, Austria: 2007. ISBN 3-900051-07-3

Rana BK, et al. Population-Based Sample Reveals Gene-Gender Interactions in Blood Pressure in
White Americans. Hypertension. 2007; 49:96-106. [PubMed: 17159089]

Ritchie MD, et al. Multifactor-Dimensionality Reduction Reveals High-Order Interactions among
Estrogen-Metabolism Genes in Sporadic Breast Cancer. Am J Hum Genet. 2001; 69:138-147.
[PubMed: 11404819]

Ruczinski |, et al. Logic Regression. Journal of Computational and Graphical Statistics. 2003; 12:475—
511.

Ann Hum Genet. Author manuscript; available in PMC 2012 January 1.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Bizkova et al.

Figure 1.

QQ plots for — logyg of p-values of y and z statistics for binary outcome, with a single
polymorphism, under two permutations and a parametric bootstrap. Sample size of 20.
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Figure 2.

QQ plots for — logyg of p-values of y and z statistics for binary outcome, with a single
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polymorphism, under two permutations and a parametric bootstrap. Sample size of 100.
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Figure 3.
QQ plots for — logyg of p-values of y and z statistics for binary outcome, with a single
polymorphism, under two permutations and a parametric bootstrap. Sample size of 500.

Ann Hum Genet. Author manuscript; available in PMC 2012 January 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Bizkova et al.

Page 16

Figure 4.

QQ plots for — logyg of p-values of maximum y and minimum p statistics for binary
outcome, with multiple polymorphisms, under two permutations and a parametric bootstrap.
Sample size of 500.
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Figure 5.

QQ plots for — logyg of p-values of y and z statistics for Normally distributed outcome, with
a single polymorphism, under two permutations and a parametric bootstrap. Sample size of
20.

Ann Hum Genet. Author manuscript; available in PMC 2012 January 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Bizkova et al.

Page 18

Figure 6.

QQ plots for — logyg of p-values of y and z statistics for Normally distributed outcome, with
a single polymorphism, under two permutations and a parametric bootstrap. Sample size of
100.
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QQ plots for — logyg of p-values of y and z statistics for Normally distributed outcome, with
a single polymorphism, under two permutations and a parametric bootstrap. Sample size of

500.
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QQ plots for — logyg of p-values of maximu y and minimum p statistics for Normally
distributed outcome, with multiple polymorphisms, under two permutations and a
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