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Abstract
Relating stimulus properties to the response properties of individual neurons and neuronal networks
is a major goal of sensory research. Many investigators implant electrode arrays in multiple brain
areas and record from chronically implanted electrodes over time to answer a variety of questions.
Technical challenges related to analyzing large-scale neuronal recording data are not trivial. Several
analysis methods traditionally used by neurophysiologists do not account for dependencies in the
data that are inherent in multi-electrode recordings. In addition, when neurophysiological data are
not best modeled by the normal distribution and when the variables of interest may not be linearly
related, extensions of the linear modeling techniques are recommended. A variety of methods exist
to analyze correlated data, even when data are not normally distributed and the relationships are
nonlinear. Here we review expansions of the Generalized Linear Model designed to address these
data properties. Such methods are used in other research fields, and the application to large-scale
neuronal recording data will enable investigators to determine the variable properties that
convincingly contribute to the variances in the observed neuronal measures. Standard measures of
neuron properties such as response magnitudes can be analyzed using these methods, and measures
of neuronal network activity such as spike timing correlations can be analyzed as well. We have done
just that in recordings from 100-electrode arrays implanted in the primary somatosensory cortex of
owl monkeys. Here we illustrate how one example method, Generalized Estimating Equations
analysis, is a useful method to apply to large-scale neuronal recordings.
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1. Introduction
1.1 Motivation

Recording large-scale neuronal data in vivo is an expanding field; however, methods that can
best describe and quantify the results of these recordings are essential to utilizing these data.
Our laboratory with our colleagues have implanted multi-electrode arrays into somatosensory
and motor regions of the cortex in non-human primates (e.g., Nicolelis et al., 1998; Jain et al.,
2001; Reed et al., 2008), and we recognize the challenges that performing such experiments
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and analyzing these data present. Data can be analyzed in traditional ways, treating
simultaneous neuron recording as an efficient means of increasing the sample size of neurons
recorded from each monkey. However, these traditional analyses rely on the assumption that
the data collected from each neuron is independent, which may not be a valid assumption.
Thus, we intend to introduce alternative analysis methods that may not be widely considered
or used in current neurophysiological research. From in vivo recordings, computational
neuroscientists often make neural network models that can include complex properties of real
neurons, such as the dependence of the observed firing rate on the spiking history (e.g., Lewi,
Butera, & Paninski, 2009). Such models have been used to understand the properties of
individual neurons considered in isolation from the recorded population (e.g., Pei et al.,
2009) as well as to understand network properties (e.g., Deadwyler & Hampson, 1997, review).
Here, we review selected methods for analyzing the variance of in vivo recording measures of
large-scale neuronal populations, while we intend for neural network modeling to be addressed
by others.

In particular, we focused on two extensions of the Generalized Linear Model (McCullagh &
Nelder, 1989), the Generalized Estimating Equations (Liang & Zeger, 1986; Zeger & Liang,
1986) and the Generalized Linear Mixed Models (e.g., Laird & Ware, 1982; Searle, Casella,
& McCulloch, 1992), as practical methods of estimating the contributions of selected factors
to the variance in the dependent measures of interest due to the existence of correlations
inherent in large-scale recording experiments. Forms of the Generalized Linear Models are
already commonly used to model individual neuron properties, with recent examples from
Lewi, Butera, & Paninski (2009) and Song et al. (2009); however, we did not find examples
of analysis of neuron populations using Generalized Linear Models in our recent search
(Pubmed, September 1, 2009). We hope that a review of analysis methods and practical
considerations for their use will aid researchers in making decisions about how to analyze the
complex data sets obtained from large-scale neuronal recordings.

1.2 Use of generalized linear model analysis in other research fields
Reviews have been written for other fields to encourage the use of the Generalized Estimating
Equations, Generalized Linear Mixed Models, and other extensions of the Generalized Linear
Models. Edwards (2000) described both Generalized Estimating Equations and Generalized
Linear Mixed Models analyses for biomedical longitudinal studies. Other examples include
behavioral research (Lee et al., 2007); ecology (Bolker et al., 2008); epidemiology (Hanley et
al., 2003); psychology and social sciences (Tuerlinckx et al., 2006); and even political science
(Zorn, 2001) and organizational research (Ballinger, 2004). Within most of these reviews, the
term “subjects” is applied to people (patients, participants in research, etc.) for the purpose of
statistical analysis of “between-subjects” or “within-subjects” effects on the variance of the
dependent variable of interest. The term “subjects” is a general one, and for longitudinal data
or other studies with clustered observations, it refers to the variable for which observations
may be correlated (with respect to standard errors). In many neurophysiological studies,
“subjects” are individual neurons. These neurons are nested within individuals, monkeys, in
our case. This situation is analogous to studies in which human participants are nested within
communities, for example. Most neurophysiological studies, especially those on non-human
primates, provide the number of animals used in the experiment, but pool all of the neurons
across animals so that the number of subjects for analysis of variance is large (number of
neurons) instead of small (number of animals). By incorporating the nested effects of neurons
within animals, neurophysiologists can continue to investigate neurons as subjects without
violating important statistical assumptions (e.g., Kenny & Judd, 1986) as long as appropriate
measures are used to try to account for the likely correlations within subjects. Section 2 of this
review describes this issue and how extensions of the Generalized Linear Model can be used
to address multielectrode recording data. Now that these methods are becoming more widely

Reed and Kaas Page 2

Neural Netw. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



used in other fields and many options for these analyses are included in commercially available
statistical software packages, re-introducing Generalized Estimating Equations and
Generalized Linear Mixed Models analysis for applicability to parallel neural recordings
appears to be overdue. However, as we will describe, we do not have ideal answers for all of
the questions that arise when analyzing complex neuronal data.

2. Complexities of parallel neuronal recording data and how to address them
2.1 Complexities of parallel neuronal recordings and experimental designs

The use of multi-electrode array to simultaneously record from small populations of neurons
allows neuroscientists to study how neural ensembles may work (e.g., Buzsáki, 2004, review)
and has played a role in the study of brain-machine-interfaces for neuroprosthetics (e.g.,
Chapin, 2004, review). There are diverse questions that can be addressed using large-scale
neuronal recordings. Here, we consider issues that typically apply to such studies. While
individual experiments have specific design considerations, many designs are aimed at
recording the responses of large numbers of individual neurons in order to relate changes in
activity to specific sensory or behavioral conditions. Some sensory experiments can be more
easily performed in anesthetized animals than in awake animals, while behavioral experiments
require animals to behave in the awake state. All of our experiments have been performed in
lightly anesthetized animals.

Experiments can also be divided into “chronic” and “acute” recording categories. We have
implanted microwire multi-electrode arrays chronically for long-term studies in primary
somatosensory and primary motor cortex of squirrel monkeys (Jain et al., 2001), and we have
implanted the 100-electrode silicon “Utah” array in primary somatosensory cortex of owl
monkeys (Reed et al., 2008) for acute studies (in which the electrodes are not fixed permanently
as for animal recovery experiments). New World monkeys (such as squirrel monkeys and owl
monkeys) are often used for multielectrode recording studies because many cortical areas of
interest are available on the cortical surface rather than buried in a sulcus. We chose owl
monkeys because the area of interest in our case, area 3b, is not buried in the central sulcus,
and the somatosensory cortex has been well studied (e.g., Cusick et al., 1989; Garraghty et al.,
1989; Merzenich et al., 1978; Nicolelis et al., 2003). The acute recording experiment is a
relatively simple design that still requires special consideration. In such experiments,
recordings are made from the multiple electrodes implanted in one subject during a single
experiment, and data are collected from multiple subjects to obtain the sample population of
neuronal recordings. A common, but more complicated experiment is the chronic or
longitudinal recording experiment. In such experiments, electrodes are chronically implanted
so that the position of the electrodes is the same over time, and the recordings are made
periodically over an extended time, which sometimes encompasses a period in which changes
are expected to occur (e.g., Jain et al., 2001). For example, long-term recordings could be made
in behaving animals before learning a task and after learning a task or before and after injury
or treatment. Even in acute experiments, signals from the same neurons can be recorded under
different conditions within the recording session, but unlike chronic recording studies, these
neurons are not tracked over months of time. As the ability to track neuronal signals over days
to months becomes more reliable (such as through the recent single neuron stability
assessments introduced by Dickey et al., 2009), analysis methods concerned with the
complexities of longitudinal recordings will increase in importance.

From a practical standpoint, these data require advanced techniques to process the signals to
isolate single neuron signals from multi-neuron clusters (called “spike sorting”), careful
organization and data management, and high-level analysis techniques. These data can be
analyzed in traditional ways by looking at neurons individually for their response properties
or looking at correlations across neurons. Often “snapshots” of neuronal activity distributed
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across the electrode arrays are generated from these data (e.g., Rousche et al., 1999 [rat whisker
representation]; Ghazanfar & Nicolelis, 1999 [rat whisker representation]; Reed et al., 2008
[monkey hand representation]); however, how such snapshots can be analyzed rather than
described has not been clear. A snapshot of peak firing rates across the 100-electrode array in
the primary somatosensory cortex hand representation of one owl monkey under two different
conditions is shown in Fig. 1 as an example to illustrate changes that can be visualized.

In somatosensory research, we are interested in contributions to the responses from stimulation
across different parts of the skin to different parts of the brain. How neurons may integrate
information from within and outside of their receptive fields is one question we ask to determine
how the cortex processes tactile stimuli. Our research seeks to address how stimuli presented
with varying spatial and temporal relationships affect neuron response properties in primary
somatosensory cortex to reveal widespread stimulus integration. Here the term “widespread
interaction” applies to when the effects of stimuli on the neurons occur when the stimuli are
presented widely separated in space or time. We therefore categorize our stimulus parameters
to use as predictor variables for analysis of variance (ANOVA) when we analyze these data to
quantify spatiotemporal stimulus interactions. Data from both acute and chronic recording
studies have properties that differ from those assumed by typical ANOVA procedures based
on linear model theory. In the following sections, we illustrate properties of parallel neuronal
recordings that could be better analyzed by extensions of the Generalized Linear Model. We
have selected a particular route for analyzing the data, which we justify and illustrate in the
following sections.

2.2 Correlated instead of independent observations in multi-neuron recordings
The data from large-scale neuronal recordings are likely to be correlated, but the types of
correlations may vary depending on the experiment. Generally, the neuronal signals recorded
during even acute experiments without repeated measures designs are best considered to be
correlated rather than independent observations. Specifically, the errors in the predictions of
the neuronal measures may be correlated. This violates the assumption of linear model theory
that the error is distributed independently with a zero mean and constant variance (Gill,
2001, p. 2). Biologically, correlations could take the form of the neurons in a particular brain
area behaving similarly under the given experimental conditions since they are likely to be
interconnected; thus, within each experimental human or animal subject, the neuron measures
are correlated rather than independent. In a chronic recording experiment, measures of an
individual neuron recorded at one time would also be expected to correlate with measures of
the same neuron recorded at a later time. Many traditional analyses disregard the likely
correlations and assume that each neuron measure is an independent observation. Most
analyses also tend to assume that individual subjects do not vary enough to prevent pooling of
the neuronal data between subjects without regard to subject identity. This may prove to be a
reasonable assumption, but it seems worth considering.

An important article on the topic of assuming that neuron responses are independent
observations in analysis of variance was published by Kenny and Judd in 1986. The review
focused on identifying “nonindependent” observations and examining the consequences of
violating the independence assumption of analysis of variance (ANOVA). When neurons are
used as subjects and observations made from these neurons under different stimulus conditions
are assumed to be independent in order to meet the assumptions of linear model theory, possible
bias in the analysis can arise. Here we briefly recall the main points from Kenny and Judd
(1986). Three main types of nonindependence were identified for typical neurophysiological
recordings: “nonindependence due to groups”, “nonindependence due to sequence”, and
“nonindependence due to space”. Nonindependence due to groups refers to correlations
between members of a functional group; perhaps all of the neural responses collected from one
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subject will be grouped and slightly different from all of the responses collected from a second
subject. Or perhaps neurons within an individual subject are linked in functional groups and
these neurons will have similar responses and differ from other neurons outside the functional
group. Nonindependence due to sequence will occur when observations are taken from the
same neuron unit over time, as it is likely that observations taken close together in time will
be more similar than observations that are separated by more time. Finally, nonindependence
due to space occurs when neighbors in space are more similar than neurons farther away
spatially; which is a reasonable assumption for most brain areas.

Kenny and Judd (1986) and others have demonstrated the general consequences of violating
the assumption of independence; therefore, we do not repeat the derivations, but summarize
the key points. When these effects of nonindependence are ignored, bias in the mean square
for the independent variable and in the mean square for error can affect the F ratios in ANOVA
and alter the type I errors in either direction (Kenny & Judd, 1986). Treating neurons collected
from individual animals as independent greatly increases the sample size, and when between-
subjects differences are the measures of interest, the type I errors (false positives) can be
increased (e.g., Snijders & Bosker, 1999, p. 15). When within-subject differences are of
interest, the type I errors can be too low (e.g., Snijders & Bosker, 1999, p. 16). For instance,
if the data are correlated but analyzed as though they are independent, the estimate of the
variance may be larger than the estimate that would be obtained when the correlation is included
in the analysis; and this affects the hypothesis testing (e.g., Fitzmaurice, Laird, and Ware,
2004, p. 44). When nonindependence due to groups (e.g., nesting of neurons within monkeys)
is ignored, the bias introduced depends on the real correlation and the true effect of the
independent variables on the dependent variables, as demonstrated in detail by Kenny and Judd
(1986). Thus, parallel neuronal recording experiments with or without repeated measures
within neurons should be analyzed using methods that take into account the potential for neuron
measures to be correlated in the ways outlined by Kenny and Judd (1986).

2.3 Distribution assumption may be violated by neural recording data
The distribution assumption of linear model theory may be violated by parallel recordings of
neuronal activity (i.e., it is not universally true that neuronal recording data are non-normally
distributed). When the data do not fit the normal (Gaussian) distribution, the generalized linear
model extends the linear model theory to accommodate measures which were drawn from non-
normal distributions (Gill, 2001, p. 2) to select a variety of distributions from the exponential
family of distributions (Hardin & Hilbe, 2003, p. 7-8). To be clear, the term “exponential
family” does not imply restrictive relationship to the exponential probability density function.
Instead, this refers to a method in which the terms in the probability functions are moved to
the exponent to transform the functions to a common notation that is mathematically useful
(Gill, 2001, p. 9-10). A “link function” is added to Generalized Linear Models to define the
relationship between the linear predictor and the expected value from the mean of the dependent
variable (e.g., Zeger & Liang, 1986; Gill, 2001, p. 30; Hardin & Hilbe, 2003, p. 7-8). Thus,
the generalized linear model should be used when the distribution of the dependent variable is
believed to be non-normal or even discontinuous, as in the binomial distribution; and when the
relationship between the dependent variable and the predictor variables may not be linear (e.g.,
McCullagh & Nelder, 1989, review).

Models of the data will fit better when the appropriate probability distribution and link
functions are selected, and the best fitting parameters can be tested within the model analysis.
One can perform Kolmogorov-Smirnov tests and create Probability-Probability plots to assess
whether the experimental distribution differs from the normal distribution (or other
distributions). Inappropriate distribution and link function choices may result in under- or over-
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estimating the predicted values. One can use the Generalized Linear Models analyses since
these methods generalize to data distributions beyond the normal distribution.

2.4 How to analyze neural recording data to avoid violating assumptions
Given some examples in this Section of the ways in which large-scale neuronal recording data
can differ from the assumptions of standard linear model theory, the alternative methods should
be able to account for these violations or be robust in the face of violations. We review two
extensions of generalized linear models that are well-suited options for analyzing the sources
variance associated with measures of interest from parallel neuronal recordings. Generalized
Estimating Equations analysis was developed for longitudinal studies to account for the
presence of clustered or correlated data (e.g., Liang & Zeger, 1986; Zeger & Liang, 1986;
Hardin & Hilbe, 2003). Similarly, Generalized Linear Mixed Models can be used for clustered
data and unbalanced longitudinal studies, particularly when effects within subjects are of
experimental interest (review, Breslow & Clayton, 1993; tutorial, Cnaan, Laird, & Slasor,
1997). Such methods should be considered for large-scale neuronal recordings, specifically
due to the presence of correlated data as outlined by Kenny and Judd (1986) and for cases in
which the data are not normally distributed (e.g., count data).

For the remainder of this article, we explain why the Generalized Estimating Equations and
Generalized Linear Mixed Models analyses could be employed to analyze parallel recording
data and highlight the differences between the two approaches (Section 3). We then illustrate
the use of one approach, Generalized Estimating Equations analysis, with neurophysiological
data from our experiments in Section 4. There are multiple alternative analysis methods
depending on the research question, some of which are discussed in Section 5; however, we
focus on Generalized Estimating Equations and Generalized Linear Mixed Models as two
practical methods.

3. Generalized Estimating Equations and Generalized Linear Mixed Models
analysis for neuronal recordings
3.1 Comparisons of Generalized Estimating Equations and Generalized Linear Mixed Models

Both Generalized Estimating Equations and Generalized Linear Mixed Models use the
correlation or covariance between observations when modeling longitudinal data. Longitudinal
studies can be generally divided into two categories which affect their analysis. In the first
category, the experimental focus is on how predictor variables influence the dependent
variable, and the number of subjects must be larger than the number of observations per subject.
In the second category, the experimental focus is on the correlation or within-subjects effects,
and the number of experimental subjects may be small. (Diggle et al., 2002, p. 20) Generalized
Estimating Equations are well-suited to address the first category of experiments and
Generalized Linear Mixed Models are well-suited to address the second category.

Generalized Estimating Equations analysis is categorized as a marginal method which allows
interpretation of population-average effects. Mixed models are random effects models which
allow both the population effects and subject specific effects to be interpreted. (e.g., Edwards,
2000) Regarding the issue of correlated error in the data observations within subjects,
dependence can be considered an interesting focus to be investigated or a nuisance that must
be taken into account to properly investigate between subjects (Snijders & Bosker, 1999, p.
6-8). How non-independence is regarded by the investigator depends on the research questions.
Generalized Estimating Equations regards dependence as a nuisance; thus, Generalized
Estimating Equations may be the analysis method of choice when population-average effects
between subjects are of interest. Mixed models include random effects for the within-subject
variables and dependence within these effects is regarded as a characteristic of interest. Mixed
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models are preferred when within- subject effects are important to answer the research
questions. When the data are normally distributed and related to the prediction with the (linear)
identity link, then the difference between the solutions from the two methods is slight. But
when the data are non-normal and nonlinear, there can be differences in the results derived
from the two methods.

Generalized Estimating Equations analysis requires large sample sizes, and Generalized Linear
Mixed Models are preferred for small samples. Generalized Estimating Equations may
underestimate the variance in the samples and have inflated type I errors (false positives) when
the number of subjects with repeated observations is less than 40 (e.g., Kauermann & Carroll,
2001; Mancl & DeRouen, 2001; Lu et al., 2007). However, Lu et al. (2007) compared two
correction methods (Kauermann & Carroll, 2001; Mancl & DeRouen, 2001) for small samples
using Generalized Estimating Equations analysis and proposed corrections that may perform
well when the number of samples (with repeated observations) is 10 or greater. The repeated
measures taken within these samples should be balanced (taken at specific time points across
subjects) and as complete as possible (few missing observations) when using the Generalized
Estimating Equations approach. Neurophysiological experiments may comply with these
guidelines better than some studies requiring observations from human subjects at strict time
points.

It is not uncommon to have missing observations in any experiment, and Generalized
Estimating Equations analysis and Generalized Linear Mixed Models have slight differences
in their tolerances for missing data. Generalized Estimating Equations can account for missing
values; however, the missing values are assumed to occur completely at random (MCAR) and
without intervention by the investigator, the routine will proceed with an analysis of only
complete observations (e.g., Hardin & Hilbe, 2003, p. 122). This method is still likely to be
appropriate when the data are missing due to a dropout process (like losing the neuronal signal
for the last observations in a series) if the process is not related to the parameters of interest
(Hardin & Hilbe, 2003, p. 127). Generalized Linear Mixed Models is mathematically valid for
data missing at random (MAR) and MCAR data. MAR is the term applied when the mechanism
that causes the missing observations does not depend on the unobserved data. MCAR refers
to the case when the probability of an observation being missing does not depend on the
observed or the unobserved data (e.g, Hardin & Hilbe, 2003, p. 122-123). The problem when
the missing data are “nonignorable” or are missing in a non-random pattern (MNAR) is briefly
discussed in section 5.2 on “Limitations”. Here we focus on analyses that can be performed
using the methods commonly available in statistical software for more widespread
applicability, but readers are encouraged to investigate alternatives and extensions appropriate
for the data.

3.2 Note on practicality of use
An incomplete list of software packages that contain commands for the Generalized Estimating
Equations routine include SAS (SAS Institute Inc.), SPSS (SPSS Inc.), and Stata (Stata Corp).
For a review of software for performing Generalized Estimating Equations analysis, see Horton
and Lipsitz (1999). Note that their 1999 review excluded SPSS, which currently includes the
Generalized Estimating Equations analysis. See Bolker et al. (2008) for a list of software
packages for Generalized Linear Mixed Models analysis. Each software package has different
directions and implementations, and the current review does not specify the steps to perform
the analysis for each package. However, the ability for researchers and students to employ the
Generalized Estimating Equations and Generalized Linear Mixed Models through the use of
standard statistical software makes these methods relatively practical for widespread use to
analyze large-scale neuronal recordings, particularly with the help of statisticians as needed.
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4. Illustration of use of Generalized Estimating Equations for neuronal
recording data

For our research question, we selected Generalized Estimating Equations instead of
Generalized Linear Mixed Models for a few reasons. Our research question was specific to
population average effects and we did not intend to determine neuron-specific predictions for
our effects. We measured neuron responses to several stimulation conditions over short periods
of time and our simultaneously recorded neuronal data were likely to be correlated, we selected
the Generalized Estimating Equations analysis to investigate the sources of the variance related
to these neuron responses while accounting for the aspect of correlation that was most important
in our experiment: the correlation within individual neurons measured over short periods of
time. Of a practical consideration, our data were highly complex and large numbers of neurons
were sampled from a small number of monkeys, and this proved computationally challenging.
In addition, one feature of the Generalized Estimating Equations that we have highlighted is
the ability consistently estimate the parameters even when the correlation structure is mis-
specified, as we illustrate in this section. For other research situations, including those related
to subject-specific effects, Generalized Linear Mixed Models analysis is recommended.

4.1 Methods to obtain example data
Here we assume that data has been collected and measures of relevance have been determined.
We obtained our measures from recordings using a 100-electrode array implanted in anterior
parietal cortex of three adult owl monkeys (Aotus nancymaae) following the guidelines
established by the National Institutes of Health and the Vanderbilt University Animal Care and
Use Committee, and using methods described previously (Reed et al., 2008, Reed et al., in
press). Computer-controlled pulse stimuli were delivered by two motor systems (Teflon contact
surface, 1 mm diameter) that indented the skin 0.5 mm for 0.5 s, followed by 2.0 s off of the
skin were presented for at least 100 trials (~ 4 min). These stimuli were selected for
experimental purposes beyond the scope of this review, but in general were used to investigate
how spatiotemporal stimulus relationships affected neuron response properties.

4.2 Pre-processing methods for the sample data set and hypothesis
For simplicity in this example, we focused on only one neuronal response property: response
magnitude in the form of peak firing rate (spikes/s). Peak firing rate measures were calculated
using Matlab (The Mathworks, Natick, MA). Data were compiled in Excel (Microsoft) and
imported into SPSS 17.0 for summary statistical analysis. Generalized Estimating Equations
routines were performed to determine the convincing contributions to the variance in the peak
firing rate measures. We related categorical factors (or predictor variables) to the variance
observed in the measure of interest, peak firing rate. Data were classified based on the stimulus
conditions and the relationship of individual neurons to the stimulus conditions. These stimulus
conditions were the categorical predictors we expected would be associated with the variance
in the neuronal measures. With the two tactile stimulus probes, we stimulated paired locations
on the hand which could include adjacent digits or nonadjacent digits. The two tactile stimuli
were presented at varying temporal onset asynchronies including 0 ms (simultaneous) and 30,
50, and 100 ms. The measurement intervals were consistent for the neurons recorded
throughout the experiment. We selected data to include in the analysis such that the preferred
stimulus for a given neuron was presented second and the non-preferred stimulus was presented
first, for the purposes of addressing our experimental hypothesis.

In addition to calculating response properties of the neurons, we determined the relationship
of the tactile stimulus probes to the neuron’s receptive field. To do this, we examined the firing
rates of the neurons across all of the given set of stimulus locations on the hand. Since we used
a classification measure based on the firing rate in response to indentation stimulation, we used
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the term “Response Field” to refer to the classification since the full receptive field properties
of the neuron were not characterized. When the peak firing rate (after the average baseline
firing rate was subtracted) was greater than or equal to 3 times the standard deviation of the
average firing rate for the population of neurons recorded on the electrode array, then that
stimulus site was classified as “Inside” the neuron’s Response Field. Otherwise, the stimulus
site was classified as “Outside” the neuron’s Response Field. Since the stimulus sites were
paired, the combination of the Response Field categories for each single stimulus site was used
to classify the Response Field relationship of the neuron to the two (paired) stimuli. Thus, the
final categories for Response Field were: 1) both probes Outside of the Response Field
(OUT_OUT); 2) one probe Inside the Response Field and one probe Outside (IN_OUT); and
3) both probes Inside the Response Field (IN_IN). This classification was important to our
hypothesis that the location of the stimulation relative to the Response Field of the neurons
would impact the changes in their firing rates. See Fig. 2 for a schematic representation of the
predictor variables used in this example data set.

Our experiments involved presentations of paired stimuli that varied in spatial and temporal
characteristics in relation to each other and to the Response Fields of the neurons, and we
formulated several hypotheses as follows. 1) We expected that when two stimuli were presented
to locations on the hand with different temporal onset asynchronies, the presence of the first,
non-preferred stimulus would suppress the response (decrease the peak firing rate) to the
second, preferred stimulus. 2) The location of the paired stimulus probes may affect the peak
firing rate of neurons, since stimuli close in proximity could have a suppressive or additive
effect on the peak firing rate. 3) Since neuron firing rates are related to the location of stimuli
within their receptive fields, we predicted that when both stimulus probes were outside the
Response Field, the peak firing rate would be low. When one stimulus probe was inside the
Response Field and the other probe was outside the Response Field, we predicted that the peak
firing rate would be higher, and the highest peak firing rates would occur when both stimulus
probes were inside the Response Field. 4) Finally, since all three of these effects act in concert,
we expected possible interactions between these factors. For example, the spatial proximity
could affect which level of the temporal onset asynchrony condition caused the greatest
suppression, and the relationship of the stimulus probes to the Response Fields could affect
these firing rate decreases.

4.3 General use of Generalized Estimating Equations
The Generalized Estimating Equations uses quasi-likelihood estimation for longitudinal data
analysis of clustered or correlated data. Estimating equations are derived by specification of
the quasi-likelihood for the marginal distributions of the observed (dependent) variable and
the working correlation matrix, which refers to the time dependence for the repeated
observations from each subject (e.g., Liang & Zeger, 1986; Zeger & Liang, 1986). There are
a few aspects of the Generalized Estimating Equations procedure that require basic knowledge
of the data in order to specify the model, as described below.

4.3.1 Distribution and link function—The researcher must select the type of data
distribution from which the dependent variable comes, and the Generalized Estimating
Equations analysis allows one to select a variety of distributions from the exponential family
of distributions along with a general link function that relates the linear predictor to the expected
value (e.g., Zeger & Liang, 1986; Hardin & Hilbe, 2003, p. 7-8). (Distributions include the
normal distribution, gamma, Poisson, binomial, Tweedie, etc. Link functions include, but are
not limited to the identity link, log, logit, and reciprocal.)

4.3.2 Variable assignment, model effects to test—The dependent variable of interest
must be selected. The subjects and the within-subjects measures specifying the repeated
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measurement condition must be specified in the model. First, the full factorial model can be
selected, or main effects and interactions specific to a research hypothesis can be tested. In
addition, the factors included in (or excluded from) the model can be varied to determine the
best fit to achieve a final model of the data.

4.3.3 Working correlation matrix structure—The first model specification we describe
is the working correlation matrix. The working correlation matrix structure can be selected
based on the researcher’s best estimate of the time dependence in the data, and this parameter
can be varied to determine if alternative correlation structures better fit the data. Brief
descriptions of a subset of the options are as follows (from Hardin & Hilbe, 2003, p. 59-73),
and selected example working correlation matrices are shown from our experimental data. The
“independent correlation” derived by Liang and Zeger (1986) assumes that repeated
observations within a subject are independent (uncorrelated). All off-diagonal elements of the
matrix are zero (compare with the exchangeable working correlation matrix example in Table
1). In the case of repeated observations on the same subjects, the variance of the repeated
measurements is usually not constant over time. The dependence among the repeated
measurements is accounted for by allowing the off-diagonal elements of the correlation
matrices to be non-zero (Fitzmaurice, Laird, & Ware, 2004, p. 30). The “exchangeable
correlation” (or “compound symmetry”) is appropriate when the measurements have no time
dependence and any permutation of the repeated measurements is valid. This type of structure
may not be the most appropriate for repeated measures gathered across long periods of time,
since the exchangeable structure does not account for the likelihood that measures obtained
closely together in time are expected to have stronger correlations than measures obtained
further apart in time. In our experiments, the first measure in the repeated measures series was
taken less than 40 minutes before the last repeated measure in the series; therefore, we tested
the exchangeable correlation structure (Table 1), along with other structures. The
“autoregressive correlation” is used when time dependence between the repeated
measurements should be assumed, such as in a long-term recovery of function or other
treatment study. An example of the first-order autoregressive correlation matrix tested from
our data is found in Table 2. The “unstructured correlation” is the most general correlation
matrix, as it imposes no structure. While this unstructured option may seem the best for all
situations, efficiency increases and better model fits will be obtained when the closest
approximation to the actual correlation structure of the data is found (Zeger & Liang, 1986).
This depends also on the number of time points relative to the number of subjects. An example
of the unstructured correlation matrix tested using our data is found in Table 3. Each of these
example structures shows the matrices when only the repeated measures within neurons are
considered. When we consider that the repeated measures on neurons may show dependencies
within monkeys, the working correlation matrix structure increases in complexity. The
unstructured working correlation matrix was highly complex when we tested the effects of
repeated measures dependent within neurons, and in turn dependent within monkeys, and given
our large number of neurons, this working correlation matrix was too large to illustrate.

4.3.4 Estimating equations and testing—In addition to the correlation matrix structure,
the variance-covariance estimator must be selected. This variance estimator can be a “robust
estimator” or a “model-based estimator”. The mean and variance of the response must be
correctly specified for the model based estimator. The robust estimator is consistent even when
the working correlation matrix is mis-specified, so the robust estimator is usually recommended
(e.g., Hardin & Hilbe, 2003, p 30). Using statistical software packages, the Generalized
Estimating Equations routine runs for a selected number of iterations to reach the specified
model convergence. The results of the analysis include estimated regression coefficients for
the main effects and interactions in the model and estimated marginal means, along with
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estimates of significance. When the effects have multiple levels, the researcher selects the
adjustment for multiple comparisons (e.g., the Bonferroni correction).

4.4 Performing summary data analysis using Generalized Estimating Equations
An important aspect of the analysis is choosing the best final model of the data. A guide for
model selection is the goodness-of-fit statistic: either the quasi likelihood under independence
model criterion (QIC) or the corrected quasi likelihood under independence model criterion
(QICC) are often used, as they resemble Akaike’s information criterion (AIC), which is a well-
established goodness-of-fit statistic (Hardin & Hilbe, 2003, p. 139). The smallest value is best
using the QIC and QICC. Note that the goodness-of-fit statistic should not be used as the sole
criterion for selecting the best working correlation structure for the data—if there are
experimental reasons to specify a particular correlation structure, follow this reasoning.
Similarly, the QIC is particularly useful when choosing between models including various
main effects and interactions between factors, but the effects of interest for the model may be
determined by the research hypothesis rather than the goodness-of-fit statistics. (Hardin &
Hilbe, 2003, p. 142).

The procedure for determining the best model for the data using Generalized Estimating
Equations involves changing the model parameters to select the best fit based on goodness-of-
fit statistics. We compared models which assumed the data were normally distributed with
models that assumed the data followed a gamma distribution. In addition to the distribution,
several other characteristics of the data must be selected by the researcher, as described in
Section 4.3, and some of these can be varied to test the best model fit. Here we describe the
different selections specific to the models that we tested using the gamma and normal
distribution functions.

In our models, we selected various correlation matrix structures in order to determine the best
fit. For the normal distribution (linear relationship), the link function is typically the “identity”
link function (Hardin & Hilbe, p. 8), and this is what we used for our models using testing the
linear relationship of our variables. We used the typical link function for the gamma
distribution, the “log link” function, in our models using the gamma distribution. The reciprocal
link function is canonical for the gamma distribution; however, this link function does not
preserve the positivity of the data distribution, so the log link function is commonly used (e.g.,
Lindsey, 2004, p. 30). For additional distributions and link functions, see Hardin and Hilbe
(2003, p. 8). We always selected the robust estimator of the variance-covariance matrix since
this selection is robust in the general case (e.g., Hardin & Hilbe, 2003, p 30).

The subject identification variables and the within-subjects measures indicating the repeated
measurement condition must be specified in the model. In our case, the subjects were the
individual neuron units from which the repeated measures were taken. We performed the
analysis two ways. In the first, the within-subjects repeated measurements were the varying
levels of the stimulation conditions (without regard to the individual monkeys). In the second,
the varying levels of the stimulation conditions measured for the neurons were regarded as
dependent within the individual monkeys. These two methods affected the working correlation
matrix structure used to determine the Generalized Estimating Equations solutions.

The Generalized Estimating Equations analysis was performed with peak firing rate as the
dependent variable. We selected several categorical predictor variables for the model: temporal
stimulation asynchrony; spatial stimulation proximity; and Response Field relationship. For
our example data, we used a final model with all three main effects and one three-way
interaction effect. The tests of model effects for our best fit models using the gamma and normal
distributions are shown in Tables 5 and 6, respectively.
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4.5 Results of data analysis using Generalized Estimating Equations
While neuronal signals were recorded from all 100 electrodes of the array, only the signals that
were likely to come from single neurons (rather than multi-neuron clusters) were included in
this analysis. During the selected stimulus conditions, only a subset of the electrodes implanted
in each monkey recorded neural activity from which we were able to isolate single neurons.
From monkey 1, results from 19 single neurons were collected and 4 repeated measures were
collected from each neuron (except for 2 missing observations), for a total of 74 observations.
From monkey 2, results from 46 single neurons were collected with 4 repeated measures each,
for a total of 184 observations. From monkey 3, 61 single neurons were collected with 4
repeated measures (except for 3 missing observations), for 241 observations. Thus, the total
number of observations was N = 499, while 5 values were excluded due to missing observations
from the repeated measures series. The mean response magnitude for the data set was 18.05
spikes/s, with a standard deviation of 23.81.

The results for model fitting using both the gamma and normal distributions are described here
for illustration purposes. We investigated working correlation matrices of: first-order
autoregressive, exchangeable, and unstructured for the normal distribution with the identity
link function and for the gamma distribution with the log link function. For all working
correlation matrices specified, the goodness-of-fit statistic QIC was substantially better using
the gamma distribution compared to the normal distribution (e.g., 1480.789 and 239,348.869,
respectively, under the same model parameters, described to follow). In addition, we tested
correlation structures that incorporated only the repeated measures taken from individual
neurons and those that included repeated measures within monkeys (which we term “complex
model”). We again examined the QIC goodness-of-fit statistic to help determine the best
correlation structure for the analysis. After reducing the effects included in the model from the
full factorial model, we selected possible correlation matrices, and checked the QICC
goodness-of-fit statistic to determine the best model parameters to fit the data. The QICC did
not differ between models that included all main effects and the 3-way interaction and those
that included the main effects, 3-way interaction, and 2-way interactions. Because the 2-way
interactions were never significant sources of variance in the models, we selected the model
that only included the significant effects (3 main effects and the 3-way interaction).

Under the model including 3 main effects and the 3-way interaction, the QIC values were very
similar (sometimes identical) when the repeated measures were considered to be dependent
within monkeys. The final model we selected used the gamma distribution with the log link
function and the first-order autoregressive correlation matrix structure, and had a goodness-
of-fit QIC = 1480.789 (Model Effects shown in Table 4). The equivalent model using the
normal distribution and identity link function resulted in a QIC value of 239,348.869 (Model
Effects shown in Table 5). Although this model using the normal distribution reported
significant effects similar to those reported using the gamma distribution, there are some
differences in the effects that reach significance, different regression parameter estimates, and
clearly a large difference in model fit. Thus, we rejected the Generalized Estimating Equations
model using the normal distribution in favor of the Generalized Estimating Equations model
using the gamma distribution, and for these data we reject other analysis methods that rely on
the assumption of independent observations from the normal distribution.

From the Generalized Estimating Equations analysis, we obtained a model that included the
factors that relate to the variance in the observed measurements (Table 4); the estimated
regression parameters that describe the relationships of the factors to the dependent variable
the estimated marginal means of these factors (see one example Fig. 3); and pairwise
comparisons for significance between the levels of each factor. We used the estimated marginal
means and the significance calculations to determine how the spatiotemporal stimulus
relationships affected the peak firing rates of the neurons we recorded within the three monkeys.
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Selected regression parameter estimates for the best model are shown in Table 6. We can
interpret the parameter estimates to describe the relationships between the factors in the data.
In general, linear regression coefficients are interpreted such that the coefficient represents the
amount of change to the response variable for a one-unit change in the variable associated with
the coefficient, with the other predictors held constant (e.g., Hardin & Hilbe, 2007, p. 133).
Examining our data for example, as expected for the somatosensory system, the relationship
of the location of the paired stimuli to the Response Field of the neuron influenced the peak
firing rate. The parameter estimate for the case when the paired stimulus probes were both
outside of the Response Field (OUT_OUT) was −1.309, which was less than the estimate for
the case when one of the stimulus probes was inside the Response Field and the other probe
was outside of the Response Field (IN_OUT) of the given neuron (−0.804), and these values
refer to the comparison when both stimulus probes were inside the Response Field (IN_IN).

These Generalized Estimating Equations results provide population average effects of the
categorical predictor factors on the dependent variable of interest, while accounting for
individual-level correlations. To focus on the individual data subjects, a subject-specific
Generalized Estimating Equations model would need to be created (programmatically) that
resemble within-subjects effects analysis, or alternative methods such as Generalized Linear
Mixed Models could be performed. Our experimental questions referred to population averages
rather than within-subjects effects; thus, we were able to find support for our hypotheses and
determine quantitative estimates of the ways spatiotemporal stimulus properties affect neuron
firing rates in primary somatosensory cortex of owl monkeys.

5. Limitations and alternatives
The example in Section 4 was intended to illustrate how specific types of data can be modeled
using the Generalized Estimating Equations analysis. The Generalized Estimating Equations
analysis is particularly useful for large samples of longitudinal or repeated measures data that
are expected to be correlated or clustered and that may not have linear relationships or fit the
normal distribution. Another advantage of the Generalized Estimating Equations approach is
that it provides consistent estimates for the regression parameters of the model even if the
working correlation selected by the researcher is not the most appropriate (Tuerlinckx et al.,
2006). There are limitations to this analysis, which may not be ideal for all designs, and there
are alternative analysis methods that may be generally applicable to large-scale neuronal
recording data to consider.

5.1 Limitations of the Generalized Estimating Equations analysis
A possible limitation of the Generalized Estimating Equations analysis for some designs is that
interpretation of cluster-specific effects (within-subjects effects) is usually not included in the
analysis within standard software packages, even though the analysis does take into account
the correlated structure of the data for the between-subjects effects. The Generalized Estimating
Equations method itself does include two main classifications that address between-subjects
and within-subjects effects, respectively, the population-averaged model and the subject-
specific model (Hardin & Hilbe, 2003, p. 49). Those who are concerned with the within-
subjects variance and require methods built into a commercial statistical package would be
best served by an alternative analysis method, such as Generalized Linear Mixed Models, as
described in Section 3.1.

Another limitation of Generalized Estimating Equations analysis is one that is shared by most
other methods, and this involves the biases possible when accounting for nonignorable missing
data values (also called informatively missing data or nonrandom missing data). By
nonignorable, we refer to missing data that are caused by a nonrandom process related to the
condition under study. There are a few occasions that come to mind in which missing data are
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unlikely to occur at random in neurophysiological experiments. For instance, in an experiment
when one measures response latency, there will be missing values when the neuron fails to
respond to specific stimulus conditions (no response = no response latency). This situation is
not simply random since the failure of the neuron to respond is related to the stimulus condition.
Nonignorable missing data is a recognized problem in several types of clinical longitudinal
studies, and methods accounting for such data have been described for use in Generalized
Linear Mixed Models analysis (e.g., Ibrahim, Chen, & Lipsitz, 2001); and Hardin and Hilbe
(2003, p 122-128) describe techniques to deal with missing data for Generalized Estimating
Equations analysis. First, the data can be divided into complete and incomplete series, and then
typically missing values are replaced with values imputed from the data. Investigators should
carefully consider when to use data imputation methods. Alternative methods include modeling
the complete data and the missing data separately. Currently, there appear to be no standard
ways to account for nonignorable missing data, such as occurs for latency observations. While
the problem of nonignorable missing data does not plague all neurophysiological
measurements, it is a concern that is not directly addressed without data imputation or other
procedures, and certainly methods are not built into commercial statistics packages to
specifically analyze data sets including nonignorable missing data.

Finally, as mentioned previously, the Generalized Estimating Equations analysis as
implemented in software packages allows for one dependent variable (but multiple covariates)
to be analyzed. Multivariate research questions may be better analyzed with an alternative
method. In addition, complex clustering is not easily incorporated into the Generalized
Estimating Equations. In our example using SPSS, we were able to include clustering of the
repeated measures on neurons within our individual monkey subjects. However, as the
complexity of the working correlation structure increased, the Generalized Estimating
Equations routine was not able to come to convergence on a solution. Random effects models,
such as Generalized Linear Mixed Models, can typically handle complicated nesting structures
due to differences in the calculation of random effects compared to marginal models of
residuals. In our case, recall that the model fits were equivalent when the complex dependence
was used for the working correlation matrix and when the simple dependence (without
accounting for dependencies of neuron observations within monkeys) was used, except when
the unstructured matrix was chosen rather than a structured (autoregressive or exchangeable)
matrix. Thus, methods of choice depend on the measure of interest and computational
considerations. Since the correlation matrix structure of the Generalized Estimating Equations
analysis could not incorporate nested effects, we were not able to account for potential
correlations in measures between neurons (which might be expected due to spatial proximity,
for example). Dependency between neurons is not precisely known, and here we considered
that neurons were independent; however, adaptations of Generalized Linear Mixed Models or
other analysis methods may be able to model the possible dependencies better.

5.2 Some alternatives to the Generalized Estimating Equations analysis for large-scale
neuronal recordings

Here we briefly describe selected alternatives to Generalized Estimating Equations analysis
that may have useful applications to large-scale neuronal recording data. We assume that data
from parallel microelectrode recordings are likely to have correlated or non-constant variability
due to recording from clusters of neurons over time. We also suggest that good alternative
analysis methods will allow for the dependent measure of interest to possibly come from non-
normal distributions to account for the different types of data that may be obtained through
such neuronal recordings.

As previously introduced, Generalized Linear Mixed Models are similar to Generalized
Estimating Equations, in that both are extensions of Generalized Linear Models and may be
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used to analyze correlated or clustered data from non-normal distributions (e.g., Tuerlinckx et
al., 2006, review). Generalized Linear Mixed Models may be advantageous over Generalized
Estimating Equations when the dependence or correlations within subjects is of interest (rather
than a nuisance; e.g., Snijders & Bosker, 1999, p. 6-7) so that subject-specific predictions can
be made and when the number of clustered observations is low (e.g., < 40), since Generalized
Estimating Equations tend to underestimate the true variance in small samples (Lu et al.,
2007).

An addition to some statistical packages (e.g., Amos, SAS) is structural equation modeling,
which can link the dependent variables with independent observed variables and latent
variables (e.g., Tuerlinckx, 2006). A benefit of structural equation modeling is that researchers
may build models to express unobserved latent variables that are expected to contribute to the
observed measures by expressing latent variables in terms of the observed variables, which
could be of interest in some neuronal recording experiments. The use of structural equation
modeling to examine latent variables is similar to the use of Principal Components Analysis
and Independent Component Analysis to identify underlying sources of variance related to the
observed measures.

Principal Component Analysis (PCA) has already been applied to neuronal recording data (e.g.
Chapin & Nicolelis, 1999; Devilbiss & Waterhouse, 2002), as a method to describe the linear
relationship between variables (i.e., how stimulus information relates to neuron spike trains).
Proportions of the variance are explained by each Principal Component, with the first PC
accounting for the most variance in the data. The interpretation of PCA may not be intuitive
in all experimental designs, and this analysis assumes linear relationships between variables
and that the sources of the variance have a normal distribution. But given the right
circumstances, PCA provides an interesting way to assess changes distributed among recorded
neurons (e.g., Devilbiss & Waterhouse, 2002) and to estimate relationships within neuronal
ensembles (e.g., Chapin & Nicolelis, 1999).

Similar to PCA, Independent Components Analysis (ICA) has also been used to examine data
from parallel neuronal recordings, and has been shown to identify groupings of neurons with
correlated firing distributed over the recorded neuronal ensembles (Laubach, Shuler, &
Nicolelis, 1999). ICA was found to perform better than PCA at identifying groups of neurons
with correlated firing when those neurons shared common input (Laubach, Shuler, & Nicolelis,
1999). Unlike PCA, ICA should be used when the sources of variance do not have a normal
distribution (Makeig et al., 1999). However, ICA has limitations, one of which is that a given
IC can represent a linear combination of sources of variance, rather than an “independent”
source (Makeig et al, 1999), and similarly, ICA cannot identify the actual number of source
signals. Thus the reliability, accuracy, and interpretation of results of ICA can be difficult to
determine in general.

Pereda et al. (2005) reviewed nonlinear multivariate methods for analyzing parallel
neurophysiological recordings to determine the synchronization across the signals. These
methods are not limited to describing the linear features of neuronal signals, and neuronal
signals may be intrinsically nonlinear. Such multivariate measures can assess the
interdependence between simultaneously recorded neuronal signals or data types, and this
assessment is a feature not possessed by standard Generalized Estimating Equations analysis
methods. Nonlinear multivariate methods of “generalized synchronization” and “phase
synchronization” have a wide range of applications to neurophysiology. These methods range
from nonlinear correlation coefficients to information-theory-based methods. Many of these
methods examine pairwise interactions (e.g., cross-correlations) between neuronal signals
(e.g., spike trains), but a subset can be used to analyze high-order interactions. (Pereda,
Quiroga, & Bhattacharya, 2005) Most of these applications are not part of commercial
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statistical software, but sometimes the implementation of these analysis methods are made
available by authors or can be found in neurophysiological analysis software.

Many neurophysiological studies, including the example provided in this review, rely on
multiple trials to average the responses (or other measurements) of individual neurons. This
technique is rooted in the study of single neurons with single electrodes, in which the average
over multiple trials resembles the information received by a postsynaptic neuron that receives
input from several other neurons performing in a similar way to the recorded neuron. When
the experimental system and research questions are appropriate, analyses of multiple-neuron
recordings to extract information from neuronal populations within one or a few trials may
provide a more realistic depiction of how the brain works. In their recent review, Quiroga and
Panzeri (2009) described two main (and complementary) approaches to obtaining information
from neuronal population recordings for the purpose of application to single-trial analysis:
decoding and information theory. Decoding algorithms predict the likely stimulus (or behavior)
related to the observed neuronal response. Using the information theory approach, one can
quantify the average amount of information gained with each stimulus presentation or
behavioral event. (Quiroga & Panzeri, 2009) Typically, decoding neuronal responses and
applying information theory requires carefully planned experiments, careful interpretation and
knowledge of programming since such algorithms are not often found in commercial statistical
packages. However, as knowledgeable users continue to employ these methods, their use will
likely extend and become more widespread as experiments utilizing large-scale neuronal
recordings increase.

6. Conclusions
Current statistics packages and incarnations of the Generalized Estimating Equations and
Generalized Linear Mixed Models analyses can accomplish many of the data analysis goals
required by the increasingly complex large-scale neuronal recordings. Specifically, these
analyses address concerns that have been largely overlooked when analyzing parallel neuronal
recording data collected over time: that these data are likely to be correlated or clustered and
that the normal distribution may not be the appropriate distribution to test. We illustrated our
use of Generalized Estimating Equations to address questions regarding stimulus-response
relationships in simultaneously recorded neurons in monkey somatosensory cortex. The
Generalized Estimating Equations analysis has limitations, and alternative methods may
provide more appropriate answers to some research questions.

In our data example, the goal was to determine how the responses of populations of neurons
may be influenced by specific stimulus parameters recorded over relatively short periods of
time; however, the technological advancements in chronic recording techniques and algorithms
to determine when electrophysiological signals are stable over time and likely to originate from
the same neuron will surely aid the progress of such longitudinal studies. Although we used
the response magnitude example for simplicity, measures of correlated activity that can only
be made by simultaneous neuronal recordings (such as those reviewed by Pereda, Quiroga, &
Bhattacharya, 2005) can be used as the dependent measure when the goal is to determine how
independent variables may affect the variance in these measures recorded longitudinally. The
options are nearly unlimited. The analysis of long-term, large-scale neuronal recordings
promises to increase our understanding of complex brain activity, and meeting the challenge
to produce and employ efficient and appropriate analysis methods is important to reach this
goal.
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Fig 1. Snapshots of activity recorded from a 100-electrode array under two different stimulation
conditions
Activity snapshots were plotted in color maps of the peak firing rate measured across the 10
× 10 electrode array in monkey 3. Each square represents an electrode in the array and the color
indicates the peak firing rate value during the 50 ms response window. Electrodes from which
no significant responses (firing rate increases over baseline) were obtained during the
stimulations shown are indicated in dark blue (no squares). The lower schematics indicate the
locations of the stimulus probes on the owl monkey hand. Left panel shows the activity when
adjacent digit locations on digit 4 (D4) and digit 5 (D5) were stimulated simultaneously (0 ms
temporal onset asynchrony). Right panel shows the activity when nonadjacent digit locations
on digit 3 (D3) and D5 were stimulated simultaneously. Differences between the patterns of
activity during the two stimulation conditions are obvious and can easily be described visually,
but quantitative measures are desired.
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Fig 2. Schematic of factors evaluated in the example data set
The categorical factors related to the stimulus parameters and the experimental subjects are
shown with schematics to represent the levels over which the categories vary. The temporal
stimulation asynchrony factor involves the relationship between the onset of stimulation by
two tactile probes. The gray line represents how the onset of the second stimulation can be
delayed in time relative to the onset of the stimulus provided by probe 1. The spatial proximity
factor relates to the location of the two tactile probes on the hand. The Response Field factor
categorizes the relationship of the stimulus probes to the Response Fields of each neuron. The
final factor categorizes the data from which monkey case the signals were recorded. Schematic
representations of the location of the 100-electrode array relative to the hand representation in
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primary somatosensory cortex (area 3b) are shown to designate each monkey case. (D = digit;
P = palm pad; Th = thenar; H = hypothenar; i = insular.)
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Fig. 3. Observed means and estimated means for the temporal asynchrony factor from the best
model
The categories from one factor, temporal asynchrony is plotted on the x-axis and the dependent
variable, response magnitude (spikes/s) is plotted on the y-axis. Observed mean response
magnitudes are shown by category with filled squares. Estimated marginal means from the
best fitting Generalized Estimating Equations routine is shown by category with open
diamonds. Although the values of the estimates are not equal to the observed values, the patterns
of the effects of the predictor variable categories on the response magnitude are the same.
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Table 1

Exchangeable working correlation matrix from example data with simple repeated measures

Working Correlation Matrix

Measurement

Measurement 0 ms 30 ms 50 ms 100 ms

0 ms 1.000 .593 .593 .593

30 ms .593 1.000 .593 .593

50 ms .593 .593 1.000 .593

100 ms .593 .593 .593 1.000
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Table 2

First-order autoregressive working correlation matrix from example data with simple repeated measures

Working Correlation Matrix

Measurement

Measurement 0 ms 30 ms 50 ms 100 ms

0 ms 1.000 .705 .498 .351

30 ms .705 1.000 .705 .498

50 ms .498 .705 1.000 .705

100 ms .351 .498 .705 1.000
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Table 3

Unstructured working correlation matrix from example data with simple repeated measures

Working Correlation Matrix

Measurement

Measurement 0 ms 30 ms 50 ms 100 ms

0 ms 1.000 .488 .443 .505

30 ms .488 1.000 .982 .836

50 ms .443 .982 1.000 .764

100 ms .505 .836 .764 1.000
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Table 4

Tests of Generalized Estimating Equations model effects on peak firing rate using the gamma probability
distribution with log link function

Tests of Model Effects

Type III

Source

Wald
Chi-

Square df Sig.

(Intercept) 552.354 1 <.0005

Temporal
Asynchrony

28.564 3 <.0005

Spatial
Proximity

9.037 1 .003

Response
Field (RF)

11.380 2 .003

Temporal *
Spatial * RF

35.417 17 .005

Dependent variable: peak firing rate (spikes/s). Model parameters: gamma distribution, log link, first-order autoregressive correlation matrix. Subject
effects for 126 neurons, with four levels of within-subject repeated-measures stimulation (total N = 499, 5 missing).
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Table 5

Tests of Generalized Estimating Equations model effects on peak firing rate using the normal probability
distribution with the identity link function

Tests of Model Effects

Type III

Source

Wald
Chi-

Square df Sig.

(Intercept) 105.024 1 <.0005

Temporal
Asynchrony

36.591 3 <.0005

Spatial
Proximity

7.225 1 .007

Response
Field (RF)

12.960 2 .002

Temporal *
Spatial * RF

40.580 17 .001

Dependent variable: peak firing rate (spikes/s). Model parameters: normal distribution, identity link, first-order autoregressive correlation matrix.
Subject effects for 126 neurons, with four levels of within-subject repeated-measures stimulation (total N = 499, 5 missing).
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