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A B S T R A C T

Defining the pathways through which tumors progress is critical to our understanding and

treatment of cancer. We do not routinely sample patients at multiple time points during

the progression of their disease, and thus our research is limited to inferring progression

a posteriori from the examination of a single tumor sample. Despite this limitation, inferring

progression is possible because the tumor genome contains a natural history of the muta-

tions that occur during the formation of the tumor mass. There are two approaches to re-

constructing a lineage of progression: (1) inter-tumor comparisons, and (2) intra-tumor

comparisons. The inter-tumor approach consists of taking single samples from large col-

lections of tumors and comparing the complexity of the genomes to identify early and

late mutations. The intra-tumor approach involves taking multiple samples from individ-

ual heterogeneous tumors to compare divergent clones and reconstruct a phylogenetic lin-

eage. Here we discuss how these approaches can be used to interpret the current models

for tumor progression. We also compare data from primary and metastatic copy number

profiles to shed light on the final steps of breast cancer progression. Finally, we discuss

how recent technical advances in single cell genomics will herald a new era in understand-

ing the fundamental basis of tumor heterogeneity and progression.

Published by Elsevier B.V. on behalf of Federation of European Biochemical Societies.
1. Introduction accumulate in the genome and can be analyzed by cytogenetic
The process of cancer progression, from initiation in normal

tissue to full-blown tumor and eventual metastasis, is e de-

spite intense study e still a mystery for most cancers. What

is clear is that cancer is a genetic disease and that the dysre-

gulation of cancer cells involvesmultiple levels of genetic con-

trol, including DNA point mutations, epigenetic alterations,

chromosome copy number changes, inversions and translo-

cations. As human tumors progress, these mutations
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and genomic techniques. Based on the assumption thatmuta-

tional complexity increases with time, this ‘permanent re-

cord’ can be used to reconstruct the patterns of

development after the tumor is excised from the patient. In

this article we describe how we, and others, have used these

approaches to study tumor progression using whole-genome

copy number analysis and how the observed patterns in

breast cancer relate to the current models for tumor

progression.
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2. A brief history of tumor heterogeneity

In breast cancer the malignant cells often arise from ductal

tissue and are constrained by the duct structure until they be-

gin to invade surrounding stromal tissue. They exhibit regions

of growth, regions of hypoxia and necrosis and regions of in-

teraction with blood vessels and lymph ducts. It would be sur-

prising if all cells in a tumor were identical. As early as the

1800s, Rudolf Virchow and other early pathologists observed

the morphological heterogeneity of tumor cells using the first

compound microscopes (Brown and Fee, 2006). The subse-

quent development of sophisticated staining methods

allowed pathologists to visualize and categorize the morphol-

ogy of tumor cells in detail, and to score various characteris-

tics including nuclear size, mitotic index and differentiated

structures. These characteristics are used to score the grade

of a tumor which aids clinicians in determining how aggres-

sively to treat a patient. However, many pathologists have

noted that cells from different regions of a tumor differ in

their morphological characteristics (Fitzgerald, 1986; Hirsch

et al., 1983; Kruger et al., 2003; van der Poel et al., 1997). Taking

into account this heterogeneity, pathologists will examine

many tissue sections from several regions of the tumor, but

generally report only the highest grade for clinical treatment

(Ignatiadis and Sotiriou, 2008; Komaki et al., 2006).

In the early 1980s, a new arsenal of tools was developed by

cytogeneticists to investigate tumor heterogeneity at the ge-

nome level: chromosome G-banding, spectral karyotyping

(SKY) and fluorescence in situ hybridization (FISH). A particu-

larly large body of data concerning genetic heterogeneity

comes from interphase FISH studies. Using specific DNA

probes, FISH can reveal the copy number of a limited number

of chromosomal loci across a large number of cells. By com-

paring the copy numbers of representative genomic loci using

specific DNA probes across multiple tumor samples, various

studies reported tumors as either ‘homogeneous’ (monoclo-

nal) or ‘heterogeneous’ (polyclonal) (Farabegoli et al., 2001;

Maley et al., 2006; Mora et al., 2001; Pantou et al., 2005; Roka

et al., 1998; Sauter et al., 1995; Shipitsin et al., 2007; Teixeira

et al., 1996; Zojer et al., 1998).

Amore complete characterization of the tumor genomewas

obtained by visualizing metaphase chromosomes by Giemsa

staining.The resultingG-bandingkaryotypesprovidedchromo-

some specific landmarks and made it possible to accurately

identify chromosome abnormalities in tumor genomes

(Mitelmanetal., 1997;Trent, 1985).AswithFISH, itwasobserved

that subpopulations of cells from the same tumor showed dis-

tinct sets of chromosomal rearrangements, indicating the pres-

ence of multiple clones (Coons et al., 1995; Pandis et al., 1995;

Teixeira et al., 1996, 1995). Using this technique, recurrent chro-

mosome events began to be catalogued, providing the first no-

tion that such events might be ordered in tumor development.

The heterogeneity of tumors has since been repeatedly val-

idated using various molecular markers, including mRNA ex-

pression (Bachtiary et al., 2006; Cole et al., 1999); protein

expression (Allred et al., 2008; Johann et al., 2009); and DNA se-

quencing (Khalique et al., 2007; Lips et al., 2008). The question

then becomes one of understanding the role of heterogeneity

in tumor progression. A number of studies have shown that
despite the genetic diversity in heterogeneous tumor, neigh-

boring clones often share many common mutations (Maley

et al., 2006; Navin et al., 2010; Pantou et al., 2005; Shipitsin

et al., 2007; Teixeira et al., 1996; Torres et al., 2007). Thus it

seems unlikely that genetic heterogeneity is simply the result

of randomunselectedvariation. Instead,heterogeneousclones

may represent discrete time points in the progression of the

disease. By deconvoluting genomic heterogeneity we can

therefore order a lineage of clones and identify mutations in-

volved in the early or late stages of tumor progression.

With the advent of genomic techniques, such as microar-

rays and next-generation sequencing, it has become possible

to survey the entire genome to at much higher resolution

than previously possible. Deep sequencing of heterogeneous

tumors using next-generation sequencing has shown that

some tumors contain more alleles than would be expected in

a single clones (Campbell et al., 2008; Shah et al., 2009). But it

is difficult if not impossible to determine from sequence alone

the number of clones present (and towhich genomes the reads

belong). As an alternative strategy, comparative genomic hy-

bridization (CGH) microarrays can measure the precise loca-

tion of chromosome breakpoints and the amplitude of copy

number events that differ between divergent tumor subpopu-

lations (Benetkiewicz et al., 2006; Navin et al., 2010; Shah

et al., 2009; Shipitsin et al., 2007; Torres et al., 2007). This infor-

mation can be used to track chromosome breakpoint markers

as they are inherited and persist through successive subpopu-

lations of clones that progress to form the tumor.
3. Modeling tumor progression

In recent years, several general models have been proposed to

explain tumor progression. These models make different as-

sumptions concerning the proliferative capacity of the major

populationsof tumor cells and thus lead to testablepredictions

concerning their lineage.Thefirstmodel for tumorprogression

to gain widespread acceptance appeared in a landmark theo-

retical paper by Peter Nowell in 1976, where he combined two

seemingly unrelated fields: evolutionary biology and tumor bi-

ology (Nowell, 1976).Nowell proposed that tumorcells obey the

laws of natural selection, undergoing positive selection when

advantageous mutations occur and negative selection when

deleterious mutations arise. The two major schemes based

on this fundamental tenet are collectively referred to as clonal

evolution.Theyshare thecommonassumption that themajor-

ity of tumor cells have the potential to undergo unlimited pro-

liferation, but differ in the number of clonal subpopulations

that they predict will form the mass of tumor.

The monoclonal evolution model states that solid tumors

undergoabrief periodofheterogeneity in theearly stagesof tu-

mor progression, followed by a clonal expansion of a single

population of cells, which forms the mass of the tumor

(Figure 1a). It is assumed that a single clone undergoes positive

selection and outcompetes all other subpopulations by the

time the tumor is large enough to be detected. Evidence sup-

porting the monoclonal evolution model originally came

from methods that followed only a small number of traits,

such as X-inactivation in tumors, RFLP analysis of carcinomas,

plasma cell immunoglobulin sequences and microsatellite



Figure 1 e Tumor progression models and lineages. Green root nodes represent normal diploid cells, colored nodes are different tumor clones.

(aee) Models for tumor progression and phylogenetic lineages. (fej) Hypothetical neighbor-joining (NJ) trees constructed using 10 copy number

profiles from a single tumor. (a) Monoclonal evolution forms a monogenomic tumor (b) Polyclonal evolution forms a polygenomic tumor (c) Self-

seeding results in a tumor with a divergent peripheral subpopulation (d) Mutator phenotype generates a tumor with many diverse clones (e) Cancer

stem cell progression results in a tumor with a minority of pink cancer stem cells (f) NJ tree of a monogenomic tumor (g) NJ tree of a polygenomic

tumor (h) NJ tree of a self-seeded tumor with a dotted line representing a large phylogenetic distance (i) NJ of a mutator phenotype tumor (j) NJ

tree of a cancer stem cell tumor.
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markers (Endoh et al., 2001; Fialkow, 1974; Linder and Gartler,

1965; Matsumoto et al., 2004; Noguchi et al., 1992, 1994;

Sawada et al., 1994). Recent genomic data have also supported

thismodel in a subset of breast cancers by showing thatmulti-

ple samples within the same tumors contain highly similar

copy number profiles by CGHmicroarrays (Navin et al., 2010).

In contrast, the polyclonal evolution model posits that

solid tumors undergo an early period of heterogeneity fol-

lowed by the expansion of multiple, divergent clones to

form the mass of the tumor (Figure 1b). Empirical evidence

supporting this model comes from a variety of studies in-

cluding interphase FISH experiments, immunohistochemis-

try of tumor sections, gene expression studies and array

CGH experiments (Aubele et al., 1999; Bachtiary et al.,

2006). Recent experiments have supported the polyclonal
evolution model by showing that genetic related clones

with divergent genomes may cohabit the same tumor

(Navin et al., 2010; Shipitsin et al., 2007).

This raises an interesting question about polyclonal evolu-

tion: do cohabiting clones within a single tumor suggest a co-

operative relationship? In contrast to monoclonal evolution,

in which a single dominant clone outcompetes all others,

the polyclonalmodel implies an evolutionary advantage to co-

habitation. In the tumor microenvironment resources e in-

cluding oxygen, vasculature, stroma and growth factors e

are scarce, so a selective advantage for having two or more

clones seems highly plausible. The nature of their interaction

may bemutualistic, commensal or perhaps even parasitic (See

(Marusyk and Polyak, 2009) for an excellent review on these

interactions). Clone interactions merit further study, as they
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may imply that targeting a single clone with therapy could

lead to the rise or the demise of neighboring subpopulations.

In recent years, several variations of the polyclonal evolu-

tionmodel have been proposed, including the self-seeding hy-

pothesis and the mutator phenotype. The self-seeding

hypothesis posits that tumor clones leave the primary site,

intravasate into the circulatory system, develop or subsist at

a distant site for a period of time, then return to the primary

tumor where they establish new subpopulations (Norton,

2008; Norton and Massague, 2006). This variation on the ven-

erable ‘seed and soil’ theory (Paget, 1889) implies that circulat-

ing tumor cells have a homing mechanism that attracts them

back to their site of origin. It also predicts that new clones will

aggregate at the periphery of the tumor surface, or where vas-

culature leads into the tumor (Figure 1c) and that tumors are

’built’ out of the sequential accretion of clones. Recently, hom-

ing behavior and self-seeding was demonstrated in a mouse

model using both human tumor cell lines and pleural effusion

cells (Kim et al., 2009). These investigators showed that spe-

cific cytokine attractants (IL-6 and IL-8) and mediators of

infiltration (MMP1 and fascin-1) were integral factors in this

self-seeding process. Among the various implications of these

results, the authors raise the counter-intuitive notion that the

presence of a primary tumor mass might act as a ‘sponge’ for

circulating tumor cells, and by ‘soaking them up’ actually

reduce the potential for distant metastases, the major cause

of breast cancer mortality.

The mutator phenotype model, originally set forth by Law-

rence Loeb (Loeb et al., 1974), is related to polyclonal evolution

but differs by proposing that tumors consist of a large diver-

sity of small clones rather than a fewdominant clonal subpop-

ulations (Figure 1d). In this model the rate of random

mutations in tumor cells is thought to increase drastically per-

haps by introduction of mutations into DNA polymerase itself

(Bielas and Loeb, 2005; Loeb et al., 1974). Clonal expansions

may occur, but a large diversity of tumor genomes are gener-

ated by random, non-expanded mutations. Evidence for this

model comes largely from a DNA capture sequencing ap-

proach, from which it was estimated that the mutation rate

increased from more than 200-fold in neoplastic tissues

(Bielas et al., 2006). The mutator phenotype has also been ex-

tended to copy number changes, suggesting that tumor pro-

gression is driven by random, non-expanded amplifications

and deletions that generate genomic instability (Heng et al.,

2006a,b). While this model differs in predicting a larger diver-

sity of genetic clones, it shares the primary assumption of

clonal evolution: that the majority of tumor cells have to po-

tential to proliferate indefinitely.

In the late 1990s an alternative model emerged that chal-

lenged the primary assumption of the previous models by as-

suming that only a minority of tumor cells could proliferate

indefinitely. The cancer stem cell (CSC) hypothesis became

widely accepted as the leading model for tumor progression.

The CSC hypothesis posits that a rare population of stem cells

within the solid tumor is the only subpopulation with the abil-

ity for unlimited proliferation (Figure 1e). Themodel assumes:

(1) a rare population of cancer stem cells proliferate indefi-

nitely, (2) the majority of tumor cells have limited prolifera-

tion, and (3) the rare cells continuously give rise to the major

population. Cancer stem cells were originally believed to arise
fromnormal stem cells, but it is now thought that any somatic

cell may become a cancer stem cell (Clarke et al., 2006).

Evidence for the CSC hypothesis originally came from

studying normal hematopoietic stem cells and the malignant

stem cells that arise during leukemogenesis. The first empiri-

cal evidence came with the invention of fluorescence-acti-

vated cell sorting (FACS) which allowed the isolation of

human leukemic stem cells using surface markers (Lapidot

et al., 1994). These human cancer stem cells were reimplanted

into immunocompromised mice, in which they were fully ca-

pable of initiating leukemia, while other reimplanted cancer

cells could not (Bonnet and Dick, 1997). The isolation and

reimplantation assay has become the gold standard for iden-

tifying cancer stem cells and has been used to identify cancer

stem cells in breast carcinomas (Al-Hajj et al., 2003), brain tu-

mors (Singh et al., 2004), colon cancers (O’Brien et al., 2007)

and pancreatic tumors (Li et al., 2007). The CSC model is also

attractive to clinicians, because it suggests that the entire tu-

mor can be eradicated by targeting only the cancer stem cell

population (Campbell and Polyak, 2007).
4. Models and their phylogenetic implications

Each progression model for tumorigenesis implies a different

phylogenetic tree structure. In Figure 1aee, we show phyloge-

netic trees as clones progress during the development of

a solid tumor, and in Figure 1fej, we show hypothetical trees

that can be reconstructed from clones after the tumor de-

velops and has been excised from the patient. In the latter

case, we show a hypothetical tumor that was sampled 10

times and profiled by microarray CGH, from which neighbor-

joining trees were calculated by profile correlations (discussed

in detail in the subsequent sections). Inmonoclonal evolution,

the tree would show a period of heterogeneity followed by the

expansion of a single dominant clone (Figure 1a). The

expected neighbor-joining tree of a monogenomic tumor

would be flat with a single branch of highly similar nodes

that have diverged an equal distance from the green root

node (Figure 1f). In homogeneous tumors, it is by definition

impossible to gain further information about lineage unless

the apparently rare precursor cells can be identified and iso-

lated. In heterogeneous tumors, however, lineage can be

inferred by assuming that mutational complexity increases

with time. Borrowing from evolutionary biology, we can use

phylogenetic inference to determine the genetic distance be-

tween a set of observed genomes, and to estimate the com-

mon ancestors (Whelan, 2008).

In the polyclonal evolution model, a phylogenetic tree

would consist of several highly similar subpopulations (red,

gray and blue) that have diverged from each other and clonally

expanded, each forming a significant mass of the tumor

(Figure 1b). In the neighbor-joining tree we would expect mul-

tiple branches of highly similar nodes (red, gray and blue),

each represents a clonal subpopulation that has diverged an

equal distance from the root node (Figure 1g). While each sub-

population is genetically distinct, they contain a set of com-

mon mutations that are inherited and persistent throughout

their evolution.
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In the self-seeding tree, a brief period of heterogeneity

would result in a series of diverse clones, followed by the ex-

pansion of a single red subpopulation (Figure 1d). As this sub-

populationmigrates into the vasculature and develops offsite,

it may acquire a number of new mutations before reseeding

the primary to form a new subpopulation. The neighbor-join-

ing tree for this model would have a large phylogenetic dis-

tance (dotted lines) between the original subpopulation (red)

and the re-seeded clones (blue), representing a gap in the evo-

lution of the primary tumor (Figure 1h). In order to fully char-

acterize the lineage of a self-seeded tumor it would be

necessary to detect and analyze clones in circulating tumor

cells and metastatic tissues.

In stark contrast to the previous models, the mutator phe-

notype model predicts a large and diverse phylogenetic tree

represented by many different node colors (Figure 1d). In the

neighbor-joining tree we would expect to see many different

nodes, each diverging a unique distance from the green root

node (Figure 1i). While some common mutations would be

shared between the 10 copy number profiles, a large number

of diversenon-expandedmutationswould generate a complex

multi-branched tree structure.

The CSC model has been subject to multiple interpreta-

tions (Adams and Strasser, 2008; Campbell and Polyak, 2007;

Clarke et al., 2006; Fabian et al., 2009; Polyak, 2007b). For our

purposes, we will focus on one version of the cancer stem

cell hypothesis in which any normal somatic cell (not neces-

sarily a normal stem cell) can undergo the generation of het-

erogeneity typical of cancer initiation, followed by

dedifferentiation to a cancer stem cell. Thereafter, the cancer

stem cell (pink) continually gives rise to the majority of tumor

cells (blue) which terminate the lineage after limited number

of divisions (Figure 1e). The resulting cancer stem cell tree is

characterized by a flat structure with many terminal nodes.

The neighbor-joining tree would appear similar to the mono-

genomic tumors, in which themajority of cells occupy a single

branch (blue); however if the cancer stem cells can be detected

and have distinguishing genomic aberrations, then the nodes

(pink) would be placed in separate branches, a short phyloge-

netic distance away from the major nodes (Figure 1j).
5. Inferring tumor progression

In theory, there are two ways to infer progression from pri-

mary tumor genomes: (1) comparing different tumors, and

(2) comparing clones within single tumors. Until recently the

most common approach has involved surveying single sam-

ples from archived tumor collections and cataloguing the or-

der and frequency of genetic events. This approach has been

widely applied to reconstruct progression in many different

cancer types using large collection of tumors (Bilke et al.,

2005; Hicks et al., 2006, 2005; Hoglund et al., 2005, 2002; Liu

et al., 2009a; Pathare et al., 2009; Selvarajah et al., 2008). In

most studies the underlying assumption is that mutations ac-

cumulate as the tumor progresses and only rarely are lost.

Specific genetic lesions can thus be classified as early or late,

relative to the total complexity of the tumor genome. The lim-

itation to this approach is that while a few structural aberra-

tions can be clearly classified as early, placement of high
frequency events into ordered pathways has been problem-

atic. Surgically resected tumors from archived collections rep-

resent relatively advanced cases with large numbers of

genomic aberrations.With a few exceptions, the vast majority

of mutational events occur at low frequency across tumor col-

lections, indicating that each tumor travels down a unique

mutational pathway.

Tumor evolution can also be observed by comparingmulti-

ple samples in an individual tumor. Many observations in-

cluding our own (Navin et al., 2010) have demonstrated that

most breast cancers show significant heterogeneity in their

genomic profiles, making it possible to identify clones that

represent various time points in the progression of the tumor.

By isolating and comparing tumor clones fromwithin a single

tumor, we can then reconstruct a detailed lineage of how the

tumor developed, assuming that mutations are persistent and

inherited between clones. The lineage trees identified by in-

tra-tumor analysis can then be compared to the predicted

trees from the general models to shed light on the tumor pro-

gression pathways in breast cancer.
6. Inferring progression from inter-tumor
comparisons

Early studies of tumor genome progression involved longitu-

dinal comparisons of the karyotypes of tumors from large col-

lections (Heim and Mittleman, 2009). The general theory was

that tumor genomeswith the fewest chromosome aberrations

contained the earliest mutations in tumor progression. An ex-

tension to this approach involved separating non-invasive

precursors to breast cancer (DCIS) or low grade and comparing

them to high grade tumors (Tsarouha et al., 1999). Most of

these tumors were pseudo-diploid and therefore easy to kar-

yotype by G-banding. In tumors with few chromosomal aber-

rations, the most frequent event involved the gain of the

entire 1q chromosome arm and the loss of the 16q arm

(Hoglund et al., 2002; Tsarouha et al., 1999). This combination

of gain and loss seems to be the earliest event in some breast

cancer and often occurs through pericentric recombination

and the generation of an either 1q:16p translocation (followed

by loss of the reciprocal product) or a 1q:1q isochromosome.

These tumors were mostly hormone receptor- positive, and

had the best prognoses. However, in these studies of tumor

progression, the collections often consisted of a diverse mix-

ture of subtypes, with each evolving down a different muta-

tional pathway.

A milestone in understand the diversity of breast cancers

came with advances in gene expression microarrays. In

2000, Sørlie and Perou et al. proposed that breast tumors could

be classified into five different subtypes based on the expres-

sion of a few hundred mRNA transcripts. This stratification of

breast cancer had important implications for studying tumor

progression in that each subtype could be studied as an inde-

pendent disease. The original five subtypes include: luminal

A, dominated by the ERþ tumors with the best prognosis; lu-

minal B, characterized as more advanced and often more

genomically complex; ERBB2-like, often amplified at the

ERBB2 growth factor receptor locus; basal-like, most often

negative for ER, PR and ERBB2 (‘triple-negative’); and normal-
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like, with expression patterns most closely related to normal

breast tissue (Perou et al., 2000; Sorlie et al., 2001). This classi-

fication scheme has been shown to be extremely robust and

has further been refined using more advanced technology on

larger cohorts (Calza et al., 2006; Carey et al., 2006; Hu et al.,

2006; Sorlie et al., 2003).

More recently, high-resolution CGHmicroarrays have been

used to study the genome structure of these subtypes and

shown that they progress by different genomic rearrangement

patterns (Bergamaschi et al., 2006; Chin et al., 2006; Kwei et al.,

2010). In the basal-like tumors, Bergamaschi identifiedahigher

numbers of gains and losses than luminal A, and the luminal B

and ERBB2þ had more frequent high-level amplifications

(Bergamaschi et al., 2006). Our work has also shown that

breast cancers can be classified into at least four distinct pat-

terns of genomic rearrangements, suggesting different pro-

gression patterns (Hicks et al, 2006). The ‘Simplex’ pattern

had broad segments of duplications and deletions. ‘Complex

I’ had a “sawtooth” appearance with narrow segments of de-

letions and duplications affecting more or less all chromo-

somes. ‘Complex II’ resembled the ‘simplex’ but had at

least one localized region of clustered peaks of amplifica-

tions called “firestorms.” The fourth pattern was called

“flat” defined profiles with no clear gains or losses. A calcu-

lated index reflecting the complex rearrangements called

firestorms, was found to be significantly associated with sur-

vival independent of other clinical parameters. Another

aCGH study identified three subtypes (with overlapping char-

acteristics to the Hicks et al. classes) that varied with respect

to level of genomic instability (Chin et al., 2006). In summary,

the expression subtypes of breast cancer were highly corre-

lated to different genomic rearrangement patterns, suggest-

ing that inter-tumor comparison studies should be restricted

to individual subtypes.

These microarray CGH studies corroborated many of the

previously identified chromosome arm imbalances and trans-

locations that were reported by Teixeria using G-banding in

metaphase cells (Teixeira et al., 1996, 1994, 1995). However,

CGHmicroarrays also identifiedmany additional focal aberra-

tions (<1 mb) that could not be detected by G-banding and

allowed uncultured tumors to be analyzed. CGH data can

also be mathematically segmented to detect numerous chro-

mosome ‘breakpoints’ that characterize tumor genomes.

When suchmethods are applied to tumor profiles it is possible

to distinguish imbalances ranging from whole chromosomes

and chromosome arms to events of w30 kb. For example in

the segmented copy number pattern shown in Figure 2a (up-

per panel) we observe the gain at least one copy of the q

arm of chromosome 1 and the loss of 1 copy of chromosome

16q. These two changes in copy number are themost frequent

events observed in breast cancer and are also the most highly

correlated with each other. That they are highly correlated is

not surprising, because they are likely the result of a single

event e a pericentromeric and apparently reciprocal translo-

cation between chromosomes 1 and 16, followed by the loss

of the hybrid containing 16q and 1p. A similar event often oc-

curs between chromosome 16 and chromosome 8 leading to

profiles such as that in Figure 2b; the 16q arm is lost along

with the 8p arm, followed by the doubling of the 16pe8q hy-

brid. Interestingly, the breakpoints of these translocation
and rearrangements do not pinpoint a specific location or

gene important for the cancer process.

In luminal A tumors, the earliest event that can be detected

by inter-tumor comparisons is the translocation of chromo-

somes 1p and 16q. By ordering tumor profiles based on in-

creasing numbers of chromosome rearrangements, we can

readily identify ‘early’ profiles that contain only a gain of 1q

and loss of 16p (Figure 2a, upper panels); these profiles are

simple in that they contain no other copy number changes.

We can also detect ‘late’ profiles that often contain the 1q

gain and/or 16p loss but have also acquired a numerous addi-

tional amplifications and deletions (Figure 2a, lower panels).

This early 1pe16q event can also be seen in frequency plots

of hundreds of luminal A tumors, which clearly show the

gain of 1q and 16p in the progression of this subtype

(Figure 3a). With the exception of the concurrent gain and

loss of the 8q and 8p arms (often appearing simultaneously),

loss of 11q and 22q is also apparently accomplished through

arm swapping with multiple other chromosome partners

(personal communication with Dr. Anders Zetterberg) the

rest of the events appear to be distributed more or less evenly

across multiple tumors. The genome profiles of luminal B

tumors are in general more complex than luminal A profiles,

usually characterized by the appearance of multiple amplified

regions or ‘firestorms’ (Hicks et al., 2006). Their frequency

plots, however, do not differ a great deal from luminal A, indi-

cating that the additional events are distributed throughout

the genome.

Conversely, the inter-tumor comparisons of basal-like tu-

mors show a very different pattern of genome progression.

As exemplified by the tumor profile in Figure 2b (which was

measured from intra-tumor comparisons), the basal-like sub-

type most often presents a ‘sawtooth’ pattern characterized

by multiple broad deletions rather than reciprocal gains and

losses seen in the luminals. Also, the deletion breakpoints

are not necessarily pericentromeric. Although the sawtooth

pattern varies a greatly from tumor to tumor even in the early

stages of its development, these tumors ultimately share a se-

ries of common markers distinct from the luminals. By calcu-

lating frequency plots from the segmented profiles, we can

show that these genomes are characterized by frequent gains

at the ends of 3q, 6q and 10p and losses at 4p, 5q and 17p

(Figure 3b). In fact, the progression patterns of the luminal A

and basal-like subtypes are so drastically different, that the

only events that they share is the loss of 8p and gain of 8q

(Figure 3). Thus, the basal-like and luminal A breast tumors

show markedly different patterns of genome progression.

In summary, only a limited number of conclusions can be

drawn from longitudinal surveys of breast tumor genomes.

Although certain events are frequently observed in certain

subtypes, it is difficult to draw a roadmap in which even

a few of the observed events are precisely ordered. Further-

more, the roles that these genomic events play in the initia-

tion or proliferation of cancer is still open to speculation.

The broad distribution of breakpoints makes it unlikely that

they act through gene fusion or disruption and these events

represent at most twofold changes in gene dosage. It is also

difficult to discern the biological impact of gene dosage effects

during progression, when whole chromosome arms are de-

leted or amplified. In the case of 16q deletion, the copy



Figure 2 e Inter and intra-tumor comparisons of copy number profiles. (a) Inter-tumor comparisons. A single sample was resected from four

different luminal A breast tumors and CGH profiles were measured and segmented. The profiles shown were ordered based on increasing genomic

complexity. (b) Intra-tumor comparisons. Four samples were taken from a single heterogeneous basal-like breast carcinoma. Nuclei were isolated

from each quadrant and samples were flow-sorted by ploidy, followed by microarray CGH profiling. The profiles are ordered based on increasing

numbers of chromosome breakpoints.
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number of six cadherin genes is decreased, perhaps decreas-

ing cellecell interaction, but the copy number of hundreds

of other genes is also reduced. In the case of 8q arm amplifica-

tion, there is a drastic increase in the gene dosage of CMYC,

but also many other potential oncogenes. Inter-tumor analy-

sis is also confounded because most samples represent a sin-

gle time point in the later stages of tumor progression, often

containing numerous genetic aberrations. Thus it is difficult

to understand the importance of any single amplification or

deletion event during a specific stage of tumor progression.
7. Inferring progression from intra-tumor
comparisons

An alternative approach to studying large sets of tumors is to

infer progression from multiple samples of individual hetero-

geneous tumors (Figure 2b). Genomic heterogeneity can serve

as a permanent record of the mutations that occurred during

tumorigenesis, allowing us to reconstruct progression, in

a manner analogous to a forensic investigator. The tumor



Figure 3 e Frequency plots of luminal A and basal-like breast tumors. Microarray CGH was used to generate copy number profiles from

collections of luminal A and basal-like breast tumors. The frequency plots were calculated from segmented copy number profiles. (a) Luminal A

frequency plot was calculated from 45 tumor samples. (b) Basal-like frequency plot was calculated from 23 tumor samples.
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genome holds strong evidence, acquiring amultitude of stable

mutations during tumor progression. If we assume thatmuta-

tional complexity increases with time, then we can tempo-

rally order a set of genomes based on increasing numbers of

mutations. However, in using genomic approaches to study-

ing tumor heterogeneity we encounter a new problem: mixed

populations of cells. Unlike many cytological techniques

where individual tumor cells can be observed, most genomic

techniques measure signal from a complex mixture of cell

types, including multiple tumor clones and an amalgamation

of normal cells collectively referred to as stroma (Hanahan

and Weinberg, 2000).

In order to compare the genomes of heterogeneous clones,

we need to first isolate the individual subpopulations and

remove any normal cells to ‘purify’ the measured signal.

One method for isolating subpopulations from within a single

tumor involves using surface receptors that are displayed on

different clones. For example, by isolating tumor subpopula-

tions via FACS using CD44þ CD24� and CD44� CD24þ recep-

tors and measuring copy number profiles, it was shown that

these subpopulations were highly similar, but did differed by
a few genomic aberrations (Shipitsin et al., 2007). This ap-

proach requires a priori knowledge of which receptors can dis-

tinguish clonal subpopulations. Another method for isolating

tumor subpopulations involves sampling multiple distinct re-

gions of a tumor by macro-dissection or laser-capture micro-

dissection. Usingmacro-dissection it has been shown that dif-

ferent quadrants of single breast tumors show divergent copy

number profiles, suggesting the presence of multiple, geneti-

cally related clones in the tumor (Teixeira et al., 1996, 1995;

Torres et al., 2007). Similar results have been found, using la-

ser-capture micro-dissection and copy number quantification

to identify divergent clonal subpopulations (Aubele and

Werner, 1999; Glockner et al., 2002). A caveat of this method

is that tumor clones must be regionally segregated in the tu-

mor in order to be detected. Furthermore, the mixing of nor-

mal cells may severely decrease the overall signal of the

tumor subpopulations in different sectors.

Couplingmacro-dissectionwithflow-sortingnuclei byDNA

content provides an alternativemethod for isolating heteroge-

neous tumor subpopulations. Cytometrists have long been

aware that many solid tumors contain multiple aneuploid
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distributions of cells with different mean DNA indices (Coons

et al., 1995;Giaretti et al., 1996;Kallioniemi, 1988).However, un-

til recently a genomic analysis of subpopulations that differ in

ploidyhadnot been investigated (Corver et al., 2008).Wedevel-

oped a method to isolate clonal subpopulations in tumors

called Sector-Ploidy-Profiling (SPP) which involves macro-dis-

secting tumors into multiple sectors (6e12), isolating nuclei,

staining with DAPI, flow-sorting by total DNA content and us-

inghigh-resolutioncomparativegenomichybridizationmicro-

arrays to measure genome-wide copy number (Navin et al.,

2010). This method has the advantage of isolating multiple tu-

mor subpopulations that differ in ploidy, even when they are

intermixed within single sectors of the tumor.
8. Reconstructing phylogenetic trees within tumors

We applied SPP to a collection of high grade ductal carcinomas

and quantified 8e20 copy number profiles per tumor (Navin

et al., 2010). We then clustered and compared profiles within

tumors, which showed two classes of genomic structural var-

iation: ‘monogenomic’ and ‘polygenomic’. Monogenomic tu-

mors appear to contain a single major clonal subpopulation

with a highly stable chromosome structure. Polygenomic tu-

mors contain multiple clonal tumor subpopulations that oc-

cupied the same sectors or separate anatomic locations.

Assuming that mutational complexity increases with time,

we used Pearson correlations and neighbor-joining to con-

struct phylogenetic trees. In the monogenomic tumors we of-

ten observed a flat tree structure in which all nodes were

highly correlated and diverged an equal distance from the

root node. We show an empirically derived neighbor-joining

tree for amonogenomic tumor in Figure 4a. This tree structure

is highly similar to the predicted tree (Figure 1f), with a small

degree of variation in the correlation between nodes. In these

homogenous tumors, a more detailed genetic lineage is diffi-

cult to infer, because no other intermediate subpopulations

can be measured.
Figure 4 e Empirical neighbor-joining trees. Multiple copy number profile

Profiling. Pearson correlations were calculated between all profiles and nei

showing a flat tree structure with a high correlation between all nodes (b)

(yellow, red, blue) that represent distinct subpopulations.
From polygenomic tumors we can infer a detailed phyloge-

netic lineage. In Figure 4b we show an empirically derived

neighbor-joining tree from a polygenomic tumor with three

major subpopulations (red, yellow and blue nodes). In many

polygenomic breast tumors, the inferred trees showed that

copy number profiles were clearly related, and shared thema-

jority of chromosome breakpoints, suggesting a common ge-

netic lineage from a single precursor cell. Importantly, the

copy number profiles in these tumors were always organized

into highly similar groups, representing clonal subpopula-

tions. Thus, genomic heterogeneity can be ascribed to a few

major subpopulations rather than a series of gradual interme-

diates. From these data we conclude that themajority of chro-

mosome breakpoints are inherited from previous

subpopulations and persist through the evolution of more ad-

vanced subpopulations, as clones expand to form the mass of

the tumor.
9. Genomic heterogeneity and progression in basal-
like tumors

As described in previous sections, breast cancer is a genomi-

cally heterogeneous disease both across cohorts and within

individual tumors. Notwithstanding the genomic diversity,

the expression-based subtypes (luminal A, luminal B, Her2/

erbb2, basal-like and normal-like, plus the recently added

‘claudin-low’) provide useful a tool for grouping tumors of

shared characteristics (Perou et al., 2000). The basal-like breast

cancers are a particularly aggressive subtype that has been the

focus of intense study, and are often characterized by triple

negative receptor status (ER, PR and Her2) (Rakha et al., 2008;

and reviewed by Podo et al., 2010). Recently, the genome struc-

ture of basal-like breast tumors has been revealed by array

CGH showing a ‘sawtooth’ copy number pattern caused by

the loss of many broad genomic regions (Bergamaschi et al.,

2006; Chin et al., 2007; Hicks et al., 2006). In our study of geno-

mic heterogeneity using SPP, the basal-like tumors consisted
s were measured in two different breast tumors by Sector-Ploid-

ghbor-joining trees were constructed. (a) A monogenomic tumor

A polygenomic tree showing three groups of highly similar profiles
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of a number of heterogeneous but clearly related genome

structures, providing evidence of clonal progression (Navin

et al., 2010). In macro-dissected sectors of each of two basal-

like breast tumors we identified three or four clonal subpopu-

lations: Diploid (D), Hypodiploid (H), and Aneuploid (A1-A2).

Assuming that mutational complexity increases with time,

we ordered the genomic profiles by increasing numbers of

chromosome breakpoints (Figure 5, middle panel). We found

that the basal-like tumors progressed fromdiploid to hypodip-

loid, which correlated with a downward shift in total DNA

content (as indicated by the FACS histogram) and loss of

many chromosomes in the genome profiles (Figure 5b, lower

panel). The hypodiploid subpopulation then diverged to

form the A1 subpopulation, correlating with a drastic increase

in total DNA content andmultiple genome-wide focal amplifi-

cations and deletions (Figure 5c). Finally the A1 subpopulation

mutated by amassive amplification of the KRAS locus on chro-

mosome 12p12.1 and a homozygous deletion of the EFNA5 tu-

mor suppressor to form the A2 subpopulation, correlating

which another upward shift in total DNA content by FACS

(Figure 5d). From this, we infer a step-wise pattern of progres-

sion in the basal-like tumors in which much of the genome is

first deleted, followed by endoreduplication to generate

a highly aneuploid genome that continues to acquires many

focal amplifications and deletions of cancer genes. The large

degree of genomic heterogeneity in this subtype make them

an ideal tool for studying tumor progression and may result

in useful clinical diagnostic markers to determine how far

along these tumors have progressed in breast cancer patients.
10. Metastatic progression of the genome

In many cases, tumor lineages can be traced all the way to the

final step of progression: metastasis. While seemingly an obvi-

ous extension of the studies on primary tumors, metastatic

studies are few because thematerial is rare. Metastases are sel-

dom excised or biopsied in late stage patients unless part of

a dedicated study, and recurrence e sometimes years after the

surgery e is often treated by different physicians at different
Figure 5 e Genomic progression in a basal-like breast tumor. Sector-Ploid

profiles from 6 different sectors of a basal-like tumor. (Upper Panels) Copy

representative profiles from each major subpopulation: diploid (D), hypodi

ordered based on increasing numbers of chromosome breakpoints from 33

subpopulation with a 2N total DNA content by FACS (b) Hypodiploid su

subpopulation shows an upwards shift in ploidy (d) Aneuploid 2 subpopul
institutions. Thereforematching the correct primary andmeta-

static tumor samples fromthe samepatient is often formidable.

Distantmetastasis,however, isnearlyalways thedirect causeof

patientmortality, and understanding its relationship to the pri-

mary tumor is of paramount importance.

A major question revolves around determining which cells

are capable of initiating metastasis and how they can be iden-

tified. Do most cells in an invasive carcinoma have the ability

to metastasize, or only a subset of highly malignant clones?

Do tumor clones from the primary and metastatic tumors

share the majority of chromosome aberrations or do they ac-

quire new mutations that confer metastatic potential? One

way to investigate these questions involves tracking tumor

cells in the primary tumor, circulating tumor cells and metas-

tasis by CGH profiling. By comparing a large number of pa-

tients with only primary tumors to those with primary

tumors and metastasis it may also be possible to identify

high frequency mutations that are associated with metastatic

potential. Such biomarkers would be clinically useful in pre-

dicting whether a patient with a primary tumor may form

a metastasis.

Using high-resolution CGHmicroarrays, our lab is currently

engaged in a study with several clinical collaborators to inves-

tigate the relationship of genome structure in a large collection

of metastatic breast cancers. To date, we have found a very

high correlation (>0.90) between the primary and metastatic

copy number profiles in our analysis of 20metastatic patients.

In Figure 6wepresentour segmentedCGHresults froma single

patientwithaprimarybreast carcinomaanda livermetastasis.

We calculated a Pearson’s Correlation between the segmented

profiles, showingaveryhighvalue (PCC¼0.96) (Figure5c). Even

very complex rearrangements at specific loci, such as chromo-

some 10p (Figure 5c, lower panel), where our high-resolution

microarrays detected 8 amplifications at 10 kb resolution, we

observed nearly identical breakpoints in the primary andmet-

astatic tumors. Basedon the comparisonof thehundredsof ge-

nomic profiles in our database, we believe that is highly

unlikely that these complexmultifocal events couldarise inde-

pendently with identical patterns from an otherwise undiffer-

entiated progenitor cell. Similar results were recently reported
y-Profiling was used to measure and compare twenty copy number

number profiles were segmented, clustered and coalesced to generate

ploid (H), aneuploid 1 (A1) and aneuploid 2 (A2). The profiles were

to 299. (Lower Panels) FACS Histograms of ploidy. (a) Diploid

bpopulation with a downward shift in ploidy (c) Aneuploid 1

ation shows the highest total DNA content.



M O L E C U L A R O N C O L O G Y 4 ( 2 0 1 0 ) 2 6 7e2 8 3 277
using high-resolution CGH microarrays to study metastatic

prostate cancer patients (Liu et al., 2009b). In their comparative

analysisof copynumberprofiles, they tooshowed thatprimary

andmetastatic genomeswere highly similar, diverging by only

a few (if any) specific genetic events. Other studies using lower

resolution methods have likewise reported that metastatic

profiles are highly similar to primaries and diverge by only

a few, if any, genetic events (Bockmuhl et al., 2004; Hovey

et al., 1998; Israeli et al., 2004; Jiang et al., 2005). Thus, the geno-

mic data suggest that metastatic tumors are often seeded by

clones prominent in the primary tumor and do not undergo

much further evolution in the metastasis. However, to truly

track the progression of tumor cells as they leave the primary

tumor, migrate through the circulatory system and seed the

metastasis, evenfiner resolution is required, capable of follow-

ing single cell lineages.
11. Single cell genomics

A major problem that confounds the analysis of tumor pro-

gression is the presence of mixed cell populations. In inter-tu-

mor comparisons, single samples from heterogeneous tumors

may reflect amixture of tumor clones at various stages of pro-

gression, thus diluting the detection of high frequency chro-

mosome mutations. As we discussed, in intra-tumor

comparison, clones must first be stratified and isolated based

on differences in region, surface markers or ploidy to conduct
Figure 6 e Genomic progression in a metastatic breast cancer patient. (a) A

a single patient. (b) CGH profiles measured by Representational Oligonuc

profile is plotted in green and liver profile is plotted in red. (c) (Upper Pane

correlation was calculated (c [ 0.96) between the copy number events. (Low

the high similarity between complex rearrangements in the primary and me
genome-wide comparisons. However, this requirement is ef-

fectively eliminated by single cell analysise the ultimate level

of genome stratification. By analyzing the whole genomes of

single tumor cells we can address questions such as: Are the

major clonal subpopulation profiles represented in the ge-

nomes of single cells? Domonogenomic tumors really contain

identical genomes in every tumor cell? Using current genomic

techniques, the minor subpopulations would almost certainly

be masked by the overwhelming signal from the major tumor

subpopulations in a mixture. Single cell copy number profiles

are particularly useful, as they would allow detailed phyloge-

netic trees to be reconstructed, potentially illuminating the

models for tumor progression.

Recent advances in whole genome amplification (WGA)

methods now allow DNA from a single cell to be amplified to

microgram quantities (Sigma-Aldrich GenomePlexª, Rubicon

Genomics PicoPlexª). However, the amplifiedDNA is not a per-

fect copy of the genome, but rather a representative library of

random fragments covering less than 10% of the human ge-

nome (unpublished). Efforts to quantify whole-genome copy

number fromWGADNA have shown that it is indeed possible,

albeit at low resolution (Le Caignec et al., 2006). However, ma-

jor issues exist with the overall signal:noise ratio, standard de-

viation and dynamic range which permits only large

(>10 megabase) chromosome aberrations to be detected in

single tumor cells (Fuhrmann et al., 2008; Imle et al., 2009;

Klein et al., 1999). One study did achieve a higher resolution

(>3 mb) by applying tiling oligonucleotide microarrays to
frozen primary breast tumor and metastatic liver tumor resected from

leotide Microarray Analysis (ROMA). The segmented breast tumor

l) Segmented breast and liver profiles are plotted and a high Pearson’s

er Panel) An enlarged region of Chromosome 10p is plotted showing

tastatic tumors.



M O L E C U L A R O N C O L O G Y 4 ( 2 0 1 0 ) 2 6 7e2 8 3278
single cell WGA fragments (Geigl et al., 2009). However, such

resolution is not a big improvement over traditional single

cell cytological techniques such as G-banding. In principle, ar-

ray CGH is problematic formeasuring copy number fromWGA

samples, since probes target predefined sequences only a frac-

tion of the genomic DNA is amplified. Thus, the majority of

microarray probes in any experiment will not hybridize to

their respective targets at all.

To address this problem, our lab developed a technique us-

ing next-generation sequencing to randomly sequence WGA

amplified libraries froma single cell andmeasure copynumber

by read depthwithin fixed intervals in the human genome. Re-

cent studieshave shown that readdepth fromnext-generation

sequencing can be used to accurately measure genomic copy

number in DNA from millions of cells (Alkan et al., 2009;

Chianget al., 2009). In single cells, next-generation Illumina se-

quencing has the advantage of being agnostic to the genomic

position of the random DNA fragments, and thus the random

fragments would not be ‘missed’ as with CGH microarrays.

We call our method Single Nucleus Sequencing (SNS). Briefly,

it involves sorting single nuclei, amplifying DNA byWGA, con-

structing sequencing libraries, and sequencing the DNA at 36

cycles using next-generation illumina GA2 analyzers. We

then align themassive number of sequencing reads to the hu-

man genome and measure read depth in 50 kb fixed intervals

across the genome, resulting in a copy number profile. We

then divide the experimental sample by a reference sample

that was deep-sequenced to generate a genomic copy number

profile and segment the profiles for comparative analysis.

We applied SNS to an SK-BR-3 breast cancer cell line and

showed that it can accurately generate a high-quality copy

number profile with a small standard deviation and large dy-

namic range (Figure 7a).We then compared the single cell pro-

file to an array CGH profile performed on millions of SK-BR-3

cells. All of themajor amplifications (RD2,MYC, ERBB2) and de-

letions (DCC ) detected in the CGH experiment using millions

of cells were also detected in the single cell sequencing exper-

iments (Compare Figure 7a to b). Interestingly, the single cell

profiles are highly quantile, clearly showing the four major

tetraploid states in the SK-BR-3 genome. We applied SNS to

14 single SK-BR-3 cells and observed highly similar copy num-

ber profiles, suggesting that the SK-BR-3 cell culture was

highly clonal. In summary, SNS permits accurate copy num-

ber profiling of single cells at 50 kb resolution on a single Illu-

mina flowcell lane. Currently, we are applying this method to

100 cells froma frozen basal-like breast tumor to see if the pat-

tern of genomic loss followed by amplification can be ob-

served at the single cell level. Single cell copy number data

is particularly useful for reconstructing phylogenetic lineages

to see if we can find evidence for clonal evolution.
12. Final remarks

Models for tumor progression are useful only to the degree

that they provoke experimental tests of their predictions or

provide insight into cancer therapy. The clonal evolution

models predict that all of the tumor cells need to be targeted

by therapy and eliminated in order to cure the disease. In con-

trast, certain aspects of the self-seeding model would predict
that complete removal of the primary tumor might actually

increase the number of potentially metastatic cells in circula-

tion by removing their preferred homing target. Further, the

cancer stem cell model predicts that targeting a small subpop-

ulation of cells (CD44þ/CD24�) would effectively treat the dis-

ease, irrespective of the rest of the tumor cells. This prediction

has lead to an intense study of eradicating cancer stem cells

with chemical inhibitors.

The cancer stem cell model has been built mainly on evi-

dence that a relatively rare population of CD44þ/24� cells

can form tumors in immunocompromised (NOD/SCID) mice

more efficiently than the bulk of tumor cells. But many have

questioned the xenotransplantation model, because of the

artificiality of injecting a subpopulation of human tumor cells

into a foreign mouse microenvironment. Particularly strong

evidence in melanoma showed that 27% of unselected cancer

cells could give rise to tumors when the mouse model was

more severely immunocompromised (NOD/SCID/IL-2rg)

(Quintana et al., 2008). In recent years, many reviewers have

challenged the cancer stem cell hypothesis (Adams and

Strasser, 2008; Campbell and Polyak, 2007; Fabian et al.,

2009; Polyak, 2007a; Shipitsin and Polyak, 2008). What has

mainly been questioned is whether themajority of tumor cells

have limited proliferation potential, or - as the clonal evolu-

tion models state e can continue proliferating indefinitely.

These experiments suggest that the ability of a minority of

enriched cancer stem cells to grow well in NOD/SCID mice

(while the vast majority of tumor cells could not) may be the

result of their ability to evade the mouse immune system

(Shackleton et al., 2009), or simply a subpopulation that can

recruit mouse stroma well (Adams and Strasser, 2008). Thus,

the value of the cancer stem cell hypothesis for humanpatient

treatment depends on (1) whether targeting cancer stem cells

can effectively cure the disease and (2) if cancer stem cells can

seed metastatic tumors.

In breast cancer, the clonal evolution models (monoclonal,

polyclonal and self-seeding) are strongly supported by geno-

mic evidence from intra-tumor, inter-tumor and primary me-

tastasis comparisons. Moreover, these results often contradict

the assumptions of the cancer stem cell model and mutator

phenotype. The major distinction between the clonal evolu-

tion and the cancer stem cell models is the potential for un-

limited replication in the majority of tumor cells. However,

in heterogeneous breast tumors, when we compare the copy

number profiles from isolated subpopulations, we see evi-

dence that clones diverge, but share the majority of chromo-

some breakpoints, suggesting a sequential evolution (Navin

et al., 2010; Shipitsin et al., 2007; Torres et al., 2007). This

strongly suggests that the majority of tumor cells continue

to proliferate to form new subpopulations, rather than being

regenerated from cancer stem cells. When an advantageous

genotype is achieved, the clone will undergo clonal expansion

and continue this process to form the mass of the tumor.

The continued proliferation of tumor cells is also evident in

inter-tumor comparisons in which we and others observe

common mutational pathways that can be inferred by com-

paring simple CGH profiles to complex aneuploid profiles

(Hicks et al., 2006; Hoglund et al., 2005, 2002; Tsarouha et al.,

1999). For example, in the luminal A subtype, we found

a few simple profiles that contain only a gain of chromosome



Figure 7 e Single cell vs. million cell copy number profiles. Single Nucleus Sequencing (SNS) was used to profile copy number in a single SK-BR-

3 cell and microarray CGH was used to profile copy number in approximately one million SK-BR-3 cells. (a) Next-generation sequencing was used

to measure genome-wide read depth in a single SK-BR-3 cell on one Illumina flowcell lane. Reads were counted in 50 kb intervals across the

human genome to generate a copy number profile (gray) from which segments were calculated (blue). (b) CGH profile of one million SK-BR-3

cells. The copy number ratio data are plotted in gray and the segmented profile in blue.
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1p and loss of 16q, while numerous complex aneuploid pro-

files include these events in addition to many other lesions.

Thus, we can infer that 1p gain and 16q loss is an early

event in the evolution of luminal A breast cancers, after

which they continue to proliferate and acquire later events.

By comparing the genome profiles of primary and meta-

static tumors, we also see evidence that the majority of tu-

mor clones arise by clonal expansions and continued

proliferation. If cancer stem cells seeded the metastatic tu-

mor, then it would be highly improbable that they would

generate aneuploid profiles with nearly identical break-

points to the primary tumor. Thus, we see strong evidence

for monoclonal and polyclonal evolution (or Self-seeding)

in breast cancer.

The mutator phenotype model for progression by the ran-

dom accumulation of non-expanded mutations is highly un-

likely as a cause for breast cancer. This model would predict

a large diversity of unrelated clones in heterogeneous tumors.

However, many experiments have shown that when multiple

samples are taken from single heterogeneous tumors, and

compared, they share the majority of genetic mutations

(Aubele et al., 1999; Shipitsin et al., 2007; Teixeira et al., 1996,

1995; Torres et al., 2007). We reached a similar conclusion us-

ing SPP to analyze 6e20 samples from individual heteroge-

neous tumors (Navin et al., 2010). Our analysis showed that

profiles from the same tumor often clustered into a few highly

similar groups, rather than a series of gradual intermediates

or unrelated profiles (Figure 4b). These data suggests that
when an advantageous genotype is achieved, a clone will un-

dergo clonal expansion to form amass of tumor cells. Further-

more, our data and others have shown that the copy number

profiles in the primary andmetastatic tumors show a high de-

gree of similarity in many cancer types (Bockmuhl et al., 2004;

Hovey et al., 1998; Israeli et al., 2004; Jiang et al., 2005; Liu et al.,

2009b). This contradicts the mutator phenotype, because it

predicts that ametastatic tumor would be seeded by a new se-

ries of random clones.

Biologicalmodels are by definition built upon incomplete in-

formation. At best, these explicit models for tumor progression

provide guideposts for further exploration. As technology con-

tinues toevolve, theanalysisof cancer samples of complexmix-

tureswill giveway tomethodsaimedat the individual cell. Such

methods will enable single cancer cells to be tracked as they

progress to form the primary tumor and traced as theymigrate

through the body to seed the metastasis. In the near future the

cost of deep sequencing a mammalian genome, whether from

a tumor sample or a few disseminated cells will be approxi-

mately equivalent to the current price of a microarray experi-

ment. Single cell genomes are also ideal for constructing

detailed lineages of tumor progression, because individualmu-

tations in a genome can be traced as they are inherited and ex-

panded in subpopulations. As we bring the magnifying glass

closer, wemay also be able to track the genetic stepping stones

for tumorgrowth,or followthegeneticchanges incirculatingtu-

mor cells as they progress from the primary to metastasis. Per-

haps, we will find evidence that individual circulating tumor
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cells return to the primary tumor after developing offsite as the

self-seeding model suggests. It is then that these predictive ge-

netic models will have realized their full value.
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