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Abstract

Introduction: Clinically useful predictions of end-organ function and failure in severe sepsis
may be possible through analyzing the interactions among demographics, physiologic
parameters, standard laboratory tests, and circulating markers of inflammation. The present
study evaluated the ability of such a methodology, the Systemic Mediator Associated
Response Test (SMART), to predict the clinical course of septic surgery patients from a
database of medical and surgical patients with severe sepsis and/or septic shock.

Patients and methods: Three hundred and three patients entered into the placebo arm of a
multi-institutional sepsis study were randomly assigned to a model-building cohort (n = 200;
119 surgical) or to a predictive cohort (n = 103; 55 surgical). Using baseline and baseline
plus serial measurements of physiologic data, standard laboratory tests, and plasma levels of
IL-6, IL-8, and granulocyte colony-stimulating factor (GCSF), multivariate models were
developed that predicted the presence or absence of pulmonary edema on chest
radiography, and respiratory, renal, coagulation, hepatobiliary, or central nervous system
dysfunction and shock in individual patients. Twenty-eight-day survival was predicted also in
baseline plus serial data models. These models were validated prospectively by inserting
baseline raw data from the 55 surgical patients in the predictive cohort into the models built
on the comprehensive training cohort, and calculating the area under the curve (AUC) of
predicted versus observed receiver operator characteristic (ROC) plots.

Results: SMART predictions of physiologic, respiratory, metabolic, hepatic, renal, and
hematologic function indicators were validated prospectively, frequently at clinically useful
levels of accuracy. ROC AUC values above 0.700 were achieved in 30 out of 49 (61%) of
SMART baseline models in predicting shock and organ failure up to 7 days in advance, and
in 30 out of 54 (56%) of baseline plus serial data models.

Conclusion: SMART multivariate models accurately predict pathophysiology, shock, and
organ failure in individual septic surgical patients. These prognostications may facilitate early
treatment of end-organ dysfunction in surgical sepsis.
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Introduction
Conventional outcomes research in surgical sepsis has
focused on scoring systems that predict grouped risk of
mortality, utilization of resources, and, sometimes, the
development of broadly defined multiple organ failure con-
ditions. For example, the Sepsis Score [1], the Multiple
Organ System Dysfunction Score [2], and the Sepsis-
related Organ Failure Assessment [3] were attempts to
predict group percentage of risk of death among septic
patients. In the general adult intensive care unit popula-
tion, the Mortality Probability Model II score [4], the Simpli-
fied Acute Physiology Score II [5], and the Acute
Physiology and Chronic Health Evaluation (APACHE) III
score [6] are the best known predictive engines. For
trauma patients, the Injury Severity Score, the Trauma and
Injury Severity Score, and A Severity Characterization of
Trauma, among others, also predict mortality risk [7–11].
Others have related the duration of systemic inflammatory
conditions to organ dysfunction, duration of hospital stay,
and mortality [12].

In septic surgical patients, increased circulating cytokines,
prostaglandins, complement, and other inflammatory
response mediators have been associated with poor
outcome and the development of acute end-organ dys-
function [13–15]. However, conventional scoring systems
have nevertheless grouped patients with disparate patho-
physiologies together on the basis of similar probabilities
of dying. Ultimately, then, these methods forecast only
grouped percentage risks of hospital death, and possibly
consumption of health care resources [13]. The clinically
important pathophysiologic events that actually define the
risk of mortality in the first place are not predicted. As a
result, conventional prognostication does not facilitate
timely and therapeutic intervention, and therefore does not
improve survival.

Management of severely septic surgical patients could be
optimized by identifying and monitoring the onset and res-
olution of organ dysfunction, shock, and other systemic
inflammatory conditions subclinically in individual patients.
Considering the many inflammatory response mediators
that have been associated with the development of shock,
organ failure, and death, it seems logical that changes in
circulating concentrations of such substances may be
related prognostically to clinical events that lie biologically
and temporally downstream from the original septic insult.
We hypothesized that clinical manifestations of sepsis and
its sequelae could be predicted through analyzing interac-
tions between patient data and plasma inflammatory
response mediators measured when sepsis was first diag-
nosed, and clinical events that occurred days later. This
concept was tested retrospectively in a previous study
[16], and has been developed methodologically as the
SMART. Circulating eicosanoids and cytokines have been
predicted also [17]. Building on the results of these pilot

projects, the objective of the present study was to further
develop, and validate prospectively, SMART multivariate
models that predict clinically important dysfunction of vital
organs, in advance, in individual surgical patients with
severe sepsis and septic shock.

Patients and methods
Data from 303 patients with severe sepsis and septic
shock who were enroled in the placebo arm of a phase III
clinical trial [13] was tabulated. The clinical characteristics
of these patients, including demographics, organ dysfunc-
tion, and types of infection, among other data, were
described completely in the parent paper [18]. These
patients then were assigned by a randomization program
to a model-building training cohort (n = 200; 119 surgical)
or a prospective validation, predictive cohort (n = 103; 55
surgical). Demographics, including sex, race, age, and
comorbidities, were recorded at baseline for each patient.
At baseline and on days 1 through 7, 14, 21, and 28, the
physiologic parameters and hospital laboratory tests listed
in Table 1 were recorded in all patients surviving at those
observation points. In addition, at baseline and on days 1,
2, 3, and 4, plasma concentrations of IL-6, IL-8, and
GCSF were measured by enzyme-linked immunosorbent
assay (ELISA), using commercially available kits and stan-
dard ELISA laboratory methodology.

Using SAS software [19], data from the training cohort
were analyzed by stepwise logistic regression. Multivariate
models were developed that predicted the presence or
absence of adult respiratory distress syndrome (ARDS),
renal insufficiency, hepatobiliary dysfunction, and dissemi-
nated intravascular coagulation (DIC), all of which were
defined according to established diagnostic criteria in the
literature for these entities. These definitions are listed in
Table 2. Also recorded were the number of lung quadrants
on chest radiography that were affected by pulmonary
edema (0–4), and 28-day survival.

Independent variables for each model were limited to 10
[20] and all-ways elimination was utilized in the model-
building process [21]. Glasgow Coma Scale score less
than 11 was chosen as the threshold for cerebral dysfunc-
tion because of the automatic absence of an appropriate
verbal response for endotracheally intubated patients who
otherwise might have intact cerebral function. The SMART
multiple regression models derived for these dichotomous
dependent variables then were validated prospectively by
entering raw data from the 55 predictive cohort patients
into the training cohort logistic regression formulae. Dis-
crimination (the ability of the models to separate patients
with and without the predicted dichotomous dependent
variable) was assessed by calculating the AUC of ROC
statistics [22]. Calibration (the degree of correspondence
between predictions and observed results) was assessed
using the Hosmer–Lemeshow goodness-of-fit test [23].
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Stepwise multivariate logistic regression models that pre-
dicted dichotomous dependent variables 24 h after base-
line used only baseline data. For predictions beyond 24 h,
SMART modeling was carried out in two ways for each
variable at each time point: from baseline data only; and
from serial data, where baseline independent variable
measures and/or subsequent determinations up to 24 h
before the time being prognosticated were incorporated
into the multiple regression and/or multivariate stepwise
logistic regression modeling. For both baseline and base-
line plus serial data approaches, a separate, unique pre-
dictive model was generated for each dependent variable,
at each observation point (days 1–7, 14, 21, and 28).

Results
Prospectively validated SMART predictions from baseline
data of the dichotomous dependent variables chest radio-

graphy score, ARDS, DIC, hepatobiliary failure, renal insuffi-
ciency, shock, and cerebral dysfunction are shown in
Table 3. Ninety different predictive models were attempted;
data were sufficient for building 65 successfully. Training
cohort model failures are represented by blank spaces in the
tables. SMART baseline models were validated at clinically
useful levels of accuracy, with 30 out of 49 (61%) predicted
versus observed ROC AUC determinations up to 7 days
after baseline exceeding 0.700. For predictions of pulmonary
edema score, ARDS, hepatobiliary failure, and renal insuffi-
ciency, SMART baseline models at 14, 21, and 28 days
achieved prospective ROC AUCs exceeding 0.700 in 10
out of 12 (83%). Baseline modeling was not successful in
generating predictions for mechanical ventilation or survival.

Prospectively validated SMART predictions of shock,
organ failure, and 28-day survival from baseline plus serial

Table 1

Independent variables in trauma and surgical patients with severe sepsis

Age
Sex
Race
Albumin
Alkaline phosphatase
Alanine aminotransferase
Aspartate aminotransferase
Blood urea nitrogen
Calcium
Cholesterol
Creatinine
γ-glutamyl transferase
Glucose
Hematocrit
Hemoglobin
Mean corpuscular hemoglobin
Mean corpuscular hemoglobin concentration
Mean corpuscular volume
Phosphorous
Platelet count
Potassium
Total protein
Prothrombin time
Partial thromboplastin time
Red blood cells
Sodium
Total bilirubin
Triglycerides
Uric acid
White blood cells
IL-6
IL-8
GCSF
Electrocardiography (PR interval, QT interval)
DIC
Glascow Coma Scale score
Hepatobiliary baseline
Shock
ARDS

Renal failure
Comorbidities (alcohol abuse, cirrhosis; HIV; dialysis; neutropenia;
COPD; solid tumor; hematologic malignancy; chronic renal failure)
Admitting service (surgery, medicine)
A–aDO2
Base deficit
pH
PaO2
SaO2
FiO2
Fluids in
Fluids out
PaO2/FiO2 ratio
Chloride
Eosinophils
Lymphocytes
Mononuclear cells
Metamyelocyte
Segmental neutrophils
Band neutrophils
Basophils
Granulocytes (% granulocytes, % lymphocytes)
Eosinophils
Lactic acid
PCWP
Cardiac index
Systemic vascular resistance
PEEP
Pressure support
Respiratory rate
Mechanical ventilation
Trauma
Systolic blood pressure
Diastolic blood pressure
Heart rate
Mean arterial pressure
Temperature
Height
Weight

A–aDO2, alveolar–arterial oxygen difference; COPD, chronic obstructive pulmonary disease; FIO2, fractional inspired oxygen; PaO2, arterial oxygen
tension; PCWP, pulmonary capillary wedge pressure; PEEP, positive end-expiratory pressure; SaO2, arterial oxygen saturation.



input of independent variables are listed in Table 4. Eighty-
one models were attempted; 74 were successfully vali-
dated. ROC AUCs above 0.700 were achieved for 30 out
of 54 (56%) of SMART models for days 2–7, and 15 out
of 27 (56%) of predictions for days 14, 21, and 28. Sur-
vival was predicted from baseline plus serial and depen-
dent variables with varying accuracy. From day 5 onward,
the need for mechanical ventilation was predicted with five
out of six ROC AUC determinations exceeding 0.800.

In 37 out of 63 (59%) predictive points at which both
SMART baseline and baseline plus serial data models
were validated prospectively, the ROC AUC of the

baseline plus serial prognostication was higher than
baseline alone.

Hosmer–Lemeshow goodness-of-fit test results for
SMART predictions of shock and organ failure from base-
line data only are listed in Table 5. Goodness-of-fit statis-
tics were not significant for the four-point dichotomous
dependent variable chest radiography score. In the
remainder of the baseline models for ARDS, DIC, hepato-
biliary failure, renal failure, shock, and cerebral dysfunc-
tion, outcomes predicted by the models corresponded to
the actual observed results with a probability of P < 0.05
in 60 out of 40 of these equations (67%). Correspon-
dence was not uniform, but rather ranged from statistically
significant results in nine out of 10 models predicting
cerebral dysfunction and eight of 10 models predicting
hepatobiliary failure, to only three out of 10 models that
predicted DIC and four models that predicted shock.

Calibration analysis for SMART models developed from
baseline plus serial data are shown in Table 6. Again, pre-
dictive versus observed results for chest radiography
score did not correspond significantly. Similarly,
Hosmer–Lemeshow goodness-of-fit statistics were signifi-
cant for only two models that predicted presence or
absence of mechanical ventilation (days 14 and 21), and
for two for DIC (days 5 and 21). The Hosmer–Lemeshow
test was significant in six out of 10 models which pre-
dicted hepatobiliary failure, renal failure, shock, and cere-
bral dysfunction. None of the models predicting survival
status achieved significant goodness-of-fit statistics from
baseline plus serial data.

IL-6, IL-8, and/or GCSF were weighted independent vari-
ables that contributed to predictive accuracy in 52 out of
70 (74%) of baseline SMART models, and in 51 out of 81
(63%) of baseline plus serial data predictions.
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Table 2

Clinical definitions for organ failure and shock

Clinical entity Definition

Shock Systolic blood pressure ≤90 mmHg or mean 
≤70 mmHg, or need for vasopressors

Renal Serum creatine ≥2.0 mg/dl, the need for dialysis, or 
dysfunction increase in serum creatine ≥20 mg/dl above 

pre-existing normal

Hepatic Two or more of the following: serum bilirubin 
dysfunction ≥25 mg/dl; alanine aminotransferase or aspartate 

aminotransferase ≥2 times normal; and prothrombin 
time ≥1.5 times normal

DIC Two or more of the following: prothrombin or partial 
thromboplastin time ≥1.2 times normal; platelet count 
≤100 000 mm5; and fibrin split products or D-dimer 
> 0.5 mg/l

ARDS Lung injury score ≥7 [20]

Cerebral Glasgow Coma Scale score <11
dysfunction

Table 3

SMART: prediction of shock and organ failure in severely septic surgical patients from baseline data only

Day

Independent variable 1 2 3 4 5 6 7 14 21 28

Chest radiography score* 0.874 0.802 0.798 0.761 0.820 0.625 0.686 0.598 0.786 1.000

ARDS 0.776 0.829 0.523 0.687 0.698 0.856 0.755 0.867 0.966 –

DIC 0.833 0.857 0.851 0.821 0.823 0.808 0.817 0.323 – –

Hepatobiliary failure 0.788 0.796 0.631 0.954 0.832 0.856 0.778 0.733 0.724 0.921

Renal insufficiency 0.845 0.779 0.913 0.879 0.827 0.650 0.696 0.703 0.740 0.809

Shock 0.756 0.567 0.479 0.627 – 0.760 0.564 0.500 0.438 –

GCS score <11 0.725 0.563 0.602 0.591 0.649 0.526 0.564 0.360 0.460 0.482

Values are AUC ROC determinations. *Chest radiography score = 0–4 quadrants pulmonary edema. Organ failure and shock definitions were from
Fisher et al [18]. –, training cohort model failure; GCS, Glascow Coma Scale.



The equations developed to predict each dependent vari-
able are available from the author for research and inde-
pendent confirmation.

Discussion
The results of the present study demonstrate that, using
data from a diverse population of septic patients, SMART
predicts shock, organ dysfunction, mechanical ventilation,
and 28-day survival in advance, in individual surgical

patients with severe sepsis and septic shock. Multiple logis-
tic regression models, both from baseline independent vari-
ables and from baseline plus serial data, that predicted
shock, chest radiography score, DIC, ARDS, cerebral dys-
function, and liver and renal failure in surgical sepsis were
validated prospectively. In addition, baseline plus serial
models predicted 28-day survival and the need for mechani-
cal ventilation. The importance of measuring inflammatory
response mediators to this kind of prognostication was
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Table 4

SMART: prediction of shock and organ failure and survival in severe sepsis from baseline plus serial data

Day

Independent variable 1 2 3 4 5 6 7 14 21 28

Chest radiography score* – 0.847 0.902 0.807 0.859 0.629 0.709 0.467 0.794 1.000

Mechanical ventilation – – – – 0.857 1.000 0.905 0.697 0.827 0.913

ARDS – 0.782 0.586 0.583 0.808 0.884 0.759 0.861 1.000 4.000

DIC – 0.857 0.923 0.919 0.620 0.914 0.466 – 0.450 –

Hepatobiliary failure – 0.778 0.679 0.940 0.888 0.890 0.843 0.856 0.947 0.938

Renal insufficiency – 0.858 0.805 0.983 0.892 0.699 0.857 0.921 0.865 0.646

Shock – 0.471 0.193 0.817 0.452 0.532 0.474 0.500 0.352 –

Survival Status – 0.740 0.625 0.586 0.620 0.620 0.541 0.695 0.919 0.874

GCS score <11 – 0.667 0.760 0.576 0.617 0.604 0.708 0.500 0.873 –

Values are AUC ROC determinations. *Chest radiography score = 0–4 quadrants pulmonary edema. Organ failure and shock definitions were from
Fisher et al [18]. –, training cohort model failure; GCS, Glascow Coma Scale.

Table 5

SMART: Hosmer–Lemeshow goodness-of-fit test results for prediction of shock and organ failure and survival in severe sepsis
from baseline data only

Day

Independent variable 1 2 3 4 5 6 7 14 21 28

Chest radiography score* – – – – – – – – – –

ARDS 24.702 0.9667 100.87 61.879 35.996 11.435 102.25 18.64 4.524 3.3114
(0.0009) (NS) (0.0001) (0.001) (0.0001) (0.2470) (0.0001) (0.0061) (0.807) (NS)

DIC 7.4046 4.581 4.0234 4.3578 13.231 9.4627 31.293 617.34 9.247 –
(0.3880) (0.8692) (0.8550) (0.8235) (0.0667) (0.221) (0.0001) (0.0001) (NS)

Hepatobiliary failure 14.349 5032 15.346 2.8502 22.643 18.508 16.223 242.39 24.656 7.3931
(0.0453) (0.0001) (0.0318) (0.9434) (0.0121) (0.0177) (0.0232) (0.0001) (0.0009) (0.4949)

Renal insufficiency 67.172 200.8 22.777 18.597 26.06 131.14 37.378 12.759 25.071 15.32
(0.0001) (0.0001) (0.0037) (0.0172) (0.0005) (0.0001) (0.0001) (NS) (0.0007) (0.0532)

Shock 12.115 10.962 10.233 20.961 0.0443 2.2016 22.485 119.08 15.938 0.0009
(0.1461) (0.2783) (0.2491) (0.0073) (NS) (NS) (0.0075) (0.0001) (0.0433) (NS)

GCS score <11 405.35 67.866 65.427 22.233 83.405 46.674 21.497 21.66 137.24 12.087
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0059) (0.010) (0.0001) (0.0977)

Values are Hosmer–Lemeshow goodness-of-fit test statistics (P values). *Chest radiography score = 0–4 quadrants pulmonary edema. Organ
failure and shock definitions were from Fisher et al [18]. GCS Glascow Coma Scale; NS, not significant.



demonstrated by the inclusion of IL-6 and/or IL-8 and/or
GCSF as weighed predictors in the development of 74%
of baseline SMART models and in building 63% of base-
line plus serial data formulae. The possible advantage of
serial SMART models was suggested by higher serial
ROC AUC determinations in 59% of baseline versus
baseline plus serial comparisons.

A review of the literature indicates that such a prospec-
tively validated method for predicting end-organ dysfunc-
tion in individual septic surgical patients, based on a mixed
specialty septic database, has not previously been
reported, and is a significant finding of the present study.

The SMART models in this study are applicable to individ-
ual septic surgical patients, and they frequently performed
at clinically useful levels of accuracy. Other injury or illness
severity scoring systems [1–11] have generally predicted
only grouped risk of intensive care unit or hospital mortal-
ity. Some authors have correlated measurements of circu-
lating inflammatory mediators with broad groupings of
multiple organ failure [24]. Even when serial physiologic
assessments [25] or Bayesian analysis [26] were
included, prognostication was still limited to relative risk of
mortality, and therefore was not applicable to individual
patients. Similarly, attempts at predicting multiple organ
dysfunction [24], ventilator dependence [27], or duration

of stay and hospital costs [28] have limited clinical value.
In contrast, the prospectively validated SMART models
presented here predicted important clinical end-points
accurately in individual patients, with high levels of prog-
nostic accuracy in most cases.

The SMART prognostic modeling approach differs from
conventional surgical scoring systems in several ways.
Although traditional outcomes research methods use clini-
cally obvious information to predict mortality probability,
SMART analyzes relationships between pathophysiology
and standard laboratory tests, as well as circulating inflam-
matory response mediators and downstream pathophysi-
ology, to predict clinical events that determine the course
of each patient. Mortality risk assessments [1–7] group
patients together who have similar mortality risks, but who
also may vary widely in their mechanisms of disease;
SMART predicts major clinical changes that may affect
survival, on the basis of results from patients with similar
illnesses. Conventional models assess relative risk of
death, while assuming, statistically at least, that contribut-
ing factors remain constant and that outcome is not
altered by treatment. SMART predicts conditions that may
not yet be evident externally, and that therefore might
improve outcomes by facilitating early intervention and
timely modification of the host inflammatory response. It may
be possible for SMART to facilitate improved outcomes in
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Table 6

SMART: Hosmer–Lemeshow goodness-of-fit test results for prediction of shock and organ failure and survival in severe sepsis
from baseline plus serial data

Day

Independent variable 1 2 3 4 5 6 7 14 21 28

Chest radiography score* – – – – – – – – – –

Mechanical ventilation – – – 3.5003 11.159 3.5366 4.7716 16.473 14.65 3.8411
(NS) (0.0836) (0.1706) (0.6878) (0.0001) (0.048) (0.8712)

ARDS – 50.182 5.1079 229.18 6.7868 7.4788 162.02 20.147 13.294 5.5629
(0.0001) (NS) (0.0001) (0.079) (0.2788) (0.0001) (0.0026) (0.0099) (0.5916)

DIC – 6.061 2.513 2.1413 179.27 4.8029 2.4973 8.0683 245.38 –
(0.7338) (0.4261) (0.9764) (0.0001) (0.6840) (NS) (NS) (0.0001)

Hepatobiliary failure – 4969 42.872 11.154 19.672 25.623 40.83 23.322 3.1979 9.207
(0.0001) (0.0001) (0.1321) (0.201) (0.0003) (0.0001) (0.0015) (0.959) (0.3251)

Renal insufficiency – 0.8232 3297.6 1.4857 20.514 2172 14.25 20.981 12.247 8.1239
(NS) (0.0001) (0.9604) (0.0086) (0.0001) (0.0759) (0.0072) (0.0927) (0.0044)

Shock – 14.611 89.307 11.089 20.737 74.51 38.134 62.76 14.042 –
(0.0413) (0.0001) (0.1348) (0.0020) (0.0001) (0.0001) (0.0001) (0.0001)

Survival status – 10.315 15.226 8.8376 13.146 13.146 11.177 13.851 5.54 7.3106
(0.2436) (0.0849) (0.2645) (0.0686) (0.0686) (0.2688) (0.5835) (0.5944) (0.5835)

GCS score <11 – 1064.3 105.34 729.5 5418 33.064 16.397 16.07 4.2473 0.8312 
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0217) (0.0654) (0.9355) (NS)

Values are Hosmer–Lemeshow goodness-of-fit test statistics (P values). *Chest radiography score = 0–4 quadrants pulmonary edema. Organ
failure and shock definitions were from Fisher et al [18]. GCS Glascow Coma Scale; NS, not significant.



the intensive care unit by directing clinicians toward effec-
tive early intervention in impending life-threatening condi-
tions, and by identifying objectively those septic surgical
patients who are about to manifest ARDS, DIC, liver or
renal failure, or shock.

In this study, circulating levels of inflammatory response
mediators were prominent as significant independent vari-
ables that contributed to the predictive power of SMART
models. Plasma IL-6 and/or IL-8 and/or GCSF were
involved in most of the models here. One might speculate
from these results that SMART models for septic surgical
patients could be optimized further by measuring additional
inflammatory response mediators that have also been asso-
ciated with sepsis, shock, and organ failure. Therefore, if
such mediators (eg IL-1β [29], IL-2 [30], tumor necrosis
factor-α [29], intercellular adhesion molecule and other
adhesion molecules [31], leukotrienes and prostaglandins
[29], and activated complement [29]) were all included
simultaneously as independent variables in SMART
models, along with IL-6, IL-8, and GCSF as measured in
the present study, then it might be that clinically useful pre-
dictive accuracy could be achieved consistently for many
more dependent variables than was possible with the
present database. Although immunoassays for these
potential independent variables at present require separate
ELISA determinations, as SMART databases grow the
technology for programmable automated immunoanalyzers
will become more readily available, and CD-based bedside
analyzers are under development. Thus, the next level of
SMART prognostication may become a practical reality.

Whether incorporating serial measurements of inflamma-
tory response mediators and physiologic data into SMART
models improves predictive accuracy in septic surgical
patients is not clear from the present data. Predictions
that are based on serial input were validated prospectively
at higher ROC AUC values than were baseline prognosti-
cations in 59% of the points at which they could be com-
pared directly. On the other hand, more baseline SMART
models than baseline plus serial data equations were vali-
dated at ROC AUC determinations above 0.700. Ade-
quate answers to the baseline versus baseline plus serial
data SMART debate, then, will require detailed analysis of
more expanded databases than were available here.

The requirement for mechanical ventilation in septic surgi-
cal patients proved difficult to predict in this study. From
baseline data, SMART models were generated with only
modest success for days 6 and 14. In contrast, models
derived from baseline plus serial input were validated with
respectable ROC AUC determinations for days 5 through
28. The question of whether more comprehensive mea-
surements of inflammatory response mediators associated
with ventilatory dysfunction could yield useful prognostica-
tions based on baseline data is not clear from the present

results. Also unanswered is the speculation that the excel-
lent prediction by baseline plus serial models at 5 days
and beyond may simply represent continued ventilator
dependence of already compromised patients.

Clinical shock was also a difficult independent variable to
predict consistently. Predicted versus observed ROC
AUC determinations above 0.700 were achieved in only
five out of 19 models for septic shock. One might specu-
late that the multiple factors that contribute to septic
hypotension made it difficult to find strong prognostic
interactions with either baseline data or baseline plus
serial input. That many key inflammatory mediators associ-
ated with systemic vasodilatation in sepsis, such as
prostacyclin [32] and nitric oxide [33], were not measured
also may have influenced the suboptimal results.

It is important to note that the predictions for septic surgi-
cal patients presented in here were validated prospec-
tively on SMART models built from a mixed medical/
surgical/gynecologic sepsis training cohort. This contrasts
with previous reports that suggested prognostic incom-
patibility of such mixed databases with surgical outcomes.
For example, Cerra et al [34] reported that the APACHE II
score did not accurately predict mortality risk in trauma
patients. Determining whether prognostic models based
strictly on surgical patients may be superior to the present
results will require direct performance comparisons of
SMART surgical and mixed sepsis databases.

Although predicting 28-day survival was not the primary
focus of the present study, it was predicted with moderate
success using baseline plus serial data SMART models.
Not surprisingly, possibly reflecting a more defined mortal-
ity/survival population later during the course of severe
sepsis/septic shock, predictions of survival were most
accurate from serial data at 21 and 28 days. A similar phe-
nomenon has been reported for the APACHE III [25].

Although the ability of the models presented here to dis-
criminate between patients with or without ARDS, DIC,
hepatobiliary failure, renal insufficiency, shock, or cerebral
dysfunction was fairly consistent, Hosmer–Lemeshow sta-
tistics indicated that calibration (the degree of correspon-
dence between the outcomes predicted by the present
models and the actual outcomes) was somewhat more
variable. Hosmer–Lemeshow goodness-of-fit statistics
were statistically significant in the majority of models that
predicted ARDS, hepatobiliary failure, renal insufficiency,
and cerebral dysfunction, but were significant in less than
half of the models that predicted DIC or shock. Calibration
was not achieved at significant levels for chest radiogra-
phy score. These findings are another indication of the
need to further develop the SMART approach to prognos-
tication in larger studied populations before this concept
can become a worthwhile adjunct to clinical judgment.
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The present study prospectively validated multiple logistic
regression models from a population of septic surgical,
medical, and gynecologic patients that predicted shock,
pulmonary edema, mechanical ventilation, ARDS, DIC, and
hepatobiliary, renal, and cerebral dysfunction in septic sur-
gical patients, up to 28 days in advance. Models were con-
firmed prospectively also that predicted the occurrence of
shock and organ system dysfunction. These prognostica-
tions are applicable to individual patients, and frequently at
clinically useful levels of accuracy. Plasma cytokine con-
centrations contributed significantly as weighted indepen-
dent variables to many quantitative models, and to most
predictions of dichotomous dependent variables.
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