
Evaluation of Atlas based Mouse Brain Segmentation

Joohwi Leea, Julien Jomierb, Stephen Aylwardb, Mike Tyszkac, Sheryl Moyd, Jean
Laudere, and Martin Stynera,d
aDepartment of Computer Science, University of North Carolina, Chapel Hill NC, USA
bKitware Inc., New York NY, USA
cBiological Imaging Center, California Institute of Technology, Pasadena CA, USA
dDeptartment of Psychiatry, University of North Carolina, Chapel Hill NC, USA
eSchool of Medicine, University of North Carolina, Chapel Hill NC, USA

Abstract
Magentic Reasonance Imaging for mouse phenotype study is one of the important tools to
understand human diseases. In this paper, we present a fully automatic pipeline for the process of
morphometric mouse brain analysis. The method is based on atlas-based tissue and regional
segmentation, which was originally developed for the human brain. To evaluate our method, we
conduct a qualitative and quantitative validation study as well as compare of b-spline and fluid
registration methods as components in the pipeline. The validation study includes visual
inspection, shape and volumetric measurements and stability of the registration methods against
various parameter settings in the processing pipeline. The result shows both fluid and b-spline
registration methods work well in murine settings, but the fluid registration is more stable.
Additionally, we evaluated our segmentation methods by comparing volume differences between
Fmr1 FXS in FVB background vs C57BL/6J mouse strains.

Keywords
segmentation; registration; atlas-based; bspline; fluid; mouse brain

1. Introduction
As genome sequencing and altering techniques advance, mouse phenotype models designed
for studying human diseases have increasingly been developed, for example, Autism mouse
models,1–3 the Reeler mouse4 and Shiverer mouse model.5 A good overview on the
generation and analysis of mouse phenotype with imaging means has been written by
Nieman.6 Several researchers have used Magnetic Reasonance Imaging (MRI) for
phenotype studies employing volumetric measurement,7, 8 deformation field analysis,9
diffusion tensor based analysis,10, 11 3D shape analysis12 and more.

The regional segmentation of the mouse brain is an elementary step for such phenotype
study. While the segmentation techniques for the human brain have reached a mature stage
for many neuroimaging applications, the segmentation of the mouse brain has received thus
far less attention.4, 13 As pointed out in,6, 13 however, the direct application of the human
segmentation tools may not be successful as the settings of mouse brain segmentation differs
in several ways:

NIH Public Access
Author Manuscript
Proc SPIE. Author manuscript; available in PMC 2010 July 16.

Published in final edited form as:
Proc SPIE. 2009 February 1; 7259: 725943–725949. doi:10.1117/12.812762.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



• The lower variance of murine structures as compared to human structures
necessitates high fidelity segmentation algorithms that have a strong reliability and
repeatability properties.

• The scale of structures of rodents is smaller than human structure, and relative
scales of the individual structures are different.

• The murine neocortex is not folded and thus folding patterns cannot be used for
establishing localized correspondence. Cortical thickness algorithms, for example,
usually depend on the existence of such folding patterns.

• The murine brain contains proportionally considerably less white matter than
human brains, the same is true for the cerebro-spinal parts. Human brain based
segmentation algorithms are often based on tissue segmentation methods for skull
stripping, intensity inhomogeneity correction and intensity calibration.14 Such
methods clearly need to be adapted to work with the murine brain.

In our study, we are presenting a fully automatic pipeline for brain morphometry analysis
aiming at characterizing mouse phenotypes in regard to both brain structural volume and
regional diffusion tensor properties. As a first step in this research, we adapted an atlas-
based automatic segmentation technique used for segmenting human subcortical structures
into murine full brain segmentation. Since the method was developed for human brain, it is
necessary to evaluate the application results in quantitative and qualitative way in the murine
setting. In following sections we briefly describe the pipeline of our segmentation method
and present the evaluation results - the accuracy and repeatability tests. Finally, we compare
the two methods by analyzing the volumetric differences of brain structures in FVB and
C57BL/6J strains in order to evaluate the methods in a quantitative analysis framework.

2. Methods
In this paper, we adapt an existing human subcortical brain structure segmentation method14

to murine brain segmentation. The core of this approach is based on the registration of an
atlas with prior probabilistic information of tissue and region of interest associations onto
the each dataset to be segmented. As described in,14 the whole process can be separated into
an atlas building step and segmentation step, which are both described in further detail
below.

2.1 FVB mice Specimen Preparation & Image Acquisition
Mice for these studies were a subset of the subjects described in,15 and included 5 Fmr1 +/y

(wildtype) and 5 Fmr1 −/y (knockout) males, all on a FVB/N-129/OlaHsd (FVB/129) strain
background. Weights of mice ranged from 24-28 g at the time of testing. Mice were assayed
for social behavior at the age of 2-3 months. For specimen preparation, mice were deeply
anesthetized and then perfused through the left ventricle with 30 mL of phosphate-buffered
saline (PBS, pH 7.4) at room temperature. This was followed by infusion with 30 mL of iced
4% paraformaldehyde (PFA) in PBS. The remaining skull structures containing the brain
were allowed to postfix in 4% PFA at 4 degree for overnight. Following an rinse period of 5
days in PBS on shaker in coldroom without azide, the heads were sent to Mike Tyszka by
FEDEX on ice in PBS. After transfer, the heads were removed along with the skin, lower
jaw, ears and the cartilaginous nose tip, followed by soak in ProHance.

MRI diffusion images were acquired using a conventional pulsed-gradient spin echo (PGSE)
sequence (TR/TE = 100ms/11.6ms, 256 × 128 × 128 matrix, 100μm isotropic voxel size, 1
average, δ = 3ms, Δ = 5ms, Gd = 750mT/m, nominal b-factor= 1450s/mm2). Twenty-five
diffusion weighted images were acquired with directions evenly distributed over angular
space by an approximate solution to the Thomson electrostatic repulsion problem.
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Additional 5 images without diffusion weighting were acquired. Total imaging time per
brain was 13 hours and 40 minutes. This approach, while less efficient than EPI or RARE
acquisitions, has a very low artifact level and high geometric fidelity.

2.2 Atlas Creation & Skull Stripping
For the atlas creation we employed an existing atlas published online as part of the
Brookhaven's C57BL/6J mouse database*. The detailed information of its processing is
described here.16 The atlas consists of skull stripped T2*-weighted MRI images from 10
C57BL/6J subjects, each with an individual manual segmentation of twenty brain structures,
as well as the mean image and its segmentation computed from the 10 subjects. The high
resolution images have 256×256×512 voxel dimensions and isotropic 0.047mm spacing.
The computation of the atlas employed an approach of similar nature as used in our
segmentation pipeline, but with a different deformable registration method. This atlas is
designed to be in the geometric center of the population with average signal intensity. The
atlas image computation is summarized as follows: 1) Choose a representative image as the
initial average atlas 2) Register cases to the representative image using affine transformation
3) Find the elastic transformation registering the current average atlas to each case 4)
Calculate the average transform and the updated average atlas from the transforms 5) Repeat
step 4 until converge.

For our atlas-based pipeline, we need an atlas image, regional segmentations and
probabilistic tissue maps. For the atlas image and the regional segmentations we use the
information in the Brookhaven's C57BL/6J database, but no probabilistic tissue maps exist
in this database. The main purpose of the probabilistic atlas maps is to provide prior
knowledge at each voxel for the brain skull stripping step using our itkEMS tool, described
in more detail in the next section. The tool requires prior probability information for the
three tissue types, gray matter(GM), white matter(WM) and cerebro-spinal fluid(CSF).
However, regions of white matter and especially CSF are quite small in murine brain and
many regions have an image appearance in between white and gray matter. Thus, we
defined our tissue probability maps by excluding CSF, and including a new third class
representing intermediate GM/WM tissue. The following regions are modeled in this tissue
class: striatum (caudate & putamen), thalamus, superior and inferior colliculi.

The probabilistic tissue maps were computed by categorizing the existing individual
regional segmentations into WM, GM or intermediate GM. Then, each case was registered
to the atlas image using affine transformation and the transformation was applied to the
individual segmentation. On a voxel-by-voxel basis, we averaged the individual classes, and
then smoothed the resulting maps with a Gaussian smoothing filter of σ = 0.025mm (about a
half voxel). Finally, we normalized all images for the voxel-wise probabilities to sum to 1
over all tissue types and created an ”other” class for non-brain tissue locations.

2.3 Segmentation
Our segmentation pipeline for murine brain structure consists of a preprocessing, brain skull
stripping and a registration step. The main purpose of preprocessing is to provide initial
alignment for brain skull stripping and further deformable registration by bringing images
into a common reference frame. Automatic initial alignment can be performed by matching
the center of images, center of gravity, or second moments of images. However, since these
methods assume the same orientation, we need reorientation beforehand. For automatic
reorienation, we use geometric asymmetry of the mouse brain.

*The Brookhaven's C57BL/6J mouse database can be found at http://www.bnl.gov/CTN/mouse/
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As a next step, brain skull stripping, we perform an affine registration of the atlas and its
probabilistic prior maps to the dataset. Then, we employ the multichannel, atlas-based
segmentation tool itkEMS for the skull stripping using the T2 weighted image, as well other
available structural MR images. We employ the DTI derived Mean Diffusivity (MD) image
and the isotropic diffusion weighted image (iDWI) as additional MR images for tissue
classification in our studies (see also section 2.5). The itkEMS tool classifies images into
brain tissue via an Expectation Maximization scheme that computes the tissue classification
and performs intensity inhomogeneity correction at the same time. Brain stripping is
straightforwardly computed using the hard tissue segmentations as a brainmask. It is
noteworthy that any cerebrospinal fluid regions, such as the lateral ventricles, are not
included in the brainmask.

Next, we perform the structural segmentation via deformable registration. In this paper, we
investigated the use of two registration methods:

• Fluid registration:17 This registration computes a fluid-model based deformation
field via voxel-by-voxel diffeomorphic mapping from the atlas image to the input
image. Since the fluid registration matches intensity directly, an intensity
calibration step is important. Intensity calibration is done by quantile histogram
matching with 1000 histogram quantiles and 100 matching control points†. We
studied the method's sensitivity to the intensity calibration parameter setting further
below.

• Free-form b-spline registration:18 In this method, a mesh of control points defines a
set of 3D b-splines and by adjusting the control points a full free-form space
deformation is achieved. In contrast to fluid registration, which uses direct intensity
match as a similarity term, b-spline registration employs normalized mutual
information. No intensity calibration is required for b-spline registration.

3. Results
We applied to our automatic segmentation pipeline with the different registration methods in
two sets of experiments. The first set of experiments assesses accuracy and stability by
comparing our automatic segmentation in the individual datasets of the Brookhaven
database with known manual segmentations. Figure 2 shows the comparison of the manual
segmentations in a representative case from the C57BL/6J Brookhaven database with the
segmentation results of the two registration method. Finally, we compare group differences
in a comparative study of FVB vs C57BL/6J mouse strains.

Accuracy assessment—We tested the accuracy of the automated segmentations using a
set of metrics19 calculate Hausdorff distance, average surface distance, and Tanimoto
volumetric overlap error for each structure. The Hausdorff distance represents the maximum
surface distance. We evaluated these metrics compared to the manual segmentation in all
individual images of the C57BL/6J Brookhaven datasets. As one can see in Figure 3, both
methods provide quite good results with a few exceptions, such as Brain Stem in the b-
spline based segmentation. Most regions show less than 0.04 mm of average distance (less
than a single voxel size) and less than 10 % of Tanimoto error.

Stability against smoothing—We compared the stability of the segmentation results in
presence of changes induced by image smoothing. We conducted the segmentations in two
different smoothing setting using gradient anisotropic diffusion and curve evolution based

†itkHistogramMatchingImageFilter
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smoothing. Both smoothing filter methods are widely used as preprocessing steps and have
advantage in that they enhance edges while suppressing noise. We empirically decided on a
set of smoothing parameters and used 0.01 and 0.05 time steps and up to 10 and 15 iterations
for gradient anisotropic diffusion and curve evolution respectively. We assessed the stability
by calculating the coefficients of variance (percent standard deviation over mean volume),
which is a normalized measure of dispersion. The result (see Table 3) shows that fluid
registration is surprisingly stable. The segmentation result using fluid registration show little
variance in structural volume measurements having less than 0.2% COV in all structures.
Compared to this, b-spline registration resulted in slightly different results with 0.2% up to
5% COV. When focusing purely on curve evolution smoothing, the two methods are
comparably stable (not shown here), i.e., insensitive to smoothing. But the b-spline method
shows higher differences in the segmentation when employing anisotropic diffusion based
smoothing.

Stability against intensity calibration—In addition to smoothing, we tested the
stability of the fluid registration method against changes in the intensity calibration
parameters. Since the fluid registration method depends on direct intensity matching,
different intensity calibration is likely to influence the result. Surprisingly, as in the above
results, fluid registration shows stable results. For the stability against intensity calibration
parameters, we varied histogram matching parameters, the number of histogram bins was set
to be 32, 100, 1024 and 4096, and the number of quantile control points was changed by 5,
10, 100 and 1000. The computed segmentation volumes showed a coefficient of variance of
less than 1% in all of our tests.

Quantitative comparison between FVB and C57BL6/J mice strains
As a last step of our evaluation battery, we applied our automatic segmentation methods in
comparative study in FVB and C57BL/6J mouse strains. High resolution MRI images of 10
FVB mice were acquired in a post-mortem, fixed state. MR images consist of a high angular
diffusion tensor imaging acquisition sequence and we employed the b=0 T2-weighted image
for the regional segmentation. These images have been acquired at 128×99×248 voxel
dimensions and 0.1mm voxel spacing.

For comparison we used the Brookhaven C57BL/6J datasets. This comparison is only for
the purpose of evaluating the methods in our phenotype analysis framework. Due to
differences in image acquisition regarding both protocol and scanner, as well as fixation
methodology, the comparison cannot be considered an fully valid comparison of the two
strains, but still provides a preliminary evaluation.

For the purpose of evaluating the strain differences in the different brain structures, we
segment all images using both methods as described before and then conduct independent
two-sample t-test on FVB and C57BL6/J mice. Finally, we compare the results to identify
the agreement between the two methods(Table 1).

The two methods, b-spline and fluid registration, agreed on most of structures in regard to
the group differences. Major differences were though detected for the superior colliculi and
central gray. The superior colliculi region is the part of the intermediate gray matter regions
of the brain as mentioned previously. The contrast of these regions with the surrounding
regions is lower and this may have affected the segmentation results to be more variable
across methods.
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4. Conclusion
We adapted automatic human brain segmentation for use in murine brain scale and
evaluated the segmentation regarding accuracy and repeatability with two different
registration methods. Fluid and B-spline registration method employed in this paper showed
similar performance in accuracy. Fluid registration showed better stability against
smoothing. Finally, the comparison of FVB vs C57BL/6J mouse strains illustrated our
driving application of using the presented segmentation pipeline for mouse phenotype
quantification. Overall we can conclude from our evaluations that we can recommend the
use of either method.
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Figure 1.
Segmentation Framework Pipeline using Probabilistic Atlas and Registration. In the skull
stripping step (2), the atlas template and individual labels are mapped to the target image
using an affine transformation, which are reused in step (3) for the purpose of an initial
registration.
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Figure 2.
The segmentation result of fluid registration and b-spline registration methods. Each row
shows axial, coronal, and saggital plane. In general, both registration methods show good
results. Fluid registration tends to capture large deformation resulting in over-segmentation
in Olfactory Bulb. In contrast to this, bspline registration shows smooth boundary in
Olfactory Bulb but is not able to correctly follow Brain Stem due to its local deformation
property.
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Figure 3.
Hausdorff distance, Tanimoto error, and Average distance assessment: Left blue bar is for b-
spline registration, and right red bar is the result of fluid registration. Horizontal axis
represents the brain structures compared and vertical axis means corresponding
measurements. As we see in Figure 3, Bspline registration results for Brain Stem show
worse than fluid registration.
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Figure 4.
Stability against smoothing of b-spline and fluid registration. The value is the coefficient of
variance(σv / μv) of the volume of structures.
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