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ABSTRACT A three-state, multiion kinetic model was proposed to enable the conduction properties of the mammalian channel
ClC-0 to be well characterized. Using this rate-theory based model, the current-voltage and conductance-concentration relations
were obtained. The five parameters needed were determined by fitting the data of conduction experiments of the wild-type ClC-0
and its K519C mutant. The model was then tested against available calculation and simulation data, and the energy differences
between distinct chloride-occupancy states computed agreed with an independent calculation on the binding free energies
solved by using the Poisson-Boltzmann equation. The average ion number of conduction and the ion passing duration calculated
closely resembled the values obtained from Brownian dynamics simulations. According to the model, the decrease of conduc-
tance caused by mutating residue K519 to C519 can be attributed to the effect of K519C mutation on translocation rate constants.
Our study sets up a theoretical model for ion permeation and conductance in ClC-0. It provides a starting point for experimen-
talists to test the three-state model, and would help in understanding the conduction mechanism of ClC-0.
INTRODUCTION
ClC proteins are found in both prokaryotic and eukaryotic

cells. These proteins complete many important functional

tasks, including the maintenance of membrane potential,

the regulation of transepithelial chloride transport, and

control of intravesicular pH (1). The physiological impor-

tance of these proteins can best be illustrated by the existence

of hereditary diseases caused by defective ClC proteins (2).

Dutzler et al. (3) solved the three-dimensional structure of

ClC proteins by resolving bacterial ClC homologs. The

structure shows that the bacterial ClC protein is a homodimer

and each subunit contains a pore. This double-barreled struc-

ture was already predicted based on the physiological exper-

iments of ClC-0 (4). Three anion-binding sites surround the

pore: one internal site, Sint, near the intracellular entrance to

the pore; a central site, Scen, at which chloride is coordinated

by the side-chain hydroxyl of S107 and Y445; and an

external site, Sext, which is occupied by Cl� when the gating

residue E148 is mutated and flips out to the extracellular

solution (5). Theoretical and experimental studies suggest

that all three ion-binding sites can be occupied simulta-

neously during the open state (6,7).

The solved x-ray structure enables theoretical methods to

be used to investigate the details of gating and permeation

mechanisms, thus improving the study of ClC proteins at

the atomic level. The most accurate method, all-atom molec-

ular dynamics (MD), was successfully used on the study of

fast gating and ion conduction (8–13). However, MD requires

an expensive time commitment. The following methods have

also been used: the Monte Carlo simulation to study the ion
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permeation pathway and fast gating mechanism (14–17),

Brownian dynamics (BD) for ion conduction on a micro-

second timescale (18), the continuous electrostatic calculation

method to determine ion stability and analyze fast gating

(7,19), and the discrete-state model to study gating (19).

Soon after Dutzler et al. (3) solved the x-ray structure,

others showed that the bacterial ClC homolog is not an ion

channel but rather a Cl�/Hþ exchange transporter with stoi-

chiometry 2:1 (20). Subsequently, two mammalian ClC

proteins (ClC-4 and ClC-5) were suggested to be transporters

(21,22). Over the years, Miller and co-workers (23–28) per-

formed many experimental studies on the coupling property

of Hþ and Cl� on the transporter EcClC. Very recently, Lisal

and Maduke (29) and Mindell (30) proposed the investiga-

tions on the proton transport in ClC-0.

Although the ClC family includes two mechanistic sub-

classes—i.e., channels and exchange transporters—evidence

indicates that the subclasses share many common features

(1,31). There are many conserved residues for all ClC

proteins and they play similar functional roles. For example,

the gating residue E148 of EcClC is conserved for all ClC

proteins excluding the ClC-K channel. In addition, the

neutral S107 and Y445 residues, as well as other important

charged residues in the pore, are also conserved. Therefore,

the basic architecture of the bacterial ClC transporter struc-

ture can be used to investigate the function of the ClC

channels (31).

Many experiments have indicated the effect of important

residues on conduction in the ClC channel. For example,

the charged residue K165, located at the external end of

the ClC-0 pore, is important for channel conductance (32),

and the mutation of the neutral residue S123T, situated at

the center of the permeation pathway, reduces single-channel
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FIGURE 1 Three-state multiion model. There exist three chloride-occu-

pied states. Each state has three chloride binding sites Sext, Scen, and Sint.

In state 1, Sint and Scen are occupied and Sext is empty; in state 2, Scen and

Sext are occupied and Sint is empty; and in state 3, all three sites are occupied.
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conductance (33). Chen and Chen (34) conducted a series of

experiments to investigate the effect of the residue on the

conduction of ClC-0 chloride channels. They found that

the conductance of the channel decreased as the charge at

position 519 became more negative, and the charge effect

on the channel conductance diminished in the presence of

a high intracellular Cl� concentration. The charge effect is

not consistent with a simple surface charge mechanism but

with the electrostatic force from the residue K519, which

could affect Cl� interaction with the binding sites.

Despite extensive experimental data, the conduction pro-

cess remains unclear. The conduction model and the qual-

itative theoretical description of the current-voltage and

conductance-concentration relations are lacking. In addition,

a theoretical understanding of how the mutation of a residue

affects the conduction of the ClC channel is not yet fully

developed. This article presents a simple three-state multiion

kinetic model with the purpose of investigating the process

of ion permeation and conduction for ClC-0 chloride chan-

nels. The results obtained from this model agree with exper-

imental conclusions (34) and Brownian dynamics simulation

data (18). This model was also tested by an independent

calculation on the binding free energy by solving the Pois-

son-Boltzmann equation.
COMPUTATIONAL METHODS

Three-state multiion model

Both experiments and theory (6,7) suggest that ion transport in ClC is a multi-

ion process and that all the three binding sites can be occupied simultaneously.

There are four possible multiion states for ClC: state 1 (yyn, namely the sites

Sint and Scen are occupied and Sext is empty), state 2 (nyy, Scen and Sext are

occupied and Sint is empty), state 3 (yyy, all three sites are occupied), and state

4 (yny, Sint and Sext are occupied and Scen is empty). Gervasio et al. (12) inves-

tigated the chloride translocation by metadynamics and confirmed the multi-

ion mechanism in which an ion-push-ion effect lowers the main barriers to

chloride ion translocation in ClC chloride channels. They also showed that

the minimum free energy path corresponds to a coordinated movement of

the two ions with one ion going from Sint to Scen and pushing the other ion

from Scen to Sext. Therefore, state 4 is unlikely in chloride translocation. Based

on these observations, we neglected state 4 and proposed a three-state multi-

ion model for chloride ion translocation in ClC chloride channels (see Fig. 1).

The translocation between state i and state j is related by the translocation rate

kij. Fig. 2 plots the ion-permeation pore, chlorides at the binding sites, and

important residues around the ion-permeation pore for the three states.
FIGURE 2 (Color online) The chloride binding sites Sext, Scen, and Sint in

the EcClC-E148Q channel. Chlorides are represented by van der Waals balls

in orange color and ion-permeation pores calculated by HOLE (51) are

plotted by green pores. Several important residues around the ion-perme-

ation pore residues are drawn by bonds in red color. In state 1, Sint and

Scen are occupied and Sext is empty. In state 2, Scen and Sext are occupied

and Sint is empty. In state 3, all three sites are occupied.
Expression of the ion current

We used rate theory to describe the translocation from one state to another in

the three-state multiion model. Rate theory has been discussed comprehen-

sively (35,36), and has been used to investigate conductance and selectivity

of Kþ channel (37–39). According to this theory, the kinetic equations can

be determined from the state diagram as

_S1 ¼ k21S2 þ k31S3 �
�
k12 þ k13½C�o

�
S1;

_S2 ¼ k32S3 þ k12S1 �
�
k21 þ k23½C�i

�
S2;

_S3 ¼ k13½C�oS1 þ k23½C�iS2 � ðk32 þ k31ÞS3;

(1)
where Si represents the occupancy probability of the ith state (i ¼ 1,2,3),

S
:

i ¼ dSi=dt, [C]i and [C]o are intracellular and extracellular chloride concen-

tration, respectively, and kij represents the translocation rate constant from

state i to state j. At equilibrium or in the steady-state occupancies, the occu-

pancy probability Si can be determined by solving the matrix equation

MS¼0, where S represents the vector of occupancies and M represents

the rate constant matrix obtained from Eq. 1. To satisfy the condition of

single-state occupancy, we adopt the normalized occupancy probability Si

by taking S1 þ S2 þ S3 ¼ 1,

S1 ¼
k21k32 þ k31k21 þ k31k23½C�i

a
;

S2 ¼
k12k31 þ k12k32 þ k32k13½C�o

a
;

S3 ¼
k21k13½C�oþ

�
k12k23 þ k13k23½C�o

�
½C�i

a
;

(2)

where a is defined as
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a ¼ ðk21 þ k12Þðk31 þ k32Þ þ ðk32 þ k21Þk13½C�o
þ
�
k31 þ k12 þ k13½C�o

�
k23½C�i:

The properties of the channel can be determined by the unidirectional

translocation rate constants kij, among which paired rate constants are con-

nected with each other through the relevant energy difference Eij ¼ Ei � Ej,

where Ei represents the energy of the system at state i. With a solved forward

rate constant, the backward rate can be determined; for instance (39)

k12 ¼ k21eE1�E2 ; k23 ¼ k32eE2�E3 ; and k31 ¼ k13eE3�E1 :

The membrane potential biases the energies of ions in the channel.

Faraldo-Gómez and Roux (7) distributed the membrane potential to several

segments of the channel and obtained the fraction for each segment in the

ClC chloride channel. The fraction of the membrane potential d1 ¼ 0.1 for

the segment between the intracellular side of the channel protein and the

binding site Sint; d2 ¼ 0.25 for that between Sint and Scen; d3 ¼ 0.15 for

that between Scen and Sext; and d4 ¼ 0.5 for that between the site Sext and

the extracellular side of the channel protein. Assuming that the energy

barrier is located at the halfway point of each segment, the rates with the

transmembrane voltage v are

k12ðvÞ ¼ k12e
1
2ðd2 þ d3ÞJ;

k21ðvÞ ¼ k21e�
1
2ðd2 þ d3ÞJ;

k23ðvÞ ¼ k23e
1
2d1J;

k32ðvÞ ¼ k32e�
1
2d1J;

k31ðvÞ ¼ k31e
1
2d4J;

k13ðvÞ ¼ k13e�
1
2d4J;

(3)

where J ¼ ev/kBT, v represents the membrane voltage, kB the Boltzmann

constant, and T the absolute temperature.

The ionic current i can be determined by considering the ion flow between

adjacent states which corresponds to the transition from state 2 to state 3 or

from state 3 to state 1. Thus, the ionic current is

i ¼ P
�
k23½C�iS2 � k32S3

�
¼ P

�
k31S3 � k13½C�oS1

�
; (4)

where P ¼ 1.6 � 10�7 is the conversion factor from ions/sec to picoAmps.

Inserting the voltage-dependent rate constant kij(v) into Eq. 4, the ionic

current under the transmembrane voltage v can be calculated by
iðvÞ ¼ P
A1 � A2

½C�i
1 þ A3

½C�i

;

A1 ¼
k12ðvÞk31ðvÞ

k12ðvÞ þ k31ðvÞ þ k13ðvÞ½C�o
;

A2 ¼
k21ðvÞk13ðvÞ½C�ok32ðvÞ

k23ðvÞ
�
k12ðvÞ þ k31ðvÞ þ k13ðvÞ½C�o

�;

A3 ¼
ðk21ðvÞ þ k12ðvÞÞðk31ðvÞ þ k32ðvÞÞ þ ðk32ðvÞ þ k21ðvÞÞk13ðvÞ½C�o

k23ðvÞ
�
k12ðvÞ þ k31ðvÞ þ k13ðvÞ½C�o

� :

(5)
Method to build EcClC-E148Q and EcClC-E148Q-
R451C channel-membrane-water systems

To calculate the electrostatic binding energy, an atomic model of the chlo-

ride channel must be built. Unfortunately, the atomic structure of ClC-0 is

not available. Based on the sequence similarity, EcClC’s crystal structures

are currently the only possible models to be cautiously used for modeling
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and understanding the molecular mechanisms of ClC-0 functions

(7,8,11,17–19), despite the fundamental differences between ClC-0 and

EcClC (28). Building the model was achieved by two steps, i.e., setting

up the initial channel-membrane-water system and then achieving system

equilibrium. Upon considering that no distinct binding site Sext exists in

wild-type EcClC, the open state structure of the chloride channel, EcClC-

E148Q was chosen as the substitute for wild-type ClC-0 (31). Furthermore,

R451 of EcClC appears to be located at a strategic position similar to K519

of ClC-0 (34), so EcClC-E148Q-R451C was used as a substitute for ClC-0-

K519C. To make the model resemble the real situation, the channel should

be placed in the cell membrane, and the membrane should be immersed in

the aqueous solution. For convenience we first built the initial EcClC

channel-membrane-water system, and then built the EcClC-E148Q and

EcClC-E148Q-R451C channel-membrane-water systems.

The initial EcClC protein structure was taken from the Protein DataBank

(entry code: 1OTS) (5,40). The missing hydrogen atoms were added using

PSFGEN of VMD (41). Moreover, Faraldo-Gómez and Roux (7) pointed

out that in the EcClC channel residues E113, H175, H281, and H284 of

both chains A and B, and R417 of chain A, are protonated, so we protonated

these residues using VMD. The N-terminal of each monomer was capped

with a neutral acetyl group (ACE), and the C-terminal was capped with

N-methyl group (CT3), leaving a charge ofþ13e for the dimer. In this struc-

ture, chloride ions occupied the Scen and Sint sites in each chain.

The above EcClC channel structure was then embedded in an explicit

membrane palmitoyloleoylphosphatidylethanolamine (POPE). The POPE

membrane was constructed by VMD with dimensions 12 nm � 12 nm.

The membrane consisted of 280 POPE molecules and each POPE molecule

has 125 atoms including hydrogens. The z axis of the membrane was consid-

ered to be parallel with the twofold symmetry axis of the protein dimer.

The POPE molecules that overlapped with the protein dimer were removed

from the membrane. A layer of water with the thickness of 15 Å was added

on both top and bottom of the membrane using VMD. Meanwhile, 18 Cl�

and 5 Naþ ions were mingled with water in order for the concentration of

solution to reach 100 mM and the total charge of the system to become

zero. There are four Cl� ions in the dimeric protein. The whole system con-

sisted of 142,744 atoms, among which 13,607 atoms belonged to the EcClC

channel, 35,000 to the membrane, 94,110 to TIP3P water molecules, and 27

were ions. The atomic charges were obtained from the CHARMM27 force-

field parameters (42).

To equilibrate the constructed EcClC channel-membrane-water system,

energy minimization and molecular dynamics simulation were used.
For energy minimization, the method of steepest descent was adopted to

make the structure compact, by using nanoscale molecular dynamics

(NAMD) (43) for 5000 steps. Then the refined system was equilibrated by

MD simulation under constant NPT condition using NAMD. These simula-

tions were carried on at the computer cluster (DAWNING TC4000). In each

simulation, NAMD was run for 1 ns while restraining the positions of all

protein atoms and Cl� ions at the binding sites, then NAMD was run for



FIGURE 3 Illustration of calculating variation in the electrostatic binding

free energy. When an isolated ion (plotted in blue) is embedded in an ion-

unoccupied system (in orange), an ion-occupied system forms and the

difference in the electrostatic component of the total free energy is

DGb;elec, the electrostatic binding free energy. These three systems are in

a solvent dielectric medium (in gray).
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16 ns while allowing all atoms to be free. The force-field parameters for

lipid, protein, ions, and waters were taken from the CHARMM27 force field.

The periodic boundary condition was applied in all the dimensions. Long-

range electrostatics was handled by using the PME algorithm. The temper-

ature was maintained at 300 K by employing the Langevin dynamics

method. The pressure was maintained at 1 atm by applying the Nosé-Hoover

piston pressure control with a barostat oscillation time constant of 200 fs.

The time step was 1 fs and configurations from the trajectories were saved

for analysis every 1 ps.

To model the EcClC-E148Q mutant channel, the initial EcClC-E148Q

channel-membrane-water system was built based on the equilibrated EcClC

channel-membrane-water system. Specifically, the atomic coordinates of the

mutated residue Q148 were generated by employing PSFGEN of VMD (41)

and substituting Q148 for E148 in equilibrated EcClC channel-membrane-

water system. It should be noted that, 1), the EcClC channel has two chains,

so the E148 residue was replaced by Q148 for each chain; and 2), the E148

residue was electronegative but the mutated residue Q148 was neutral, so

two Naþ ions were removed from the bulk electrolyte to preserve the electro-

neutrality of the system. Because there is also an external binding site in

EcClC-E148Q, two Cl� ions were moved from the electrolyte to the Sext

site of each chain. The initially built structure was then optimized to reach

equilibration by using the following procedures. First, the mutant channel-

membrane-water system was compacted by energy minimization for 5000

steps. Then, the compacted system was equilibrated by MD simulation.

To save computational time on MD simulation, the system was divided

into two regions: the affected region and the unaffected region by E148Q

mutation. The affected region was defined as the region within 10 Å of

E148Q, which consisted of 871 atoms. It was found that after substitution

of Q148 for E148 the atomic number in the affected region was rather small.

As a result, the process of equilibration was easy. We kept the atoms in the

unaffected region fixed and put the atoms in the affected region of the com-

pacted initial mutated system in equilibrium by MD simulation for 4 ns.

After that, put the whole system, including the equilibrated affected region

and original unaffected region, in equilibrium by MD simulation for 4 ns.

The double mutant channel, EcClC-E148Q-R451C, was built based on

the above EcClC-E148Q model. Specifically, we generated the atomic coor-

dinates of the mutated residue C451 by employing PSFGEN of VMD (41)

and substituting C451 for R451 in the equilibrated EcClC-E148Q channel-

membrane-water system. When the residue R451 was mutated to cysteine,

the charge of the residue changed from þ1 to 0. In addition, R451 was

replaced with cysteine in both chains. Therefore, two Cl� ions were removed

from the electrolyte to preserve the electroneutrality of the system. The con-

structed EcClC-E148Q-R451C channel-membrane-water system was equil-

ibrated using the same procedure as described for the initial EcClC-E148Q

channel-membrane-water system.
Calculation of the electrostatic binding energy
from the Poisson-Boltzmann equation

The Poisson-Boltzmann equation (44,45) is a differential equation which

describes electrostatic interactions between molecules in ionic solutions.

The fundamental equation in the Debye-Hückel theory (46) is a three-dimen-

sional second-order nonlinear partial differential equation that describes

the electrostatic potential F(r) at a field position r. This equation can be

written as

�V$ð3ðrÞVFðrÞÞ þ k2

�
kBT

eC

�
sinh

�
ecFðrÞ

kBT

�

¼ 4p
XN

i¼ 1

qidðr � riÞ; (6)

where 3(r) takes appropriate values of the dielectric constants in the different

regions of the model, e.g., 3m in the molecular region and 3w in the solution

region. The modified Debye-Hückel parameter k ¼ ffiffiffiffiffi
3w
p

k is proportional to
the ionic strength of the solution, where k is the usual Debye-Hückel param-

eter, and the modification makes k dielectric-independent. The molecule

consists of N atoms and the ith atom is characterized by point charge qi at

position ri, in the form of the d-function. The constants ec, kB, and T repre-

sent the charge of an electron, Boltzmann’s constant, and the absolute

temperature, respectively.

Equation 6 is referred to as the nonlinear Poisson-Boltzmann equation

(47), and is usually approximated by the linear Poisson-Boltzmann (PB)

equation (45)

�V$ð3ðrÞVFðrÞÞ þ k2ðrÞFðrÞ ¼ 4p
XN

i¼ 1

qidðr � riÞ: (7)

By solving Eq. 7, the electrostatic potential F(r) can be obtained and the

electrostatic energy can be calculated. The electrostatic energy DGelec is the

work required to assemble the charges qi of the solute in the solvent, which

can be expressed as

DGelec ¼
1

2

XN

i

qiFðrÞ; (8)

where F(r) refers to the electrostatic potential in the solvent environment.

The electrostatic binding free energy DGb,elec of ion (i) bound to a system

(s) can be expressed as

DGb;elec ¼ DGis
elec �

�
DGs

elec þ DGi
elec

�
; (9)

where DGis
elec, DGs

elec, and DGi
elec represent the electrostatic energies of the

ion-occupied system, isolated ion-unoccupied system, and isolated ion,

respectively, in the solvent environment. Illustration of Eq. 9 is given in

Fig. 3.
Method to solve the Poisson-Boltzmann equation

To obtain the numerical solutions of the linear Poisson-Boltzmann equation,

we employed software APBS 0.5.0 (48), in which a finite element method

with a multigrid (49) was used. Specifically, the automatically configured

sequential method was applied. The APBS parameters were set as follows.

The number of grid points was 161� 161� 129. The size of the coarse grid

region was 130� 130� 110 Å. The size of the focusing fine grid region was

40� 40� 40 Å. A dielectric constant of 4 was assigned to the interior of the

region, which represented the all-atom structure and was defined by
Biophysical Journal 99(2) 464–471
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molecular surface and harmonic average smoothing. The molecular surface

was constructed by using a water probe radius of 1.4 Å. For the solvent,

a dielectric constant of 78 was employed. The temperature of the system

was set to 300 K (room temperature). The single Debye-Hückel boundary

condition was used. As a usual method for assigning charge distributions

on a grid, the atomic charges were mapped onto the nearest-neighbor grid

points.
FIGURE 4 Current-voltage curves of wild-type ClC-0 channel (a) and its

K519C mutant (b) for a series of the intracellular chloride concentration [C]i

at the extracellular chloride concentration [C]o¼ 120 mM. (Solid lines) Plots

of Eq. 5, and (symbols) experimental data by Chen and Chen (34). (Inset)

Current-voltage relation of the wild-type ClC-0 channel at [C]i ¼ [C]o¼
150 mM. (Solid squares) Brownian dynamics simulation (18); (open dia-

monds) Miller’s experimental data (4).
RESULTS AND DISCUSSIONS

Determination of the parameters of the model

The parameters of the three-state multiion kinetic model

were determined by fitting Eq. 5 into the experimental data

of the current-voltage relations for the wild-type ClC-0 and

its K519C mutant. The rate constants obtained by fitting

are listed in Table 1. There are only five fitting parameters

k21, k23, k31, k32, and k13, based upon which the dependent

parameters are obtained. For example: the sixth rate constant

k12 ¼ 0.60 (for ClC-0-WT) and 0.70 (for ClC-0-K519C),

which are the energy differences between two states of

E12 ¼ �1.19 and 0.11; E32 ¼ �1.55 and 1.00; and E31 ¼
�0.35 and 0.8 kcal/mol for ClC-0-WT and ClC-0-K519C,

respectively. The fitting and experimental (34) current-

voltage curves are plotted in Fig. 4. In this figure the solid

lines represent the result of this model and the symbols

denote experimental data. In addition, the current-voltage

relations of simulating by BD (18) and fitting by this model

are shown in the inset of Fig. 4 a with the experiments (4).

It follows from this inset that the conductance is 11.3 pS

(from the BD simulation (18)), 10.1 pS (from our model),

and 9.4 pS (from the experiment (4)), which are consistent.

By fitting data between�50 and�110 mV in the I-V plots

in Fig. 4 to straight lines, the conductance of wild-type ClC-0

and its K519C mutant can be estimated. Fig. 5 shows the

conductance-concentration relation for the wild-type ClC-0

and its K519C mutant. The experimental data and the

conductance values calculated from Eq. 5 are in nice

agreement.

It can be seen from fitting parameters listed in Table 1 that,

as the K519C mutation takes place in the ClC-0 channel

protein, the translocation rate constants k21, k23, and k13

decrease, while k32 and k31 increase. This behavior can be

understood as follows. As K519C mutation takes place, the

electropositive residue K519, which resides near Sint,

mutates to the neutral residue C519. Before mutation, the

electropositive residue K519 exhibits an attraction for Cl�
TABLE 1 The translocation rate constants of the three-state

multi-ion kinetic model

k13 k21 k23 k31 k32

ClC-0-WT 15.8 4.5 19.4 8.7 1.4

ClC-0-K519C 3.1 0.58 2.0 13.9 10.8

The translocation rate constants of the three-state multiion kinetic model

determined by fitting Eq. 5 into the experimental conductance for the

wild-type ClC-0 channel and its K519C mutant (34). The unit of the rate

constant is 107 s�1 (for k21, k31, and k32) and 107 s�1 M�1 (for k13 and k23).

Biophysical Journal 99(2) 464–471
and hinders the translocation of Cl� from Sint to the intracel-

lular side, from Sint to Scen, and from Scen to Sext, as well as

from Sext to the extracellular side. After mutation, the neutral

C519 residue does not attract Cl�. As a consequence, K519C

mutation makes the translocation of Cl� from Sint to the

intracellular side (indicated by k32) and from Sext to the
FIGURE 5 Conductance-concentration relation of wild-type ClC-0

channel and its K519C mutant. The extracellular chloride concentration

[C]o ¼ 120 mM. (Solid lines) Plots of Eq. 5 and (symbols) experimental

data by Chen and Chen (34).
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extracellular side (indicated by k31) easier, so that k32 and k31

increase. In the meantime, K519C mutation makes the trans-

location of Cl� from the intracellular side to Sint (indicated

by k23), from the extracellular side to Sext (indicated by

k13), and the combined translocation from Sint to Scen and

from Scen to Sext (indicated by k21) more difficult; thus, k23,

k13, and k21 decrease.

As stated above, the three-state multiion kinetic model can

accurately describe the conductance of the ClC-0 channel.

In the following subsections, we will show that this model

can also accurately describe other conduction properties.

Test for the model: average ion number and ion
passing duration

To test this, the average ion number and ion passing duration

were calculated using our present model and compared to

those obtained by BD simulation. This model contains three

occupancy states. For states 1, 2, and 3, the ion occupancy

numbers are 2, 2, and 3 and the normalizing occupancy rates

are S1, S2, and S3, respectively. Therefore, the average ion

number is

n ¼ 2S1 þ 2S2 þ 3S3: (10)

On the other hand, the average ion number can be directly

obtained by BD simulation. Formerly, Corry et al. (18) made

BD simulations of conduction of chloride in the ClC-0

channel based on the x-ray structure data of EcClC channel

and putting two ends of the channel in saline solution with

intracellular and extracellular concentrations of 150 mM.

They obtained the current-voltage relations, the average

number, and the average entering and expelling time of

ions. In the BD simulation, the ClC-0 channel contained,

on average, 2.3 ions in the conducting state with a voltage

of �80 mV and intracellular and extracellular chloride con-

centrations of 150 mM (18). In the case with v ¼ �80 mV

and [C]i ¼ [C]o ¼ 150 mM, the calculated state probability

by Eq. 2 are S1 ¼ 0.77, S2 ¼ 0.16 and S3 ¼ 0.07, so our

model gives the average ion number n ¼ 2S1 þ 2S2 þ 3S3 ¼
2.07 in a ClC-0 pore.

Compared with experimental measurements, the effect of

150 mM of Cl� is roughly equivalent to that of 60 mM of Br-

(36). According to Fig. 3 C of Lobet and Dutzler (6), the esti-

mated average ion number is ~(0.7 þ 0.8 þ 0.9) ~2.4. Thus,

the calculated ion number obtained by using our model

closely resembles the number estimated from the experi-

mental measurements.

In our model, Eq. 4 represents the ionic current i. The ion

passing duration, defined as the time for the ion to cross the

channel, is then calculated by

t ¼ P

i
¼ 1

k23½C�iS2 � k32S3

¼ 1

k31S3 � k13½C�oS1

: (11)

The ion-throughput rate is r ¼ 1/t. In the case of v ¼
�70 mV and [C]i ¼ [C]o ¼ 150 mM for ClC-0 channel, t
was 212 ns calculated by Eq. 11, and therefore r ¼ 4.72 �
106 s�1. The predicted value of the ion-throughput rate for

ClC-0 awaits experimental verification.
Test for the model: changes of binding energies
caused by mutation

In addition to the test by BD simulation, a comparison with

an independent approach in solving the PB equation was

made. Without a doubt, the change in the binding energy

of chloride caused by mutation of a certain residue is an

important quantity to evaluate the effect of this residue on

the function of the channel. The change of the binding free

energy can be obtained via our model. According to this

model, the transition from state 3 to state 1 corresponds to

the chloride moving from binding site Sext to the extracellular

solution (see Fig. 1). Therefore, the change of energy from

state 1 to state 3 (E31) corresponds to the binding free energy

of chloride at the binding site Sext of the channel. Analo-

gously, E32 corresponds to the binding free energy of chlo-

ride at Sint (i.e., Eb,ext ¼ E31 and Eb,int ¼ E32). When the

residue K519 mutates to K519C in ClC-0, the energy of

the system will vary whether for state 1, 2, or 3. According

to our model and denoting the values for mutants by prime,

the change of binding energy caused by the mutation of

K519 can be obtained as

DEb;ext ¼ E31 � E
0

31 ¼ �1:24 kcal=mol; at Sext;

DEb;int ¼ E32 � E
0

32 ¼ �2:55kcal=mol; at Sint: (12)

On the other hand, the binding free energy of chloride can

also be calculated by solving the PB equation. The binding

free energy includes polar (electrostatic) and nonpolar contri-

butions, so the binding free energy can be described as

DGb ¼ DGb;elec þ DGb;np; (13)

where DGb;np is the change in the free energy of the nonpolar

term and DGb;elec is the electrostatic term. The change of the

nonpolar term is caused by mutation and corresponds to

the cavity formation. Compared to the wild-type structure,

the mutated structure experiences a very small change in

volume, so we assume that the change of nonpolar contribu-

tion caused by mutation can be ignored. Then the change of

binding free energy by mutation can be described as

DDGb ¼ DGb;elec � DG
0

b;elec; (14)

where prime denotes the quantity belonging to the mutant.

The electrostatic binding free energy DGb;elec and DG
0

b;elec

can be calculated by Eq. 9.

Usually the function of ClC-0 is investigated at an atomic

level through the structure of bacterial homolog, but only

x-ray structure data exists for the bacterial ClC channel

homolog at high resolution (31). It is likely that residue

K519 of ClC-0 corresponds to the residue R451 of EcClC
Biophysical Journal 99(2) 464–471



TABLE 2 Comparisons of the results from our three-state

multi-ion kinetic model with the results from other methods

n(ion) DEb,ext DEb,int

Model in this article 2.07 �1.24 �2.55

Other methods 2.4exp �1.48PB �2.42PB

Comparisons of the results from our three-state multiion kinetic model with

the results from other methods: average ion number achieved in Brownian

dynamics (BD) simulation (18), experimental ion-throughput rate (36),

and our all-atom calculation of the change in binding energy at Sext and

Sint by solving the linear Poisson-Boltzmann (PB) equation. The change

of the binding energy is caused by mutation K519C of ClC-0. The unit of

energy is kcal/mol.
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because both positively charged residues are located at the

intracellular end of the ion-transport pathway (34). There-

fore, others have used the change of electrostatic binding

free energy caused by the mutation of the residue R451 in

EcClC instead of the change caused by the mutation of

K519 in ClC-0. As there is no distinct binding site Sext in

wild-type EcClC, we chose the open state structure of chlo-

ride channel, EcClC-E148Q, as the substitute. By using the

all-atom electrostatic calculation and solving the Poisson-

Boltzmann equation, we obtained the electrostatic binding

energies DGb;elec and DG
0

b;elec ¼ �16.03 and �14.55 (at

Sext), �10.62 and �8.20 (at Sint) kcal/mol, respectively. As

a result, the changes of the binding energy caused by the

mutation of the residue R451 in EcClC-E148Q channel is

DDGb ¼ �1:48 kcal=mol at Sext;
DDGb ¼ �2:42 kcal=mol at Sint:

(15)

Comparing Eq. 15 with Eq. 12, it can be seen that the

changes of the binding energy calculated by solving the

PB equation closely match those projected by our model.

Table 2 sums up the average computed ion number, ion

passing period, and change of the binding free energies

caused by K519C mutation of ClC-0 by using our model

and other methods. It shows that the results of our model

resemble the available data of other methods.

Recently, Picollo et al. (50) reported thermodynamic

parameters for Cl-binding to EcClC measured with iso-

thermal titration calorimetry. The apparent affinities obtained

from the isothermal titration calorimetry measurements were

assumed to be close to the binding affinities by neglecting

possible conformational changes of EcClC upon Cl� bind-

ing. They found that E148A mutation surprisingly increases

the Cl� apparent binding affinity for the protein and sug-

gested that increasing the occupancy of the pore increases

Cl� affinity. It is worthwhile to investigate the effect of

different mutations on Cl� binding energies and occupancy

of the pore in future theoretical studies.
CONCLUSIONS

A three-state multiion kinetic model has been developed to

describe the conduction properties of the ClC-0 chloride
Biophysical Journal 99(2) 464–471
channel, with very few parameters. Despite the simplicity

of the model, it can accurately describe the conduction prop-

erties of the ClC-0 chloride channel. The results predicted by

this model are consistent with the experimental data, BD

simulation, and our all-atom calculation of the change in

electrostatic binding energy by solving the Poisson-Boltz-

mann equation. This model also reveals why the residue

K519C mutation reduces conduction. In the ClC-0 channel,

the positively charged residue K519 resides near the internal

binding site Sint and imposes an attraction for Cl�. After the

mutation, the neutral residue cysteine substitutes for the

lysine. The neutral residue does not attract Cl� and therefore

the K519C mutation makes the translocation of Cl� toward

residue 519 more difficult and the translocation away from

519 easier. In summary, our model can be used to investigate

conduction properties and the effect of residue mutations on

the function of the ClC-0 channel.
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