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Mechanical Properties of a Complete Microtubule Revealed through
Molecular Dynamics Simulation
David B. Wells and Aleksei Aksimentiev*
Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois
ABSTRACT Microtubules (MTs) are the largest type of cellular filament, essential in processes ranging from mitosis and
meiosis to flagellar motility. Many of the processes depend critically on the mechanical properties of the MT, but the elastic
moduli, notably the Young’s modulus, are not directly revealed in experiment, which instead measures either flexural rigidity
or response to radial deformation. Molecular dynamics (MD) is a method that allows the mechanical properties of single biomol-
ecules to be investigated through computation. Typically, MD requires an atomic resolution structure of the molecule, which is
unavailable for many systems, including MTs. By combining structural information from cryo-electron microscopy and electron
crystallography, we have constructed an all-atom model of a complete MT and used MD to determine its mechanical properties.
The simulations revealed nonlinear axial stress-strain behavior featuring a pronounced softening under extension, a possible
plastic deformation transition under radial compression, and a distinct asymmetry in response to the two senses of twist. This
work demonstrates the possibility of combining different levels of structural information to produce all-atom models suitable
for quantitative MD simulations, which extends the range of systems amenable to the MD method and should enable exciting
advances in our microscopic knowledge of biology.
INTRODUCTION
Microtubules (MTs) are ubiquitous biological filaments

found in all eukaryotic cells. The largest type of cytoskeletal

filament, MTs are critical to many cellular functions,

including positioning of the centriole, providing a track for

biological motors to enable organelle motility, forming the

mitotic spindle during M-phase of eukaryotic cell division,

and providing the mechanical core of eukaryotic flagella,

cilia, and the axons of neuronal cells (1). Because of their

essential role in cellular function, especially during cell

division, MTs are the target of many cancer treatments. By

disrupting the MT structure, drugs such as taxol and vinblas-

tine dramatically alter the dynamics of MT assembly and

disassembly, either stabilizing (in the case of taxol) or desta-

bilizing (vinblastine) the structure and leading to cell death

(2). Several applications of MTs in bionanotechnology

have been suggested as well (3,4).

The basic building block of an MT is the ab-tubulin

dimer, shown in Fig. 1 A. The dimers associate end-to-end,

forming so-called protofilaments (PFs). Because of the

heterogeneous nature of the ab-tubulin dimer, PFs have

a polarity. An MT, then, consists of a number of parallel

PFs, and is itself polar, with a plus- and a minus-end, as

shown in Fig. 1 B. In vivo, MTs are most often composed

of 13 PFs, in which case the PFs are parallel to the MT

axis. In vitro MTs, on the other hand, may comprise

anywhere from 11 to 17 PFs (5).

The all-atom structure of ab-tubulin was solved some time

ago (6), and later refined (7), showing a- and b-tubulin to be
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structurally very similar to one another, and revealing the

binding site of taxol, which was used to stabilize the struc-

ture during crystallization. The tubulin in these studies was

crystallized in antiparallel sheets, rather than parallel tubes

as in an MT. Thus, while the longitudinal bonds within the

PFs presumably represent those found in MTs, the same

cannot be said for the lateral bonds between PFs. These

lateral bonds are thought to play a vital role in MT structure

and dynamics, as highlighted by the position of taxol very

near the lateral interface (7). More recently, the structure of

a complete MT was solved at 8 Å resolution using cryo-elec-

tron microscopy (cryo-EM) techniques (8). Although it is not

of atomic resolution, this map is detailed enough to show the

arrangement of the secondary structural elements of tubulin

in MT form.

Due to their structural importance, the mechanical proper-

ties of MTs have been extensively studied (9–14). However,

because of the small size of MTs and their high rigidity, the

experimental studies have mainly relied either on measure-

ment of flexural rigidity using MT bending or buckling

(9–11), or on some variation of radial indentation of the

MT wall (12–14). In both cases, the Young’s modulus is

only arrived at indirectly, and depends on the choice of

elastic model used during analysis. Indeed, estimates of the

Young’s modulus have varied wildly, spanning almost four

orders of magnitude (12,15). More-sophisticated anisotropic

elastic models have helped reconcile discrepancies in the

reported moduli (15), but precise investigation of MT elas-

ticity remains a daunting experimental challenge.

The molecular dynamics (MD) method allows the elastic

properties of a biopolymer to be determined computationally

(16,17). Successful examples include systems such as titin

(16), ankyrin (17), cadherin (17), actin (18), spectrin (19),
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FIGURE 1 Microscopic model of a tubulin

dimer and a microtubule (MT). (A) The ab-tubulin

dimer. The a-tubulin (bottom) and b-tubulin (top)

are shown in cartoon representation, and GTP and

GDP are shown in licorice representation. (B) All-

atom model of an MT. The protofilaments (PFs)

form a-b lateral contacts at the seam of the MT

(indicated by the arrow) and a-a and b-b lateral

contacts in the rest of the MT. These two types of

the PF contacts are studied using two systems: N

(normal) and S (seam), shown in the insets.
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collagen (20), and DNA (21). Although elastic (15,22),

molecular-mechanics (23), and finite-element (15) models

can be used to interpret the results of experiments, relating

the atomic structure of an MT to its mechanical properties

requires an all-atom approach. There have already been

a number of all-atom studies that investigated the energetics

of inter-PF interactions (24,25), the effect of GTP hydrolysis

on intrinsic dimer bending (26), the effect of the drug taxol on

tubulin flexibility (27), and the elastic moduli of individual

tubulins (28). Nevertheless, modeling the entire MT has not

been (until now) accomplished because of the sheer size of

the system and the lack of an atomic resolution structure.

In this study, using a variation of a recently reported tech-

nique (29), we built an all-atom model of a complete MT by

fitting the atomic model of ab-tubulin into the cryo-EM map

of a complete MT. We used the obtained structure to study

the mechanical properties of a complete MT subject to longi-

tudinal extension and compression, radial indentation, and

twist deformations. The calculated elastic moduli were found

to be in agreement with available experimental data. This

study is one of the first to utilize cryo-EM-fitted structures

for all-atom molecular dynamics, demonstrating the useful-

ness of the technique and expanding the range of systems

amenable to simulation using MD.
MATERIALS AND METHODS

MD methods

All simulations were performed using the software package NAMD (30),

1–2–4-fs multiple timestepping, CHARMM27 parameters (31) with

CMAP corrections (32), a 10–12 Å cutoff for van der Waals and short-range

electrostatic forces, and the particle-mesh Ewald method for long-range elec-

trostatics computed over a 1.0 Å-spaced grid. The temperature was main-

tained at 310 K using the Langevin thermostat with a damping constant of

1.0 ps�1. For NpT simulations, the Langevin piston method was used,

with a period of 200 fs and a decay of 100 fs. Parameters for GDP and

GTP were adapted from those for ADP and ATP, respectively. Flexible

fitting was performed using the Grid-Steered Molecular Dynamics feature

of NAMD (33). A custom anisotropic pressure protocol was implemented

in NAMD to independently control the diagonal components of the pressure

tensor (21). Visualization and analysis were performed using VMD (34).
Initial structural data

Coordinates for ab-tubulin were taken from the Protein Data Bank, code

1JFF. The ab-tubulin was crystallized in antiparallel sheets and originally

resolved to 3.7 Å resolution (6) and later refined to 3.5 Å resolution (7).
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The structure includes ab-tubulin, GDP, GTP, and an Mg2þ ion in the

GTP binding pocket. Taxol, used to stabilize the structure, was removed.

A cryo-EM map of a 13-PF MT at 8 Å resolution (8) was provided by the lab

of Kenneth H. Downing. At this resolution, a- and b-tubulin are indistinguish-

able, and therefore 13-fold helical symmetry was utilized in making the map.

The 1JFF structure is missing coordinates for residues 35–60 of a-tubulin.

Therefore, we used an alternative tubulin structure, PDB code 1SA1 (35), for

residues 35–39 and 45–60. Coordinates for residues 40–44 were missing

from the alternative structure as well; however, the remaining gap was

near the stretched length of five amino acids, and the coordinates were there-

fore reconstructed using the Molefacture plugin in VMD (34). This region is

located on the inner microtubule surface and, by using the NCBI’s

Conserved Domain Database (36), is seen to be poorly conserved across

species. Residue 1 of a- and b-tubulin were both missing as well; their coor-

dinates were taken from the structure PDB code 1TUB (6).
Construction of the N and S systems

The N and S systems were built to contain two PFs each in a simulation cell

(Fig. 1 B). Each PF was made of one ab-tubulin dimer. Through periodic

boundary conditions (PBC), the PFs were effectively infinite.

Coordinates for one PF were obtained by rigid-fitting the tubulin dimer to

a subset of the cryo-EM map using the CoLoRes program (37) with a 2� step

and Laplacian correlation. The original map was a 200 � 200 � 96 grid

(~1.7 Å/gridpoint), which was trimmed to the range [54, 148] in x, [14,

59] in y, and [0, 74] in z, for a 95� 46� 75 grid. The grid size corresponds,

approximately, to the cross section of three PFs, and a height of three mono-

mers. The best fit from CoLoRes was used. Coordinates for a second PF

were obtained from the first by geometric transforms consistent with the

MT helical lattice, i.e., a rotation of 360�/13 about the map center, and an

axial displacement of (3/2) � 81.2 Å/13. This became the N system. The

S system was then obtained from the N system by the exchange of a- and

b-tubulin, and their associated nucleotides, in the second PF. Due to PBC,

this is the equivalent of an axial shift of 40.6 Å or one monomer.

To place water and ions, we constructed two additional systems that had an

extra monomer on the minus-end of each PF (see Fig. S1 in the Supporting

Material). Coordinates for the extra monomers (two b-tubulins for the

N system, one a-tubulin and one b-tubulin for the S system) were obtained

by shifting the coordinates of the monomers and nucleotides by 81.2 Å in

the –z direction. The water placement procedure and the protonation states

of the histidines are detailed in the Supporting Material. The SOLVATE

program (38) was used to place ions in isotonic Debye-Hückel concentration.

Next, the extra monomers and nucleotides were removed; water and ion atoms

were trimmed to conform to the 81.2 Å dimension of the system in the z direc-

tion. The resulting assembly was embedded in a rectangular volume of pree-

quilibrated water using the Solvate plugin in VMD. The final systems

contained 80 Kþ and 10 Cl– ions each (corresponding to an ~190 and

~24 mM concentration of Kþ and Cl– ions, respectively), measured 134 �
94�81.2 Å3, were electrically neutral, and were comprised of ~98,000 atoms.

After minimization and 1-ns equilibration in the NVT ensemble, the cryo-

EM map of a complete MT was used as an external potential to refine the

conformation of the PFs. The original 200 � 200 � 96 gridpoint map was

trimmed to the range [54, 118] in x, [14, 59] in y, and [0,47] in z, producing
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FIGURE 2 Construction of the 2-PF systems. (A) Outline of the procedure. (B and C) N (B) and S (C) all-atom systems. Through periodic boundary condi-

tions, the PFs are effectively infinite. Periodic images of the protein are shown translucently. The a-tubulin and b-tubulin are shown in cartoon representation,

GTP and GDP in licorice representation, and ions as spheres. Boxes indicate the periodic cell. (D and E) Backbone RMSD of N (D) and S (E) system from the

initial structures. Traces are shown for a1, b1, a2, and b2 as labeled. (Vertical dashed lines) Different simulation phases (from left to right): flexible fitting,

equilibration with Lz fixed to the crystal value (equilibration-I), Pzz adjustment, and equilibration with Lz free to change (equilibration-II). (F and G) Backbone

RMSD of N (F) and S (G) system during extension of equilibration with Lz fixed (equilibration-III.) The color scheme is the same as in D and E.

Mechanical Properties of a Complete MT 631
a 65 � 46 � 48 grid. The grid values were then inverted, shifted, and re-

scaled to the range [0, 0.1]:

V rescaled
ijk ¼ 0:1 kcal=ðmol$amuÞ$

�
2�

�
Vijk � Vmin

��

ðVmax � VminÞ
�
:

(1)

The forces derived from the potential were multiplied by the mass of the

protein’s or the nucleotide’s atoms. The typical scale of the features in the

resulting potential was ~kBT. Both systems were simulated for 5 ns, subject

to the potential. Harmonic restraints of 200 kcal/mol$rad were imposed on

the dihedral angles of all a-helical and b-sheet fragments of the protein to

maintain the secondary structure and avoid overfitting (29). Subsequent

equilibration is described in Results and Discussion.
Construction of the infinite MT system

The initial model of a complete MT was built by assembling 12 copies of the

a1-b1 PF from the N system and one copy of the a1-b1 PF from the S system

along with the solvent into 2p/13 radial sectors of the MT. The atomic coor-

dinates of the PFs were taken from the states attained at the end of equilibra-

tion-III (Fig. 2; and see Results and Discussion). Additional water and ions

were added, producing a 300 � 300 � 81.2 Å3 system of ~750,000 atoms.

The MT was effectively infinite due to PBC.

The interface between the PFs was adjusted using the coordinates of the

a-a, b-b, and a-b interfaces in the equilibrated N and S systems as
a template. To produce the target coordinates for the interfaces, the N and

S systems after equilibration-III were again simulated with Grid-Steered

Molecular Dynamics for 5 ns, using the same parameters as during the flex-

ible fitting stage, ensuring that the angle and axial alignment between the

two PFs matched that required for a 13-PF MT. Coordinates of atoms cor-

responding to a 2p/13 radian sector centered on the center-of-mass of the

two PFs were then taken from each system. The target structure was con-

structed from 12 copies of the N system interface coordinates and one

copy of the S system interface coordinates, shown in Fig. 4 B. The interface

fitting was performed using the following harmonic restraint potential

applied to all heavy atoms of the PFs:

U ¼ �
X

i

kbiðri � ri;0Þ2=2: (2)

where ri and ri,0 are the current and reference positions of the ith atom,

respectively.

The scaling factor bi ¼ [1 þ cos(13qi)]/2, where qi is the radial angle of

atom i with respect to the MT seam (visualized in Fig. 4 B), was introduced

to accentuate the restraint potential at the interface atoms. Note that in the

initial model of the MT, half of all interface atoms already had the target

coordinates. The restraints were applied linearly increasing the spring con-

stant from k ¼ 0 to 1 kcal/mol$Å over 5 ns. A value of k ¼ 1.0 kcal/mol$Å

was then maintained for 1 ns, after which simulations with k ¼ 0.3, 0.1, and

0.03 kcal/mol$Å were carried out sequentially over 1, 2, and 2.88 ns, respec-

tively. In total, the interface adjustment simulations lasted 11.88 ns and were
Biophysical Journal 99(2) 629–637
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performed with Lz of the periodic cell fixed at the value suggested by the

crystal structure of tubulin.

Construction of the finite MT system

The structure used for the twist simulations was constructed by combining

three copies of the unit cell of the infinite MT system with a fourth copy

that contained only the solvent, using the set of coordinates obtained at

the end of equilibration-II (see Fig. 4). To minimize the extent of the system

along the z axis, some monomers were shifted by 3 Lz in the –z direction, as

shown in Fig. 6 A. That system was solvated and ionized, producing an elec-

trically neutral system of ~2.83 million atoms.

Stress calculation

Under the anisotropic pressure condition Pxx ¼ Pyy s Pzz, the difference

DP h Pzz – Pxx must be borne by the PFs (21). The total force on the PFs

is then DP multiplied by the cross-sectional area of the system:

f ðtÞ ¼ ½PzzðtÞ � 1 bar�$LxðtÞLyðtÞ: (3)

The stress on the PFs is the negative of this divided by the cross-sectional

area of the PFs,

sðtÞ ¼ �f ðtÞ=NPFAPF

¼ �½PzzðtÞ � 1 bar� � LxðtÞLyðtÞ=NPFAPF; (4)

where NPF is the number of PFs, either 2 for the N and S systems or 13 for

the MT system, and APF is the cross-sectional area of a PF, taken as 50 �
50 Å2. Strain was computed as e(t) ¼ [Lz(t) – Lz,0]/Lz,0, where Lz,0 is the

equilibrium length of the periodic cell along the PFs, taken as 83.92 Å for

the N and S systems and 83.08 Å for the MT system (see Results and

Discussion).

Radial compression

To model the radial compression experiments, we defined the compression

force acting on atom i as a moving step function directed toward a plane

passing through the MT axis:

f i ¼ � f0nðri$nÞ=jri$nj

when jri$nj% d0 � vt, and

f i ¼ 0

otherwise.

Here jri$nj is the distance of atom i from the plane (the MT axis passes through

the origin of our coordinate system); f0¼ 100 pN; d0¼ 140 Å; v¼ 12.5 Å/ns;

and n is the unit vector normal to the plane. The force was applied to all heavy

atoms of tubulin using the TclBC feature of NAMD (39).

Twist

The twist deformation was produced by forcing the tubulin monomers

located at the ends of the finite MT system to rotate in opposite directions.

The force on atom i was computed as

f i ¼ CgðriÞðk � riÞmi=M; (5)

where C ¼51 kcal/mol$Å2, g (ri) ¼51 for the atoms located at the plus

(þ) and minus (–) ends of the MT, k was the unit vector directed along the

MT axis, mi was the ith atom mass, and M was the total mass of all forced

atoms. To maintain the integrity of the tubulin monomers subject to the

external force and whose ends were exposed to solvent, some backbone

dihedral angles were harmonically restrained with a spring constant of
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400 kcal/mol$rad, using the ‘‘extrabonds’’ feature of NAMD. Specifically,

the dihedral restraints were applied to the atoms of the terminal monomers

located closer to the MT ends than the center-of-mass of the respective

monomers.

RESULTS AND DISCUSSION

To build the atomic resolution model of a complete MT, we

constructed two 2-PF systems, referred to as N (for normal)

and S (for seam), that represented the two types of inter-PF

interactions found in a complete MT (Fig. 1 B). Specifically,

the N system features lateral bonds between like-monomers,

i.e., a-a and b-b bonds, whereas the S system features lateral

bonds between unlike monomers, i.e., a-b and b-a bonds.

Construction and equilibration of the N and S
systems

The procedure for construction of the N and S systems is out-

lined in Fig. 2 A. The crystal structure for ab-tubulin was

first rigidly fit to the cryo-EM density map to produce the

initial structures. Flexible fitting was then performed to

conform the atomic coordinates of the PFs to the cryo-EM

density map of the complete MT. These steps are detailed

in Materials and Methods.

After flexible fitting, the N and S systems were equili-

brated at constant pressure, with axial periodic dimension

Lz fixed at the value suggested by the crystal structure and

no external forces applied, for 15 ns (equilibration-I). We

found the Pzz component of the stress tensor in both the N

and S systems to be ~100 bar, much higher than other diag-

onal components (Pxx z Pyy z 1 bar), indicating that the

filaments were under compression. Therefore, we performed

2-ns axial stress adjustment simulations of the N and S

systems, during which Pzz
target, the Langevin piston target

for the Pzz component, was linearly decreased from 100 to

1 bar in 1-bar increments. This was followed by 35-ns (N)

and 20-ns (S) equilibration in the NpT ensemble (equilibra-

tion-II). The pressure and extension of the systems during the

pressure adjustment simulation and the subsequent equilibra-

tion are shown in Fig. S2. During the equilibration, Lz was

observed to attain an equilibrium value of ~84 Å in both

systems. Equilibration-III, a continuation of equilibration-I,

was performed for 25 and 20 ns for the N and S systems,

respectively. The structures obtained at the end of equilibra-

tion-III were used to build the complete MT system.

Structural changes and stability of the N and S
systems

Average root mean-square deviation (RMSD) of backbone

coordinates from the starting structure (crystal structure

plus reconstructed loop) of the N and S systems during

flexible fitting, equilibration-I, pressure adjustment, and

equilibration-II are shown in Fig. 2, D and E, while data

for equilibration-III is shown in Fig. 2, F and G. Alpha-

tubulin is seen to have a higher overall RMSD than
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b-tubulin, which is quite stable with a backbone RMSD of

~2 Å. The difference between a- and b-tubulin can

be attributed to the rebuilt residues 35–60 in a-tubulin

(see Materials and Methods), as the RMSD plots become

virtually identical when these residues are excluded from

the calculation. Backbone RMSD values from equilibra-

tion-III are similar to those observed during the pressure

adjustment and equilibration-II simulations.

The RMSD of individual residues at various stages of the

simulation are shown in Fig. S3. After flexible fitting, the N

system showed only small changes other than in residues

35–60 of a-tubulin, while the S system displayed changes

in the M-loop (residues 272–288) at the PFs’ interface. After

flexible fitting, the M-loop displayed significant change

(RMSD T 5 Å), maintained in all subsequent simulations.

Other regions of significant change were the H6-H7 loop

(residues 216–224) at the longitudinal interface, the S9-

S10 loop (residues 357–372) in the N system, and helix

H4 in a-tubulin. PDBs of the N and S systems after equili-

bration-II are provided in the Supporting Material.

To determine whether the fitting procedure created a stable

structure, we computed the root mean-square fluctuation

(RMSF) of the interface residues, shown in Fig. S4, A and B.

The interfaces of both systems began with RMSF values

of T1.0 Å, and attained lower values ((0.9 Å) by the end of

equilibration-II and equilibration-III. The low RMSF values

imply a reasonably equilibrated, stable structure of the PF

interface. The number of inter-PF contacts (shown in

Fig. S4, C–J), in general, was seen to increase through the

course of the simulations. The contacts present within the

first 1 ns of equilibration-I were approximately maintained,

while new contacts formed in both the N and S systems.
Axial extension and compression of the N and S
systems

To determine the mechanical response of the N and S

systems to axial extension and compression, we carried out
BA

FIGURE 3 Axial stretching and compression simulations. (A) Stress-strain da

indicates the stress value calculated from the 5-ps average of Pzz and the strain

the last 5 ns of the simulation performed at constant Pzz
target value. The points are

Pzz
target values. The mean stress-strain value of each 5-ns data set is shown as an

constant strain simulations. (B) Stress-strain data for the S system. The symbols h

MT. The symbols have the same meaning as in panel A, but the stress-strain valu

simulation at Pzz
target z 10 MPa did not reach an equilibrium strain within the s
a set of simulations in which Pzz
target was changed gradually

during the course of the simulation, producing continuous

stress-strain curves, shown in Fig. S5, A and B. The obtained

stress-strain curves were found to exhibit some dependence

on the rate at which Pzz
target was changed, especially for posi-

tive strains (extension). Therefore, we carried out multiple

simulations of both systems at different fixed Pzz
target values,

monitoring the change of the PF’s extension Lz, and Fig. S5

C and E.

In Fig. 3, A and B, we plot the stress and strain in the N and

S systems during steady-state fragments of the simulations

performed at constant Pzz
target values. The curves exhibit

interesting nonlinearities, notably a marked softening for

positive strains. For the N system, we also performed simula-

tions with Lz fixed, thus controlling strain, to verify the stress-

controlled results, see Fig. S5 D. The starting configurations

for the latter simulations were taken from the dynamically

controlled stress simulations. The results of the strain-

controlled simulations are shown as solid squares in Fig. 3 A,

and agree well with the stress-controlled data.

The stress-strain data for the N system in Fig. 3 A appears

to fall into two or perhaps three distinct domains, each with

a different Young’s modulus. For positive strain, or stretch-

ing, a linear fit yields a Young’s modulus of 0.3 GPa. For

negative strain, or compression, the system is significantly

stiffer. When fitting the –0.01 < e % 0 and e < –0.01

domains separately, we find Young’s moduli of 1.9 and

1.0 GPa, respectively, while a fit to the whole e < 0 domain

yields a value of 1.4 GPa. These values are in broad agree-

ment with experimental estimates (22), as well as MD simu-

lations of the elastic properties of tubulin (28). A fit to the

entire range of strains, meanwhile, yields a Young’s modulus

of 0.7 GPa, in very good agreement with the estimate of

0.6 GPa based on fitting to atomic force microscopy radial

indentation data (14). Data for the S system is displayed in

Fig. 3 B and shows behavior similar to that of the N system,

with calculated negative- and positive-strain Young’s

moduli of 1.3 and 0.5 GPa, respectively.
C

ta for the N system. Stress and strain were calculated every 5 ps. Each dot

value calculated from the instantaneous value of Lz. Data were taken from

colored alternating shades to distinguish datasets corresponding to different

open diamond. The solid squares indicate the mean stress observed in the

ave the same meaning as in panel A. (C) Stress-strain data for the complete

es were taken from the last 2 ns of the simulations at each Pzz
target value. The

imulation time of 12 ns.

Biophysical Journal 99(2) 629–637
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FIGURE 4 Construction of the MT system. (A)

Outline of the procedure. (B) A view of the MT

system from the þz direction. The MT structure is

shaded according to the proximity of its atoms to

the PFs’ interface: the darker the shading, the closer

the atom is to the interface. During the interface

fitting procedure, atoms shown in black were

subject to maximum restraints, while atoms shown

in white were unrestrained (see Materials and

Methods). (C) RMSD of the interface’s backbone

atoms from their target coordinates during interface

fitting, equilibration with Lz fixed, pressure adjust-

ment, and free equilibration simulations, excluding

residues 35–60 of a-tubulin. Each trace shows the

RMSD value of a single interface (13 traces total

are shown), defined as a 2p/26-radian sector in

panel B. The vertical dotted lines in the interface

fitting part indicate simulations carried out using

different restraint scaling factors (see Materials

and Methods). (D) Lz (solid line) and Pzz (dashed

line) of the MT system during pressure adjustment

and equilibration simulations. The scales for Lz and

Pzz are shown on the right and left vertical axes,

respectively.
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To disentangle monomer deformation and monomer sepa-

ration in the stretching and compression simulations, we

examined the strains of the individual monomers, shown in

Fig. S6. The monomer strain analysis showed that negative

strains involve more deformation of the monomers compared

to positive strains. This should be expected because the mono-

mers are already in close contact at zero strain. There is a

noticeable asymmetry between a- and b-tubulin: a-tubulin

tends to deform more than b-tubulin, especially for positive

strains. These results are consistent with previous findings

showing b-tubulin to be axially stiffer than a-tubulin (28).
Construction and equilibration of the MT system

The procedure for constructing the atomic scale model of

a complete MT is outlined schematically in Fig. 4 A. Using

the equilibrated conformations of the PFs from the N and

S systems, the initial model of the MT system was produced

by placing the PFs according to the MT’s geometry. Using

harmonic restraints, the interface between the PFs in the

MT model was adjusted to reproduce the PFs’ contacts

observed in the equilibrated N and S systems. These steps

are described in detail in Materials and Methods.

Using the interface fitting procedure, the system was

equilibrated for 14.24 ns in the NpT ensemble with Lz fixed

to the crystal value (equilibration-I). As in the case of the 2-

PF systems, the Pzz component of the stress tensor in the

simulation of the MT system was ~100 bar. Using aniso-

tropic pressure control, Pzz
target of the Langevin piston was

changed from 100 to 1 bar over 5 ns in 1-bar increments, fol-

lowed by 8.0-ns equilibration with Pzz
target set to 1 bar (equil-
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ibration-II). Fig. 4 D shows Pzz and Lz during the pressure

adjustment and equilibration simulations.

To examine the structural changes during and after the

interface fitting procedure, the RMSD of the interface atoms

in the MT structure were computed relative to the correspond-

ing coordinates in the equilibrated N and S systems (see

Fig. 4 C). For these RMSD plots, atoms within a 2p/26-radian

sector centered between PFs were defined as interface

atoms (see Fig. 4 B). The graph shows that the interfaces main-

tain RMSDs in a tight range below their starting value, indi-

cating that the interface fitting procedure succeeded in

producing a stable MT structure. The examined atoms

exclude residues 35–60, as inspection of the trajectory

showed that a portion of one of the reconstructed loop in

a-tubulin shifted at t ~19 ns. A PDB of the system after equil-

ibration-II is provided in the Supporting Material.
Axial extension and compression of the MT
system

Using the anisotropic pressure controls method, we exam-

ined the mechanical response of a complete MT to axial

compression and extension. Simulations were carried out at

four Pzz
target values corresponding to axial stress of ~10, 5,

–5, and –15 MPa.

The stress-strain curve for the complete MT is shown in

Fig. 3 C. The plot shows stress-strain data calculated every

5 ps, as well as averages for each, with the exception of

the 10-MPa simulation which had a rising strain value that

did not reach a steady state; Fig. S5 F shows the values of

Lz for each simulation. The shape of the stress-strain curve
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is similar to that seen for the N and S systems, notably the

softening seen for positive strains. A linear fit to the averages

yields a Young’s modulus of 1.2 GPa, in good agreement

with that found for the N and S systems above. It should

be mentioned, however, that the system demonstrated

very slow relaxation in Lz during equilibration, as seen in

Fig. 4 D, raising the possibility that the stress-controlled

simulations did not reach genuine steady states.

Stretching of the MT was found to reduce its radius, as

intuition may suggest. For the case of –20 MPa stress, we

found the average MT radius (measured to the PF centers-

of-mass) to be 111.57 5 0.07 Å, compared to 110.23 5

0.07 Å for the þ5 MPa stress simulation. At zero stress,

the MT radius was found to be 110.45 5 0.06 Å.
B C

FIGURE 5 Radial compression of a complete, infinite MT. (A) Compres-

sion force versus MT strain for the St (pluses) and Sk (triangles) systems.

The average force from the two surfaces is shown. Each point represents

a 25-ps-window average. Inset images show the systems from the þz direc-

tion at 3 ¼ 0.13. The seam is at the bottom of the images. (B) Relaxation

simulations of the Sk system. The solid trace shows a fragment of the

compression simulation, whereas the dashed traces show two equilibration

simulations started from different points along the compression trajectory:

after 0.6 and 2.0 ns. (C) Center-of-mass circumference of the MT versus

strain. This circumference is defined as the sum of the lengths of the line

segments connecting the PF centers-of-mass in the xy plane. Symbols are

the same as those used in A.
Radial compression of the MT system

To probe the mechanical behavior of a complete MT under

radial compression, two forcing surfaces were moved toward

one another and the center of the MT at a constant velocity

(see Materials and Methods). Because of the asymmetry of

the MT, two compression simulations were performed

differing in the directions of the compression force: parallel

and perpendicular to the radial position vector of the seam.

These simulations are referred to as Sk and St, respectively.

The strain introduced by the compression force was calcu-

lated by fitting an ellipse to the xy coordinates of the PFs’

centers-of-mass for each trajectory frame. The fit was per-

formed under the following constraints: the ellipse’s center

had the same coordinates as at the beginning of the compres-

sion simulation; and the major axis of the ellipse was always

directed parallel to the forcing surfaces. The initial length of

the minor axis (Lminor) was taken as a zero strain reference

(e¼ 0), while the strain in the rest of the trajectory was calcu-

lated as e ¼ (Lminor,0 – Lminor)/Lminor,0. Note that this is the

negative of the standard definition.

In Fig. 5 A, the average compression force is shown as a func-

tion of the strain for both St and Sk systems. The inset images

show the St and Sk systems from theþz direction at a strain of

0.13. The slabs represent the forcing surfaces. The simulated

MT systems were effectively infinite along the z direction.

The simulated force-versus-strain dependences have

similar shape for both St and Sk systems. Both systems

exhibited an initial high resistance to deformation, to strains

of ~0.01, followed by a softer response. The regime past e ~

0.2 ceases to increase monotonically, displaying steps in the

response curve for both systems. We hypothesized that the

change in resistance to deformation at e ~ 0.01 represents

a transition from elastic to plastic deformation. To investi-

gate this possibility, we performed two equilibrium simula-

tions, starting from e z 0.005 and 0.055, i.e., before and

after the transition, of the Sk system. Results of these simu-

lations are shown in the inset of Fig. 5, which shows strain

as a function of time. The first simulation is seen to return

to e z 0. The second simulation, on the other hand, displays
only a slight return toward zero strain, remaining above 0.05,

supporting the idea of plastic deformation.

In experiment, the radial indentation of an MT using AFM

demonstrated reversible deformation up to 15% deformation

(14). Calculating the effective spring constant of our MT for

the strains 0.05 < e < 0.15, we find k ~ 0.3 N/m, somewhat

higher than the value of ~0.07 N/m found in Schaap et al.

(14). However, the deformation mode from a finite AFM

tip differs from the compression applied in our simulations,

which effectively indents the MT along its entire length.

Given this difference, and the factor of ~107 higher loading

rate in simulation versus experiment, the approximate agree-

ment in k is satisfying.

We also investigated the deformation mode during

compression. Backbone RMSD of the individual PFs was

very low throughout the entire process, remaining below

1.7 Å. Therefore, the deformation is primarily composed

of hingelike motion between PFs, and relative motion of

PFs. Analysis of the deformation revealed a constant MT

circumference, defined as the sum of straight-line segments

between PF centers-of-mass in the xy plane, to strains of
Biophysical Journal 99(2) 629–637
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FIGURE 6 Twist simulations. (A) Finite-length

MT system, at the beginning of the twist simula-

tions. (B) Total angular displacement of the micro-

tubule’s terminal monomers in the simulations of

the counterclockwise (solid line) and clockwise

(dashed line) twist deformations, as seen from þz

direction. The arrows indicate the moment when

the twisting forces were set to zero and the struc-

tures were allowed to relax.
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~0.05, after which it began to rise. This is shown in Fig. 5 C.

This may imply a larger elastic regime more consistent with

experiment.
Twist deformation of the MT system

To examine the mechanical response of an MT to twist

deformation, we constructed a finite-length model of the

MT (see Materials and Methods) that contained three repeats

of the ab-tubulin dimer per protofilament (shown in Fig. 6 A).

Forces were applied to the terminal monomers of the MT, to

produce displacement of the MT’s plus- and minus-ends in

opposite circumferential directions (see Materials and

Methods).

Fig. 6 B plots the total displacement angle versus simula-

tion time for counterclockwise (CCW) and clockwise (CW)

twist deformation. The total torque imparted in both cases

was ~89 nN nm, increasing slightly (< 3%) during the

course of the simulations due to increased MT radius (see

Fig. S7 A). For deformations <4�, both directions of the tor-

que produced twists of comparable value. Thereafter,

twisting the MT clockwise produced a greater twist strain

than counterclockwise. After ~4 ns of torque application,

the forces were switched off, allowing the system to relax.

The twist strain was observed to decrease toward zero,

although complete recovery of the initial structure was not

observed within the timescale of our simulations. The length

of the MT fragment under the twist deformation displayed

similar behavior in both CCW and CW simulations: the

length remained nearly constant, shrinking by 0.5% at high

strains in the CW simulation (Fig. S7 C).

If modeled as an isotropically elastic tube with outer and

inner radii of ro¼ 125 Å and ri¼ 75 Å, respectively, a torque

of t ¼ 89 nN nm is expected to produce an angular strain of

Dq ( 8�, using Dq ¼ tL/JG, where L is the length,

J ¼ p=2ðr4
o � r4

i Þ is the torsion constant, and G¼ E/2(1þ n)

is the shear modulus. We have taken the Young’s modulus

E ¼ 1.2 GPa, and the Poisson ratio n ¼ 0.5 to set an upper

bound on the predicted strain. This prediction is clearly

exceeded in Fig. 6 B, demonstrating the inadequacy of an

isotropic treatment of MT elasticity using a thick cylindrical
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tube model. An MT is softer than was predicted by the

isotropic tube model, and displays an asymmetry between

the two directions of twist deformation.
CONCLUSIONS

In this study, we combined structural data at multiple resolu-

tions to construct an all-atom model of a complete MT. This

model should not be considered a substitute for a crystallo-

graphic model, and most likely contains small errors, but

nevertheless performed very well. Using this model, we

were able to determine a detailed stress-strain dependence

clearly showing different behavior under extension and

compression. Furthermore, the computed Young’s moduli

were in very good agreement with published data and esti-

mates. We studied the properties of an MT under radial

compression and identified a possible elastic-to-plastic tran-

sition. Finally, we applied twisting force and showed

a dramatic asymmetry in the MT reaction to the two senses

of twist. The twist simulations in particular demonstrate

the range of possibilities afforded by the MD method, which

allows for the computation of quantities well beyond the

current reach of experiment. The excellent agreement of

the axial strain simulations with available experimental

data gives confidence in the other quantities for which exper-

imental data are not available.

This work is one of the first, to our knowledge, to combine

cryo-EM and crystal structures for subsequent all-atom MD

simulation. The successful performance of such a model

opens the door to the simulation of many other systems

whose constituent units are known in atomic detail but

whose complete structure is known only at lower resolution.

Such simulations allow more biologically relevant length

scales to be probed, promising to expand our knowledge of

the microscopic mechanisms of life.
SUPPORTING MATERIAL

Seven figures and PDBs of the N, S, and complete MT systems after equil-

ibration-II are available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(10)00536-9.
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7. Löwe, J., H. Li, ., E. Nogales. 2001. Refined structure of ab-tubulin at
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