

Psychometrika. Author manuscript; available in PMC 2010 July 16

Published in final edited form as:

Psychometrika. 2010 June; 75(2): 243-248. doi:10.1007/s11336-009-9135-y.

Ensuring Positiveness of the Scaled Difference Chi-square Test Statistic *

Albert Satorra and Universitat Pompeu Fabra, Barcelona

Peter M. Bentler University of California, Los Angeles

Abstract

A scaled difference test statistic T_d that can be computed from standard software of structural equation models (SEM) by hand calculations was proposed in Satorra and Bentler (2001). The statistic T_d is asymptotically equivalent to the scaled difference test statistic T_d introduced in Satorra (2000), which requires more involved computations beyond standard output of SEM software. The test statistic T_d has been widely used in practice, but in some applications it is negative due to negativity of its associated scaling correction. Using the implicit function theorem, this note develops an improved scaling correction leading to a new scaled difference statistic T_d that avoids negative chi-square values.

Keywords

Moment-structures; goodness-of-fit test; chi-square difference test statistic; chi-square distribution; non-normality

Introduction

Moment structure analysis is widely used in behavioural, social and economic studies to analyze structural relations between variables, some of which may be latent see, e.g., Bollen and Curran (2006), Grace (2006), Yuan and Bentler (2007), and references therein. In such analyses it frequently happens that two nested models M_0 and M_1 are compared using estimation methods that are non-optimal (asymptotically) given the distribution of the data; e.g. ML estimation is used when the data are not multivariate normal. In those circumstances, the usual chi-square difference test $T_d = T_0 - T_1$, based on the separate models' goodness of fit test statistics, is not χ^2 distributed. A correction to T_d by a scaling factor was proposed by Satorra (2000) and Satorra and Bentler (2001) to improve the chi-square approximation. The latter is the focus of this paper.

Satorra and Bentler's (2001) correction provided a simple procedure to obtain an approximate scaled chi-square statistic using hand calculations on regular output of SEM analysis; it has the drawback, however, that a positive value for the scaling correction is not assured. The present paper develops a simple procedure by which a researcher can compute the exact SB difference test statistic based only on output from standard SEM programs.

^{*}Research supported by grants SEJ2006-13537 and PR2007-0221 from the Spanish Ministry of Science and Technology and by USPHS grants DA00017 and DA01070. This paper is in Press in Psychometrika and presently available on line at www.springerlink.com.

Setup and Notation

Throughout we adhere to the notation and results of Satorra and Bentler (2001). Let σ and s be p-dimensional vectors of population and sample moments respectively, where s tends in probability to σ as sample size $n \to +\infty$. Let $\sqrt{n}(s-\sigma)$ be asymptotically normally distributed with a finite asymptotic variance matrix Γ ($p \times p$). Consider the model M_0 : $\sigma = \sigma(\theta)$ for the moment vector σ , where $\sigma(.)$ is a twice-continuously differentiable vector-valued function of θ , a q-dimensional parameter vector. Consider a discrepancy function $F = F(s, \sigma)$ in the sense of Browne (1984), and the estimator $\hat{\theta}$ based on F or on an (asymptotically equivalent) weighted least squares (WLS) analysis with weight matrix

$$V = \frac{1}{2} \partial^2 F(s, \sigma) / \partial \sigma \partial \sigma'$$
 evaluated at $\sigma = s$.

Let $M_0: \sigma = \sigma^*(\delta)$, $a(\delta) = 0$, and $M_1: \sigma = \sigma^*(\delta)$ be two nested models for σ . Here δ is a (q + m)-dimensional vector of parameters, and $\sigma^*(.)$ and a(.) (an m-valued function) are twice-continuously differentiable vector-valued functions of $\delta \in \Theta_1$, a compact subset of R^{q+m} . Our interest is in the test of a null hypothesis $H_0: a(\delta) = 0$ against the alternative $H_1: a(\delta) \neq 0$.

For the developments that follow, we require the Jacobian matrices $\Pi(p \times (q+m)) := \partial \sigma^*(\delta)/\partial \delta'$ and $A(m \times (q+m)) := \partial a(\delta)/\partial \delta'$, which we assume to be regular at the true value of δ , say δ_0 . We also assume that A is of full row rank. By using the implicit function theorem, associated to M_0 (more specifically, to the restrictions $a(\delta) = 0$), there exists (locally in a neighborhood of δ_0) a one-to-one function $\delta = \delta(\theta)$ defined in an open and compact subset S of R^q , and a θ_0 in the interior of S such that $\delta(\theta_0) = \delta_0$ and $\sigma(\delta(\theta))$ satisfies the model M_0 . Let $H = \partial \delta(\theta)/\partial \delta'$ ($(q+m) \times q$) be the corresponding Jacobian matrix evaluated at θ_0 . Hence, by the chain rule of differentiation, $\Delta = \partial \sigma/\partial \theta' = (\partial \sigma(\delta)/\partial \delta')(\partial \delta(\theta)/\partial \theta') = \Pi H$. Since $a(\delta(\theta)) = 0$, it holds that with A evaluated at δ_0 , AH = 0 with r(A) + r(H) = q + m, and r(A) = 00 denoting the rank of a matrix. Thus, H' is an orthogonal complement of A. Let $P((q+m) \times (q+m)) := \Pi' V\Pi$. Associated to M_1 , the less restricted model $\sigma = \sigma^*(\delta)$, the goodness-of-fit

test statistic is $T_1 = nF\left(s, \overset{\sim}{\sigma}\right)$, where $\overset{\sim}{\sigma}$ is the fitted moment vector in model M_1 with associated degrees of freedom $r_1 = r_0 - m$ and scaling factor c_1 given by

$$c_1 := \frac{1}{r_1} tr\{U_1 \Gamma\} = \frac{1}{r_1} tr\{V \Gamma\} - \frac{1}{r_1} tr\{P^{-1} \Pi' V \Gamma V \Pi\},$$
(1)

where

$$U_1 := V - V \Pi P^{-1} \Pi' V. \tag{2}$$

We refer to Satorra and Bentler (2001) for further details.

Scaling Correction for the Difference Test

When both models M_0 and M_1 are fitted, for example by ML, then we can test the restriction $a(\delta) = 0$, assuming M_1 holds, using the chi-square difference test statistic $T_d := T_0 - T_1$. Under the null hypothesis, we would like T_d to have a χ^2 distribution with degrees of freedom $m = r_0 - r_1$. This is the restricted test of M_0 within M_1 . For general distributions of the data, the asymptotic chi-square approximation may not hold. To improve on the chi-square approximation, Satorra (2000) gave explicit formulae that extends the scaling corrections proposed by Satorra and Bentler (1994) to the case of difference, Wald, and

score type of test statistics. General expressions for those corrections were also put forward in Satorra (1989, p.146). Specifically, for the test statistic T_d we are considering, Satorra (2000, p. 241) proposed the following scaled test statistic:

$$\overline{T}_d := T_d/\widehat{c}_d$$
, where $c_d := \frac{1}{m} tr\{U_d\Gamma\}$ (3)

with

$$U_d = V \Pi P^{-1} A' \left(A P^{-1} A' \right)^{-1} A P^{-1} \Pi' V. \tag{4}$$

Here, \hat{c}_d denotes c_d after substituting consistent estimates of V and Γ , and evaluating the Jacobians A and at the estimate δ_0 when fitting M_0 (or M_1). Since tr { $U_d\Gamma$ } can be expressed as the trace of the product of two positive definite matrices, tr { $U_d\Gamma$ } > 0, and thus c_d > 0; the same for \hat{c}_d > 0. Consequently, T_d is ensured to be a non-negative number.

A practical problem with the statistic T_d is that it requires computations that are outside the standard output of current structural equation modeling programs. Furthermore, difference tests are usually hand computed from different modeling runs. Satorra and Bentler (2001) proposed a procedure to combine the estimates of the scaling corrections c_0 and c_1 associated to the chi-square goodness-of-fit test for the two fitted models M_0 and M_1 in order to compute a consistent estimate of the scaling correction c_d for the difference test

statistic. A modified (easy to compute) scaled test statistic T_d with the same asymptotic distribution as T_d was proposed. Both statistics were shown to be asymptotically equivalent under a sequence of local alternatives (so they have the same asymptotic local power). Their procedure to compute T_d is as follows (see Satorra and Bentler, 2001, p. 511).

- 1. Obtain the unscaled and scaled goodness-of-fit tests when fitting M_0 and M_1 respectively; that is, T_0 and \bar{T}_0 when fitting M_0 , and T_1 and \bar{T}_1 when fitting M_1 ;
- 2. Compute the scaling corrections $\hat{c}_0 = T_0/\bar{T}_0$, $\hat{c}_1 = T_1/\bar{T}_1$, and the unscaled chi-square difference $T_d = T_0 T_1$ and its degrees of freedom $m = r_0 r_1$;
- 3. Compute the scaled difference test statistic as

$$\widetilde{T}_d := T_d / \widetilde{c}_d$$
 with $\widetilde{c}_d = (r_0 \widehat{c}_0 - r_1 \widehat{c}_1) / m$.

Here r_0 and r_1 are the respective degrees of freedom of the models M_0 and M_1 .

The basis for computing the scaling correction for the difference test statistic is the following alternative expression for U_d of (4) (see Satorra and Bentler, 2001, p. 510)

$$U_d = U_0 - U_1,$$
 (5)

where U_1 is given in (2) and $U_0 := V - V \Pi H (H' \Pi' V \Pi H)^{-1} H' \Pi' V$. Since (5) implies

$$mc_d = tr\{U_d\Gamma\} = tr\{(U_0 - U_1)\Gamma\} = r_0c_0 - r_1c_1,$$
 (6)

it follows that $c_d = (r_0c_0 - r_1c_1)/m$. This is the theoretical basis for Satorra and Bentler's (2001) proposal as given in steps 1-3 above.

Problem with the Current Scaled Difference Test

For an arbitrary matrix V>0, (5) and (6) are exact equalities when the matrices U_d , U_0 and U_1 are evaluated at a common value δ (as, e.g., the fitted value under model M_0 or under M_1); however, they are just asymptotic equalities when U_d , U_0 and U_1 are evaluated at different estimates that converge to the same true value under the null hypothesis. Under Satorra and Bentler's (2001) proposal, \tilde{c}_d evaluates U_0 and U_1 at the estimates δ_0 and δ_1 respectively. Since δ_1 will in general not satisfy the null model M_0 (i.e., it will not be of the form $\delta = \delta(\theta)$ for the function implied by the implicit function theorem), when it deviates highly from M_0 , the estimated difference $\tilde{c}_d = (r_0 \hat{c}_0 - r_1 \hat{c}_1)/m$ may turn out to be negative. This may happen in small samples, or when M_0 is highly incorrect; a result can be an improper value for T_d . Satorra and Bentler (2001, p. 511) warned on the possibility that an improper value of T_d could arise.

In order to be sure to avoid a negative value for \tilde{c}_d and hence \tilde{T}_d , currently one would need to resort to computing T_d using the (3). Unfortunately this is impractical or impossible for most applied researchers who only have access to standard SEM software.

Fortunately, as we show next, the exact value of T_d can also be obtained from the standard output of SEM software, using a new hand computation.

A New Scaled Test Statistic $ilde{T}_d$

Denote by M_{10} the fit of model M_1 to a model setup with starting values taken as the final estimates obtained from model M_0 , and with number of iterations set to 0. Consider $\hat{c}_1^{(10)} := T_1^{(10)}/T_1^{(10)}$, where $T_1^{(10)}$ and $T_1^{(10)}$ are the standard unscaled and scaled test statistic of this additional run. Note that the estimate $\hat{c}_1^{(10)}$ uses model M_1 but the matrices and A are now evaluated at $\delta_0 := \delta(\hat{\theta})$, where $\hat{\theta}$ is the estimate under M_0 . Since now all the matrices involved in (5) are evaluated at δ^{\wedge}_0 , the equality (6) holds exactly, and not only asymptotically, as when U_0 is evaluated at δ^{\wedge}_0 and U_1 at δ^{\wedge}_1 . The scaling correction that is now computed is

$$\widehat{c}_d^{(10)} := \left(r_0 \widehat{c}_0 - r_1 \widehat{c}_1^{(10)} \right) / m, \tag{7}$$

which, in view of (6), is the scaling correction of (3) when U_d is evaluated at the estimate δ^{\wedge}_0 when fitting M_0 , and thus it is a positive number. The new scaled difference statistic is thus defined as

$$T_d^{(10)} := (T_0 - T_1) / \overline{c}_d^{(10)},$$
 (8)

Clearly, $T_d^{-(10)} = T_d$ that is, $T_d^{-(10)}$ coincides numerically with the scaled statistic (3) proposed in Satorra (2000).

An Illustration

We use this data just for illustrative purposes, and because it provides an example where the standard scaling correction fails to be positive. We use a latent variable model discussed for this data by Bentler, Satorra and Yuan (2009). The Bonett-Woodward-Randall (2002) test shows that these data have significant excess kurtosis indicative of non-normality at a one-tail .05 level, so test statistics derived from ML estimation may not be appropriate and we do the scaling corrections.

The model considered is a structured means model, with the mean cigarette sales indirectly affecting the mean rates of the various cancers. The specified model is

$$V_{j} = \lambda_{j} F + E_{j}$$
, $j = 2, ..., 5$, $F = \beta V_{1} + D_{1}$, $V_{1} = \mu + E_{1}$,

where the V_j 's denote observed variables; F, D_1 , and E_j are the common, residual common, and unique factors respectively; λ_j denotes a factor loading parameter, β is the effect of cigarette smoking on the cancer factor, and μ is the mean parameter for rates of smoking. The units of measurement for the factor were tied to V_2 , with $\lambda_2 = 1$. The following values for the ML and Satorra-Bentler (1994) (SB) scaled chi-square statistics are obtained

$$T_1=107.398$$
, $\overline{T}_1=65.3524$, $r_1=9$, $\widehat{c}_1=1.6434$,

along with the degrees of freedom r_1 and the scaling correction \hat{c}_1 . The model does not fit, though for the sake of the illustration we are aiming for, this is not of concern to us.

Restricted Model, Mo

The same model is now fitted with the added restriction that the error variances of the kidney and leukemia cancers, E_4 and E_5 , are equal. This model gives the following statistics

$$T_0=139.495$$
, $\bar{T}_0=97.4034$, $r_0=10$, $\hat{c}_0=1.4322$.

Difference Test

Our main interest lies in testing the difference between M_0 and M_1 , which we do with the chi-square difference test. The ML difference statistic is

$$T_d$$
=139.495 - 107.398=32.097,

which, with 1 degree of freedom (m), rejects the null hypothesis that the error variances for E4 and E5 are equal. Since the data is not normal, we compute the SB (2001) scaled difference statistic. This requires computing the scaling factor $\tilde{c}_d = (r_0 \hat{c}_0 - r_1 \hat{c}_1) / m$ given by

$$[10(1.4322) - 9(1.6434)]/1=14.322 - 14.7906= -.4686.$$

The scaling factor \tilde{c}_d is negative, so the SB difference test cannot be carried out; or, if carried out, it results in an improper negative chi-square value.

New Scaled Difference Test

As described above, to compute the scaled statistic \bar{T}_d we implement (7) and (8). The output that is missing in the prior runs is the value of the SB statistic obtained at the final parameter estimates for model M_0 when model M_1 is evaluated. This can be obtained by creating a model setup M_{10} that contains the parameterization of M_1 with start values taken from the output of model M_0 . Model M_{10} is run with zero iterations, so that the parameter values do not change before output including test statistics is produced. The new result gives

$$T^{(10)} = 139.495$$
, $T^{(10)} = 94.9551$, $r_1 = 9$, $\widehat{c}^{(10)} = 1.4691$,

where as expected, $T^{10} = T_0$ as reported above (i.e., the ML statistics are identical), and the value \hat{c}^{10} is hand-computed. As a result, we can compute

$$\widehat{c}_d^{(10)} = \left(r_0\widehat{c}_0 - r_1\widehat{c}_1^{(10)}\right)/m = [(10)(1.4322) - (9)(1.4691)] = 1.10,$$

which, in contrast to the SB (2001) computations, is positive. Finally, we can compute the proposed new SB corrected chi-square statistic as

$$\bar{T}_d = \bar{T}_d^{(10)} = (T_0 - T_1) / \bar{c}_d^{(10)} = (139.495 - 107.398) / 1.10 = 29.179,$$

which can be referred to a χ_1^2 variate for evaluation.

Discussion

The implicit function theorem was used to provide a theoretical basis for the development of a practical version of the computationally more difficult scaled difference statistic proposed by Satorra (2000).² The proposed method is only marginally more difficult to compute than that of Satorra and Bentler (2001) and solves the problem of an uninterpretable negative χ^2 difference test that applied researchers have complained about for some time.

Like the method it is replacing, the proposed procedure applies to a general modeling setting. The vector of parameters σ to be modeled may contain various types of moments: means, product-moments, frequencies (proportions), and so forth. Thus, this scaled difference test applies to methods such as factor analysis, simultaneous equations for continuous variables, log-linear multinomial parametric models, etc.. It can easily be seen that the procedure applies also in the case where the matrix Γ is singular, when the data is composed of various samples, as in multi-sample analysis, and to other estimation methods. It applies also to the case where the estimate of Γ reflects the fact that we have intraclass correlation among observations, as in complex samples. Hence this new statistic should be useful in a variety of applied modeling contexts. Simulation work will be needed to understand its virtues and limitations, relative to other alternatives, in such contexts.

¹For this particular example, the Appendix of Satorra and Bentler (2008) illustrates this procedure with EQS (Bentler, 2008). In the same reference, there is a second illustration with a larger degrees of freedom.

Satorra (2000) provides also Monte Carlo evidence—on a specific model context and various sample sizes - of the superiority of the

scaling correction over other alternatives such as the adjusted (mean and variance corrected) statistic.

References

Bentler, PM. EQS 6 structural equations program manual. Multivariate Software; Encino, CA: 2008.

- Bentler PM, Satorra A, Yuan K-H. Smoking and cancers: Case-robust analysis of a classic data set. Structural Equation Models 2009;16:382–390.
- Bollen, KA.; Curran, PJ. Latent curve models: A structural equation perspective. Wiley; New York: 2006.
- Bonett DG, Woodward JA, Randall RL. Estimating p-values for Mardia's coefficients of multivariate skewness and kurtosis. Computational Statistics 2002;17:117–122.
- Browne MW. Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology 1984;37:62–83. [PubMed: 6733054]
- Grace, JB. Structural equation modeling and natural systems. Cambridge; New York: 2006.
- Satorra A. Alternative test criteria in covariance structure analysis: A unified approach. Psychometrika 1989;54:131–151.
- Satorra, A. Scaled and adjusted restricted tests in multi-sample analysis of moment structures. In: Heijmans, DDH.; Pollock, DSG.; Satorra, A., editors. Innovations in multivariate statistical analysis: A Festschrift for Heinz Neudecker. Kluwer Academic; Dordrecht: 2000. p. 233-247.
- Satorra, A.; Bentler, PM. Corrections to test statistics and standard errors in covariance structure analysis. In: von Eye, A.; Clogg, CC., editors. Latent Variables Analysis: Applications for developmental research. Sage; Thousand Oaks, CA: 1994. p. 399-419.
- Satorra A, Bentler PM. A scaled difference chi-square test statistic for moment structure analysis. Psychometrika 2001;66:507–514.
- Satorra, A.; Bentler, PM. Ensuring positiveness of the scaled dfference chi-square test statistic. Department of Statistics, UCLA Department of Statistics Preprint; 2008. http://repositories.cdlib.org/uclastat/papers/2008010905
- Yuan, K-H.; Bentler, PM. Structural equation modeling. In: Rao, CR.; Sinharay, S., editors. Handbook of statistics 26: Psychometrics. North-Holland; Amsterdam: 2007. p. 297-358.