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Abstract
A scaled difference test statistic  that can be computed from standard software of structural
equation models (SEM) by hand calculations was proposed in Satorra and Bentler (2001). The
statistic  is asymptotically equivalent to the scaled difference test statistic T ̄d introduced in
Satorra (2000), which requires more involved computations beyond standard output of SEM
software. The test statistic  has been widely used in practice, but in some applications it is
negative due to negativity of its associated scaling correction. Using the implicit function theorem,
this note develops an improved scaling correction leading to a new scaled difference statistic T ̄d
that avoids negative chi-square values.
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Introduction
Moment structure analysis is widely used in behavioural, social and economic studies to
analyze structural relations between variables, some of which may be latent see, e.g., Bollen
and Curran (2006), Grace (2006), Yuan and Bentler (2007), and references therein. In such
analyses it frequently happens that two nested models M0 and M1 are compared using
estimation methods that are non-optimal (asymptotically) given the distribution of the data;
e.g. ML estimation is used when the data are not multivariate normal. In those
circumstances, the usual chi-square difference test Td = T0 - T1, based on the separate
models’ goodness of fit test statistics, is not χ2 distributed. A correction to Td by a scaling
factor was proposed by Satorra (2000) and Satorra and Bentler (2001) to improve the chi-
square approximation. The latter is the focus of this paper.

Satorra and Bentler’s (2001) correction provided a simple procedure to obtain an
approximate scaled chi-square statistic using hand calculations on regular output of SEM
analysis; it has the drawback, however, that a positive value for the scaling correction is not
assured. The present paper develops a simple procedure by which a researcher can compute
the exact SB difference test statistic based only on output from standard SEM programs.
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Setup and Notation
Throughout we adhere to the notation and results of Satorra and Bentler (2001). Let σ and s
be p-dimensional vectors of population and sample moments respectively, where s tends in
probability to σ as sample size n → +∞. Let  be asymptotically normally
distributed with a finite asymptotic variance matrix Γ (p × p). Consider the model M0 : σ =
σ(θ) for the moment vector σ, where σ(.) is a twice-continuously differentiable vector-valued
function of θ, a q-dimensional parameter vector. Consider a discrepancy function F = F (s,
σ) in the sense of Browne (1984), and the estimator θ ̂ based on F or on an (asymptotically
equivalent) weighted least squares (WLS) analysis with weight matrix

 evaluated at σ = s.

Let M0 : σ = σ⋆(δ), a(δ) = 0, and M1 : σ = σ⋆(δ) be two nested models for σ. Here δ is a (q
+m)-dimensional vector of parameters, and σ⋆(.) and a(.) (an m-valued function) are twice-
continuously differentiable vector-valued functions of δ ∈ ϴ1, a compact subset of Rq+m.
Our interest is in the test of a null hypothesis H0 : a(δ) = 0 against the alternative H1 : a(δ) ≠
0.

For the developments that follow, we require the Jacobian matrices Π(p× (q + m)) := ∂σ⋆(δ)/
∂δ’ and A(m × (q + m)) := ∂a(δ)/∂δ’, which we assume to be regular at the true value of δ,
say δ0. We also assume that A is of full row rank. By using the implicit function theorem,
associated to M0 (more specifically, to the restrictions a(δ) = 0), there exists (locally in a
neighborhood of δ0) a one-to-one function δ = δ(θ) defined in an open and compact subset S
of Rq, and a θ0 in the interior of S such that δ(θ0) = δ0 and σ(δ(θ)) satisfies the model M0.
Let H = ∂δ(θ)/∂δ’ ((q + m) × q) be the corresponding Jacobian matrix evaluated at θ0.
Hence, by the chain rule of differentiation, Δ= ∂σ/∂θ’ = (∂σ(δ)/∂δ’)(∂ δ(θ)/∂θ’)= ΠH. Since
a(δ(θ)) = 0, it holds that with A evaluated at δ0, AH = 0 with r(A)+r(H) = q+m, and r(.)
denoting the rank of a matrix. Thus, H’ is an orthogonal complement of A. Let P ((q + m) ×
(q + m)) := Π’VΠ. Associated to M1, the less restricted model σ = σ⋆(δ), the goodness-of-fit

test statistic is , where  is the fitted moment vector in model M1 with
associated degrees of freedom r1 = r0 - m and scaling factor c1 given by

(1)

where

(2)

We refer to Satorra and Bentler (2001) for further details.

Scaling Correction for the Difference Test
When both models M0 and M1 are fitted, for example by ML, then we can test the restriction
a(δ) = 0, assuming M1 holds, using the chi-square difference test statistic Td := T0 - T1.
Under the null hypothesis, we would like Td to have a χ2 distribution with degrees of
freedom m = r0 - r1. This is the restricted test of M0 within M1. For general distributions of
the data, the asymptotic chi-square approximation may not hold. To improve on the chi-
square approximation, Satorra (2000) gave explicit formulae that extends the scaling
corrections proposed by Satorra and Bentler (1994) to the case of difference, Wald, and
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score type of test statistics. General expressions for those corrections were also put forward
in Satorra (1989, p.146). Specifically, for the test statistic Td we are considering, Satorra
(2000, p. 241) proposed the following scaled test statistic:

(3)

with

(4)

Here, ĉd denotes cd after substituting consistent estimates of V and Γ, and evaluating the
Jacobians A and at the estimate δ̂0 when fitting M0 (or M1). Since tr {UdΓ} can be expressed
as the trace of the product of two positive definite matrices, tr {UdΓ} > 0, and thus cd > 0;
the same for ĉd > 0. Consequently, T ̄d is ensured to be a non-negative number.

A practical problem with the statistic T ̄d is that it requires computations that are outside the
standard output of current structural equation modeling programs. Furthermore, difference
tests are usually hand computed from different modeling runs. Satorra and Bentler (2001)
proposed a procedure to combine the estimates of the scaling corrections c0 and c1
associated to the chi-square goodness-of-fit test for the two fitted models M0 and M1 in
order to compute a consistent estimate of the scaling correction cd for the difference test
statistic. A modified (easy to compute) scaled test statistic  with the same asymptotic
distribution as T ̄d was proposed. Both statistics were shown to be asymptotically equivalent
under a sequence of local alternatives (so they have the same asymptotic local power). Their
procedure to compute  is as follows (see Satorra and Bentler, 2001, p. 511).

1. Obtain the unscaled and scaled goodness-of-fit tests when fitting M0 and M1
respectively; that is, T0 and T ̄0 when fitting M0, and T1 and T ̄1 when fitting M1;

2. Compute the scaling corrections ĉ0 = T0/T ̄0, ĉ1 = T1/T ̄1, and the unscaled chi-square
difference Td = T0 - T1 and its degrees of freedom m = r0 - r1;

3. Compute the scaled difference test statistic as

Here r0 and r1 are the respective degrees of freedom of the models M0 and M1.

The basis for computing the scaling correction for the difference test statistic is the
following alternative expression for Ud of (4) (see Satorra and Bentler, 2001, p. 510)

(5)

where U1 is given in (2) and U0 := V - VΠH(H’Π’VΠH)-1H’Π’V. Since (5) implies

(6)
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it follows that cd = (r0c0 - r1c1)/m. This is the theoretical basis for Satorra and Bentler’s
(2001) proposal as given in steps 1-3 above.

Problem with the Current Scaled Difference Test
For an arbitrary matrix V > 0, (5) and (6) are exact equalities when the matrices Ud, U0 and
U1 are evaluated at a common value δ (as, e.g., the fitted value under model M0 or under
M1); however, they are just asymptotic equalities when Ud, U0 and U1 are evaluated at
different estimates that converge to the same true value under the null hypothesis. Under
Satorra and Bentler’s (2001) proposal,  evaluates U0 and U1 at the estimates δ̂0 and δ̂1
respectively. Since δ̂1 will in general not satisfy the null model M0 (i.e., it will not be of the
form δ = δ(θ) for the function implied by the implicit function theorem), when it deviates
highly from M0, the estimated difference  may turn out to be negative.
This may happen in small samples, or when M0 is highly incorrect; a result can be an
improper value for . Satorra and Bentler (2001, p. 511) warned on the possibility that an
improper value of  could arise.

In order to be sure to avoid a negative value for  and hence , currently one would need
to resort to computing T ̄d using the (3). Unfortunately this is impractical or impossible for
most applied researchers who only have access to standard SEM software.

Fortunately, as we show next, the exact value of T ̄d can also be obtained from the standard
output of SEM software, using a new hand computation.

A New Scaled Test Statistic T̄d

Denote by M10 the fit of model M1 to a model setup with starting values taken as the final
estimates obtained from model M0, and with number of iterations set to 0. Consider ĉ1

(10) :=
T1

(10)/T ̄1(10), where T1
(10) and T ̄1(10) are the standard unscaled and scaled test statistic of this

additional run. Note that the estimate ĉ1
(10) uses model M1 but the matrices and A are now

evaluated at δ̂0 := δ(θ ̂), where θ ̂ is the estimate under M0. Since now all the matrices
involved in (5) are evaluated at δ^0, the equality (6) holds exactly, and not only
asymptotically, as when U0 is evaluated at δ^0 and U1 at δ^1. The scaling correction that is
now computed is

(7)

which, in view of (6), is the scaling correction of (3) when Ud is evaluated at the estimate
δ^0 when fitting M0, and thus it is a positive number. The new scaled difference statistic is
thus defined as

(8)

Clearly,  that is,  coincides numerically with the scaled statistic (3) proposed in
Satorra (2000).
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An Illustration
We use this data just for illustrative purposes, and because it provides an example where the
standard scaling correction fails to be positive. We use a latent variable model discussed for
this data by Bentler, Satorra and Yuan (2009). The Bonett-Woodward-Randall (2002) test
shows that these data have significant excess kurtosis indicative of non-normality at a one-
tail .05 level, so test statistics derived from ML estimation may not be appropriate and we do
the scaling corrections.

The model considered is a structured means model, with the mean cigarette sales indirectly
affecting the mean rates of the various cancers. The specified model is

where the Vj’s denote observed variables; F, D1, and Ej are the common, residual common,
and unique factors respectively; λj denotes a factor loading parameter, β is the effect of
cigarette smoking on the cancer factor, and μ is the mean parameter for rates of smoking.
The units of measurement for the factor were tied to V2, with λ2 = 1. The following values
for the ML and Satorra-Bentler (1994) (SB) scaled chi-square statistics are obtained

along with the degrees of freedom r1 and the scaling correction ĉ1. The model does not fit,
though for the sake of the illustration we are aiming for, this is not of concern to us.

Restricted Model, M0
The same model is now fitted with the added restriction that the error variances of the
kidney and leukemia cancers, E4 and E5, are equal. This model gives the following statistics

Difference Test
Our main interest lies in testing the difference between M0 and M1, which we do with the
chi-square difference test. The ML difference statistic is

which, with 1 degree of freedom (m), rejects the null hypothesis that the error variances for
E4 and E5 are equal. Since the data is not normal, we compute the SB (2001) scaled
difference statistic. This requires computing the scaling factor  given by

The scaling factor  is negative, so the SB difference test cannot be carried out; or, if
carried out, it results in an improper negative chi-square value.
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New Scaled Difference Test
As described above, to compute the scaled statistic T ̄d we implement (7) and (8). The output
that is missing in the prior runs is the value of the SB statistic obtained at the final parameter
estimates for model M0 when model M1 is evaluated. This can be obtained by creating a
model setup M10 that contains the parameterization of M1 with start values taken from the
output of model M0. Model M10 is run with zero iterations, so that the parameter values do
not change before output including test statistics is produced.1 The new result gives

where as expected, T10 = T0 as reported above (i.e., the ML statistics are identical), and the
value ĉ10 is hand-computed. As a result, we can compute

which, in contrast to the SB (2001) computations, is positive. Finally, we can compute the
proposed new SB corrected chi-square statistic as

which can be referred to a  variate for evaluation.

Discussion
The implicit function theorem was used to provide a theoretical basis for the development of
a practical version of the computationally more difficult scaled difference statistic proposed
by Satorra (2000).2 The proposed method is only marginally more difficult to compute than
that of Satorra and Bentler (2001) and solves the problem of an uninterpretable negative χ2

difference test that applied researchers have complained about for some time.

Like the method it is replacing, the proposed procedure applies to a general modeling
setting. The vector of parameters σ to be modeled may contain various types of moments:
means, product-moments, frequencies (proportions), and so forth. Thus, this scaled
difference test applies to methods such as factor analysis, simultaneous equations for
continuous variables, log-linear multinomial parametric models, etc.. It can easily be seen
that the procedure applies also in the case where the matrix Γ is singular, when the data is
composed of various samples, as in multi-sample analysis, and to other estimation methods.
It applies also to the case where the estimate of Γ reflects the fact that we have intraclass
correlation among observations, as in complex samples. Hence this new statistic should be
useful in a variety of applied modeling contexts. Simulation work will be needed to
understand its virtues and limitations, relative to other alternatives, in such contexts.

1For this particular example, the Appendix of Satorra and Bentler (2008) illustrates this procedure with EQS (Bentler, 2008). In the
same reference, there is a second illustration with a larger degrees of freedom.
2Satorra (2000) provides also Monte Carlo evidence—on a specific model context and various sample sizes - of the superiority of the
scaling correction over other alternatives such as the adjusted (mean and variance corrected) statistic.
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