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Abstract

Mesophyll conductance to CO2 (gm) limits carbon assimilation and influences carbon isotope discrimination (D)
under most environmental conditions. Current work is elucidating the environmental regulation of gm, but the

influence of gm on model predictions of D remains poorly understood. In this study, field measurements of D and gm

were obtained using a tunable diode laser spectroscope coupled to portable photosynthesis systems. These data

were used to test the importance of gm in predicting D using the comprehensive Farquhar model of D (Dcomp),

where gm was parameterized using three methods based on: (i) mean gm; (ii) the relationship between stomatal

conductance (gs) and gm; and (iii) the relationship between time of day (TOD) and gm. Incorporating mean

gm, gs-based gm, and TOD-based gm did not consistently improve Dcomp predictions of field-grown juniper compared

with the simple model of D (Dsimple) that omits fractionation factors associated with gm and decarboxylation.
Sensitivity tests suggest that b, the fractionation due to carboxylation, was lower (25&) than the value commonly

used in Dcomp (29&) and Dsimple (27&). These results demonstrate the limits of all tested models in predicting

observed juniper D, largely due to unexplained offsets between predicted and observed values that were not

reconciled in sensitivity tests of variability in gm, b, or e, the day respiratory fractionation.

Key words: Carbon isotope discrimination, Farquhar model, internal conductance, Juniperus, mesophyll conductance, stomatal

conductance.

Introduction

Low mesophyll conductance of CO2 from substomatal

cavities to sites of carboxylation (gm) can reduce the partial

pressure of CO2 (pCO2) at the site of carboxylation, limit

photosynthesis (A), and affect carbon isotope discrimina-

tion (D) (Farquhar et al., 1989; Niinemets et al., 2009).

gm varies on numerous time scales in response to environ-

mental drivers, from rapid variation in response to changes

in intercellular [CO2] (Flexas et al., 2007; Vrábl et al., 2009)
to shifts in response to temperature (Bernacchi et al., 2002),

water stress (Galmés et al., 2007; Grassi et al., 2009), light

gradients (Piel et al., 2002; Monti et al., 2009), and others

(for reviews, see Flexas et al., 2008; Warren, 2008a). The

responses of gm to environmental drivers, however, are not

universal (Tazoe et al., 2009). Scaling relationships between

gm and photosynthetic capacity have been shown (Evans

and von Caemmerer, 1996; Le Roux et al., 2001; Ethier

et al., 2006) and challenged (Warren and Adams, 2006).

Similarly, a correlation between gm and gs has been

demonstrated in several species (Loreto et al., 1992; Lauteri

et al., 1997; Flexas et al., 2002; Hanba et al., 2003; Ethier

et al., 2006; but see Bunce, 2009), and is intriguing because

of the potential for high frequency modelling of gs and
subsequent estimates of gm. Recurrent diurnal patterns in

gm could also provide a simple method of accounting for

variation in mesophyll conductance within carbon exchange

models. Studies of diurnal gm are limited (Bickford et al.,

2009; Grassi et al., 2009) but open up the possibility of

establishing a relationship between time of day and
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variation in mesophyll conductance that could be used as

a dynamic model parameter. Mesophyll conductance has

also been recognized as an important factor influencing the
13C/12C ratio of leaf material (d13CL; Le Roux et al., 2001;

Hanba et al., 2003; Warren and Adams, 2006) and

ecosystem respiration (d13Cresp; Ogée et al., 2003; Cai et al.,

2008) which has implications for interpreting water use

efficiency and terrestrial carbon exchange, among other
applications. D is a strong regulator of d13CL and d13Cresp

(Bowling et al., 2008), and therefore a better understanding

of gm in leaf-level predictions of discrimination may

improve interpretation of d13C signals from multiple

sources. Studies testing the role of gm in D predictions are

limited, but suggest (Wingate et al., 2007) and demonstrate

(Le Roux et al., 2001; Bickford et al., 2009) that the

influence of gm was important.
D is influenced by numerous environmental and physio-

logical regulators and is well correlated with key physiolog-

ical indicators. The ratio of intercellular to ambient pCO2

(pi/pa) is a physiological parameter that succinctly describes

the variability in the pCO2 gradient driven by A and

stomatal conductance (gs), and its linear relationship with

D has been widely observed over the last three decades

(Farquhar et al., 1982a, 1989; Brugnoli and Farquhar,
2000). pi/pa is integral to two models of D: a comprehensive

model that incorporates fractionation factors associated

with diffusion, carboxylation, and decarboxylation processes

(Dcomp; Farquhar et al., 1982b); and a simplified version of

Dcomp that omits fractionation factors associated with

decarboxylation activity and much of the diffusive pathway

(Dsimple; Farquhar et al., 1982b). The parsimonious Dsimple

evolved from the same theoretical work as Dcomp (Farquhar
et al., 1982b) and gained wide usage primarily because of its

simplicity and power in explaining observations of D, but

also because the effects of decarboxylation activity and gm

were thought to be negligible in predicting D.

Mechanistic models are used to predict D across a variety

of temporal and spatial scales, where variation is driven by

pi/pa interacting with key model parameters (Farquhar et al.,

1982b). In addition to pi/pa, the key drivers of Dsimple include:
(i) the carboxylation term, b, that represents net fraction-

ation associated with phosphoenolpyruvate (PEP) carboxyl-

ase and ribulose-1,5-bisphosphate carboxylase/oxygenase

(Rubisco); and (ii) the fractionation associated with

diffusion in air and through stomata (a; 4.4&) (Farquhar

et al., 1989). Theory suggests the Rubisco carboxylation

fractionation may be between 25& and 30& (Tcherkez and

Farquhar, 2005) and is supported by recent measurements of
Rubisco fractionation near 27& in tobacco (Nicotiana

tabacum; McNevin et al., 2007). b is typically estimated

at ;27& in Dsimple, which is ;2& lower than most

measurements of the Rubisco fractionation in C3 plants

(;29&; Roeske and O’Leary, 1984) due to the influence of

PEP carboxylase activity and omitted fractionation factors

(Farquhar and Richards, 1984; Gessler et al., 2008).

The comprehensive mechanistic D model incorporates the
factors discussed above plus fractionation associated with

CO2 diffusion, including gm, and decarboxylation activity.

As previously discussed, gm is dynamic and may influence

D by restricting diffusion from substomatal cavities to the

chloroplast. The influence of day respiration (Rd), its

associated fractionation factor (e), and fractionation associ-

ated with photorespiration (f) was thought to be negligible

in early studies of gm and D (Evans et al., 1986; von

Caemmerer and Evans, 1991). Recent evidence suggests,

however, that these may be non-negligible variables
(Ghashghaie et al., 2003; Tazoe et al., 2009), with f values

ranging from ;7& to 13& (Tcherkez, 2006; Lanigan et al.,

2008) and e thought to be around �6& (Ghashghaie et al.,

2003). Rd is difficult to measure and not well understood,

but existing studies demonstrate inhibition of the respira-

tion rate under illuminated conditions (Tcherkez et al.,

2005) and biochemical differences between Rd and dark

respiration (R; Tcherkez et al., 2008, 2009). Similarly, e is
very difficult to estimate and no direct leaf-level measure-

ments currently exist in the literature. Consequently, e is

frequently estimated based on the dark respiration fraction-

ation (ed; Ghashghaie et al., 2001; Tcherkez et al., 2003;

Barbour et al., 2007), though the similarity, if any, of the

isotope effects in R and Rd are not yet well understood

(Tcherkez et al., 2008).

In this study a tunable diode laser absorption spectro-
scope (TDL) coupled to infra-red gas analysers (IRGAs)

was used to measure gm and D of Juniperus monosperma

(Engelm.) Sarg. (juniper) trees at high frequency on days

representative of the growing season at a high elevation

semi-arid field site in 2007. The objectives of this study were

to (i) measure the diurnal variation of gm; (ii) quantify the

relationship between diurnal gm and (a) gs and (b) time of

day (TOD); (iii) assess model sensitivity to variation in
e and b; (iv) measure the diurnal variation in D and examine

the relationship between D and environmental and physio-

logical drivers; and (v) assess the performance of Dcomp,

when fitted with diurnally variable gm, compared with

predictions from Dsimple.

Materials and methods

The study was conducted on 1 June 2007, 20 June 2007, 19 July
2007, and 23 August 2007 on Mesita del Buey near Los Alamos,
NM, USA (elevation 2140 m) at a field site described in Breshears
(2008) and Bickford et al. (2009). Precipitation at the site was
156.2 mm between May and August 2007, but was 65.5 mm in the
January–April period preceding measurements.

Leaf gas exchange measurements

Two simultaneous measurements of leaf gas exchange were
collected: (i) on the crowns of three mature juniper trees (jambient)
which were rotated between ;06:00 h and 18:00 h on each day
with measurements conducted maintaining the chamber environ-
ment similar to ambient conditions; and (ii) on an adjacent mature
juniper tree (jmanipulate) measured continuously throughout each
day but subjected to light manipulations. Measurements were
occasionally interrupted by rainfall, and did not resume until
foliage was dry. Among the three rotational trees comprising
jambient, leaf gas exchange and 13C discrimination were measured in
response to ambient conditions. For both jambient and jmanipulate,
temperature regulation in the chamber block was engaged when
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leaf temperature (TL), measured by energy balance, was >35 �C.
Incoming irradiance in jmanipulate was manipulated by using
a plastic shade to reduce incident light by ;50% once or twice per
hour to regulate net photosynthetic rate (A; lmol m�2 s�1) and
assess the impact of irradiance on gm. Shading was maintained for
15–25 min intervals within each hour across the diurnal measure-
ment period. Natural variation in irradiance occurred during both
shaded and unshaded periods, and contributed to a wide range of
A and light intensity. While all light manipulations were performed
on one tree (jmanipulate), different groups of leaves were measured
over the course of each day and across the season: two groups on
1 June, three on 20 June, two on 19 July, and three on 23 August.

Leaf gas exchange was measured by providing buffered air, via
two 50.0 l volumes, to two LICOR 6400 portable photosynthesis
systems (IRGAs; LI-COR Biosciences Inc., Lincoln, NE, USA);
one IRGA was used to measure jambient and the other to measure
jmanipulate. Each IRGA was fitted with a conifer chamber (LI-COR
6400-05), and incoming and outgoing gas streams were plumbed to
a TDL (TGA100A, Campbell Scientific Inc., Logan, UT, USA) for
measurement of the [12C16O2] and [13C16O2] within each gas
stream. Lines connecting each IRGA and the TDL were of
different lengths, resulting in different lag times, and the 33 s and
50 s lag between the two IRGAs and the TDL were accounted for
when summarizing data between the instruments. To ensure high
data quality for all D measurements and subsequent model testing,
a priori criteria were established to filter error-prone data. These
filtering criteria included ensuring that the difference in [CO2] of
the gas entering and exiting the leaf chamber was >30 lmol mol�1,
that the difference in entering and exiting d13C was >1 &, and
that n was <10 (see below for explanation of the n ratio). Leaf area
within the conifer chamber ranged between 29.7 cm2 and 49.3 cm2.
Instrument precision was previously determined to be 0.06& over
1 h periods (Bickford et al., 2009). Three minute TDL measure-
ment cycles were used where each calibration tank (see below) was
measured for 40 s, of which the last 10 s were used to calculate the
means for both isotopologues, and 25 s for each of the four
measurement inlets, of which the last 15 s were used for calculating
concentrations. Details of the instrument coupling and measure-
ment cycle calibration follow procedures described in Bickford
et al. (2009).

Working standard (WS) calibration tanks spanning the range of
expected [CO2] measurements used to calibrate each measurement
cycle were (mean 6SE) 548.760.04 lmol mol�1 (12C16O2):
5.960.0005 lmol mol�1 (13C16O2): 2.260.0001 lmol mol�1

(12C18O16O) for the high WS tank; and 347.360.3 lmol mol�1

(12C16O2): 3.760.003 lmol mol�1 (13C16O2): 1.460.001 lmol
mol�1 (12C18O16O) for the low WS tank during 1 June, 20 June,
and 19 July measurements. The [CO2] of a new high WS
calibration tank used in the 23 August measurements was
measured as 535.960.3 lmol mol�1 (12C16O2): 5.860.003 lmol
mol�1 (13C16O2): 2.260.001 lmol mol�1 (12C18O16O), while the
low WS tank was the same as described above. All WS calibration
tanks were calibrated for 4 h monthly against WMO-certified
tanks that were filled and d13C calibrated at the Stable Isotope Lab
of the Institute for Arctic and Alpine Research, a cooperating
agency of the Climate Monitoring division of the National Oceanic
and Atmospheric Administration’s Earth Research Laboratory.
The [CO2] of the WMO-traceable tanks used in this study were, for
the high tank, 539.57 lmol mol�1 (12C16O2): 5.93 lmol mol�1

(13C16O2): 2.21 lmol mol�1 (12C18O16O); and for the low tank,
339.43 lmol mol�1 (12C16O2): 3.76 lmol mol�1 (13C16O2):
1.40 lmol mol�1 (12C18O16O). Measurements of [CO2] occasion-
ally exceeded the lower span of the WS calibration tanks
(maximum deviation: 42.6 lmol mol�1), but post-hoc tests of the
TDL demonstrated a linear measurement response beyond the
lowest range of CO2 values observed in this study (Bickford et al.,
2009).

Pre-dawn leaf water potential (Ww) was measured using a
Scholander-type pressure bomb (PMS Instruments Co., Corvallis,

OR, USA) on six mature juniper trees near the study trees on
23 May, 27 June, 25 July, and 23 August 2007. Soil water content
was measured at depths of 0.02–0.3 m using 11 neutron probes
(503DR Hydrophobe Neutron Moisture Probes, Campbell Pacific
Nuclear, Inc., Pacheco, CA, USA) at 2 week intervals between
23 May and 9 August 2007.

Model parameterization

The study tested whether variable gm improved model predictions
of Dobs in jambient using a comprehensive model of D (Dcomp;
Farquhar et al., 1982b),

Dcomp ¼ ab
pa � ps

pa
þ a

ps � pi

pa
þ ðbs þ awÞ

pi � pc

pa
þ b

pc

pa
�

eRd

k
þ fC�

pa

ð1Þ

where ab, aw, and bs represent the fractionation factors associated
with CO2 diffusion through the leaf boundary layer (2.9&), water
(0.7&), and fractionation attributed to CO2 entering solution
(1.1&). The variables pa, ps, pi, and pc represent pCO2 (Pa) in the
chamber surrounding the leaf, at the leaf surface, in the
intercellular spaces, and at the sites of carboxylation, respectively.
C*, Rd, k, f, and e represent the CO2 compensation point in
the absence of day respiration (Pa), day respiration rate
(lmol m�2 s�1), carboxylation efficiency (lmol m�2 s�1 Pa�1),
and fractionations associated with photorespiration and day
respiration (&), respectively.

Parameters pa, ps, pi, and pc were calculated by incorporating
atmospheric pressure in Los Alamos (;79 kPa) with mole fraction-
measurements of [CO2]; pc was estimated as pc¼pi�A/gm (Farquhar
and Sharkey, 1982). Rd was estimated at 1.5 lmol m�2 s�1 based on
reported measurements of dark respiration in juniper (Bickford
et al., 2009), k was calculated as A/pc for each 3 min cycle, and
C* was calculated based on the expanded TL expression presented in
Brooks and Farquhar (1985) that incorporates data from Jordan
and Ogren (1984). The photorespiratory, f, and day respiratory, e,
fractionations were estimated at 11.6& (Lanigan et al., 2008) and
�3&, respectively. e has often been estimated based on the dark
respiration fractionation, and previous work suggests juniper
exhibits a 2–3& dark respiration fractionation (Bickford et al.,
2009). Recent evidence demonstrates biochemical shifts between
light and dark respiration that may influence the isotopic signature
of respired CO2 (Tcherkez et al., 2008), but currently there are no
data in the literature providing estimates of the offset between day
and dark respiratory fractionation at the leaf level. Because
uncertainty in e and b could contribute to model uncertainty, tests
were performed to evaluate the sensitivity of Dcomp to variation in
each, and model predictions were compared with Dobs. In these
sensitivity tests Dcomp was fitted with a gm¼1.72 lmol m�2 s�1

Pa�1 (Dc.mean) and both Dc.mean and Dsimple were tested against all
Dobs values (n¼552), where Dsimple is:

Dsimple ¼ aþ ðb� aÞ � pi
pa

ð2Þ

and b is equal to 27& to account for omitted fractionation factors
(Farquhar and Richards, 1984).

D and diurnal gm

Leaf carbon isotope discrimination (Dobs) was calculated from
TDL-generated data:

Dobs ¼
nðdo � deÞ

1 þ do � nðdo � deÞ
ð3Þ

where de and do equal the d13C of the entering and outgoing
chamber gas streams, respectively, and n equals ce/(ce–co) where
ce and co are the [CO2] of the gas entering and exiting the leaf
chamber, respectively. gm was estimated in jmanipulate leaf gas
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exchange and isotopic data using the point-based method (Evans
et al., 1986),

gm ¼ ðb� bs � awÞA=pa�
Dpred � Dobs

�
� Def

ð4Þ

where predicted discrimination (Dpred) is Dsimple with b¼29&. The
estimate of the fractionation attributed to decarboxylation activi-
ties, Def, was calculated as,

Def ¼
eRd

k
þ fC�

pa
ð5Þ

All components of Def were parameterized as described for
Dcomp. gm estimates that fell below zero were excluded, and this
occurred when Dpred <Dobs. Measurement error in Dobs and gm

incorporated instrument error for both total CO2 concentration
and isotopic composition, and this uncertainty was propagated
through analyses of gm using a bootstrapping approach described
in Bickford et al. (2009). Point-based estimates were used to
quantify gm in three different ways for model testing. First, a mean
gm was calculated from all gm estimates (gm.mean; 1.72 lmol m�2

s�1 Pa�1). Secondly, a regression was fitted between TOD and gm

measured within each day. The TOD and gm data were pooled
across dates, analysed using least squares regression, and the
resulting expression was used to estimate gm (gm.TOD). Thirdly,
each gm estimate was transformed from expression in partial
pressure (lmol CO2 m�2 s�1 Pa�1) to a flux density (mol CO2

m�2 s�1) by multiplying gm by the ambient pressure (;79 kPa)
which increased each gm value by 21.1%. The stomatal conduc-
tance to CO2 (gsc; mol CO2 m�2 s�1) was calculated as stomatal
conductance to H2O (gsw) divided by 1.6 to account for differences
in diffusivity between water vapour and CO2 (Farquhar and
Sharkey, 1982). The transformed gm values were then compared
with gsc data using linear regression, and the linear expression
describing the relationship was used to estimate gm (gm.gs). To
ensure the analysis of the relationship between gm and TOD or gsc

was robust, a priori criteria for gm uncertainty were established.
When the uncertainty in each point gm estimate, presented here as
1 SE, exceeded 0.103gm that point gm estimate was excluded from
regression analysis. Means testing was computed using the Tukey–
Kramer honestly significant differences test (P <0.05 level) unless
indicated otherwise. All statistical tests were performed in
R (version 2.9.1; R Core Development Team, 2009).
Dcomp was parameterized in three ways for intermodel testing by

calculating Dcomp using gm.mean (Dc.mean), gm.TOD (Dc.TOD), and
gm.gs (Dc.gs). All three variations of Dcomp along with Dsimple were
tested against Dobs. Model performance was evaluated using model
bias and the root mean squared error (RMSE) as test statistics.
Both were calculated from residuals where all models conformed
to a slope of 1 and intercept of 0 (i.e. residuals¼model
prediction�Dobs). The mean of these residuals represents model
bias, while the standard deviation of the residuals represents the
RMSE (Bickford et al., 2009).

Results

Diurnal gm

gm ranged between 0.4 and 4.6 lmol m�2 s�1 Pa�1 in

jmanipulate across the four measurement days and generally

declined across the morning to late day period (Fig. 1). Mean
gm was not different between 1 June (mean 6SE¼1.6960.09

lmol m�2 s�1 Pa�1) and 20 June (1.4460.05 lmol m�2 s�1

Pa�1), but was higher on 19 July (3.1360.42 lmol m�2 s�1

Pa�1) and 23 August (2.2260.10 lmol m�2 s�1 Pa�1;

P <0.05). There was a significant relationship between gsc

and gm (r2¼0.27; P <0.0001; Fig. 2) and TOD and gm

(P <0.0001). The linear expression gm¼ �3.52TOD+3.38

described the TOD–gm relationship (r2¼0.37, F¼154.6). The

relationship between photosynthetic photon flux density

(PPFD) and gm was weak, but significant (r2¼0.05,

P¼0.0004; Fig. 3).

Dobs, physiological, and environmental parameters

Mean Dobs in jambient was 13.560.1& on 1 June, 15.960.2&

on 20 June, 17.060.2& on 19 July, and 14.760.1& on
23 August. Dobs was significantly different between all dates

(P >0.05; Fig. 4). When pooled across months, some

physiological parameters exhibited significant but weak

linear relationships with Dobs, including A (P <0.0001,

r2¼0.13, F¼80.7) and pi/pa (P <0.0001, r2¼0.29, F¼225.9),

Fig. 1. Significant diurnal variation in mesophyll conductance to

CO2 (gm) across the four measurement dates (P <0.0001;

r2¼0.37). Mean gm was not different between 1 June and 20 June,

but was higher on 19 July and 23 August (P <0.05; Tukey’s HSD).

Error bars represent 1 SE.

Fig. 2. The relationship between stomatal conductance to CO2

(gsc) and mesophyll conductance (gm) across all four measure-

ments dates (gm¼1.55gsc+0.022; P <0.0001, r2¼0.27). Error bars

represent 1 SE.
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but not gsw (P¼0.24, r2¼0.0006, F¼1.3; Fig. 5). A was

higher on 23 August compared with 20 June, but was not

significantly different among other dates (P >0.05; Table 1);

gsw was similar on 1 June and 19 July, but was different on

all other days (P <0.05; Table 1).
There were weak but significant relationships between

Dobs and TL on 19 July (P¼0.006, r2¼0.05, F¼7.81) but not

other dates (P >0.05). Mean TL was 31.863.43 �C (mean

6SD) across all dates. There were also weak but significant

relationships between Dobs and vapour pressure deficit

(VPD) on each day except 23 August (P <0.03), and when

VPD data were pooled across months (P <0.0001, r2¼0.05).

VPD was significantly higher on 1 June and lower on
23 August compared with other days (P <0.05), but was

similar on the remaining days (P >0.05; Table 1). Finally,

there was a weak but significant linear relationship between

Dobs and PPFD across all dates (P <0.0001, r2¼0.16). Soil

water content at 200 mm over the study period ranged from

a high of 19.2% on 23 May to a low of 12.0% on 25 July,

before recovering to 13.9% on 9 August. Ww measured in

nearby juniper trees (n¼6) was highest early in the season at
�0.6260.06 MPa (23 May) and then declined to �2.160.2

MPa (27 June) and �3.460.33 MPa (25 July) before

increasing to �2.7560.34 MPa (23 August). The relation-

ship between Ww and Dobs was not significant (P¼0.15,

r2¼0.75).

Model performance

Dcomp did not consistently outperform Dsimple, and the

reductions in Dcomp model bias observed over most of the

study varied little with different parameterizations of gm.
Dsimple exhibited lower RMSE on 1 June and 23 August,

and across the pooled measurements dates (Table 2, Fig. 6),

but also exhibited higher model bias on most dates

(P <0.0001, paired t-test). All three variations of Dcomp

showed comparable RMSE, and the differences in error

were within 0.05& of one another. Model bias was
significantly greater than zero in predictions of Dobs from

all four models on all dates (P <0.0001 for all, paired t-test).

A primary conclusion from Table 2 is that all models

overpredicted D by at least 1&, and that the limited

improvements in predictions of D by incorporating gm were

small compared with the bias between Dobs and Dcomp,

which averaged 3.6& across the study.

Sensitivity tests showed reduced model bias and RMSE in
Dc.mean when e and b were set to moderate and low values,

Fig. 3. The relationship between photosynthetic photon flux

density (PPFD) and gm (r2¼0.05, P¼0.0004). Error bars represent

1 SE.

Fig. 4. Diurnal variation in carbon isotope discrimination (D; filled

circles) and photosynthetic photon flux density (PPFD; grey line) on

1 June (A), 20 June (B), 19 July (C), and 23 August 2007 (D). The

abrupt shifts in D mid-day on 1 June can be attributed to variation

among trees, but variation seen on other dates results from plant

environmental response. Error bars represent 1 SE.
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respectively (compare Tables 2 and 3). Model bias increased
31% as e shifted from more positive (�1&) to more

negative (�6&) values when b was set at 29&. Model error,

however, showed the lowest values when e was �3&.

Across tested e values the use of lower b values in Dc.mean

consistently reduced model bias and error. Error changed

minimally when Dc.mean was parameterized with e¼ �3&

and b¼29&, and gm was decreased to 0.172 lmol m�2 s�1

Pa�1 (bias¼1.66, RMSE¼2.46) or increased to 17.2 lmol

m�2 s�1 Pa�1 (bias¼3.76, RMSE¼2.43) compared with

a gm¼1.72 lmol m�2 s�1 Pa�1 (bias¼3.57, RMSE¼2.42),

though model bias did decline 54% at the lowest gm value

(P <0.0001). Dsimple showed an 85% reduction in model bias
and a 4.7% reduction in error when fit with b¼22& instead

of b¼27& (Table 3). Excluding 19 July, all variations of

Dcomp and Dsimple overestimated Dobs by 3–7&, as de-

termined by model bias, though accounting for the vari-

ance, as in the RMSE term, reduced total error to between

1.3& and 2.4& on individual days. Using RMSE as the

metric, the best fit to Dobs using Dc.mean was with e¼ �3&

and b¼25& (RMSE¼2.25), but that fit was still poorer than
predictions from Dsimple where b¼22& (RMSE¼2.19).

Discussion

Diurnal gm

Two diurnal gm trends were evident across the study. On

1 June, gm increased in the early morning period to

relatively high values (;2–3 lmol m�2 s�1 Pa�1) and then

declined to lower values for the remainder of the day

(;1 lmol m�2 s�1 Pa�1), a pattern repeated on 20 June and

Fig. 5. The relationship between observed discrimination (Dobs)

and net photosynthetic rate (A), stomatal conductance to

H2O (gsw), and the ratio of partial pressure of CO2 in intercellular

spaces and the atmosphere around the leaf (pi/pa). When pooled

across months these parameters exhibited significant linear

relationships with Dobs, including A (P <0.0001, r2¼0.13) and pi/pa

(P <0.0001, r2¼0.29), but not gsw (P¼0.24, r2¼0.0006).

Table 2. Summary of model prediction tests of observed discrim-

ination, where the values in bold highlight the lowest RMSE (&)

best performing model in each month and across the study

Dsimple predictions showed the lowest RMSE across the study, but
exhibited higher model bias (&) across the whole study compared
with all three parameterizations of Dcomp (P <0.0001).

Model 1 June 20 June 19 July 23 August Whole
study

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Dc.mean 3.20 1.65 3.56 1.35 1.45 1.62 7.17 1.55 3.57 2.42

Dc.TOD 3.18 1.61 3.55 1.36 1.45 1.62 7.20 1.52 3.56 2.42

Dc.gs 3.05 1.66 3.45 1.36 1.32 1.63 7.06 1.57 3.44 2.43

Dsimple 3.78 1.33 3.73 1.43 1.59 1.96 6.97 1.32 3.80 2.30

Table 1. Mean diurnal net photosynthetic rate (A; lmol m�2 s�1),

stomatal conductance to H2O (gsw; mol m�2 s�1), and vapour

pressure deficit (VPD; kPa), each reported with 1 SE, and number

of observations each day

Different letters denote significant differences between dates
(P <0.05; Tukey’s honestly significant differences test).

A SE gsw SE VPD SE Observations

1 June 4.34 a,b 0.15 0.06 a 0.002 2.86 a 0.04 182

20 June 3.97 a 0.09 0.07 b 0.001 2.17 b 0.04 138

19 July 4.07 a,b 0.13 0.06 a 0.002 2.31 b 0.06 134

23 August 4.54 b 0.12 0.11 c 0.003 1.22 c 0.03 98
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the 23 August morning and mid-day periods. On 19 July,

gm was highest during the earliest measurements (;4 lmol

m�2 s�1 Pa�1) and remained relatively high through the

afternoon period (;1.5–3 lmol m�2 s�1 Pa�1). These trends

in diurnal gm probably represent a composite response to

changes in plant microclimate and other regulators. Leaf

water status and temperature are known to affect mesophyll

conductance, with drought decreasing (Warren et al., 2004;
Flexas et al., 2004) and higher temperature increasing gm

(Bernacchi et al., 2002; but see Warren and Dreyer, 2006).

The diurnal decline in gm observed in this study is consistent

with previous work showing reduced gm under water-

stressed conditions, though the range of pre-dawn Ww seen

during this study would be characterized as moderate water

stress in juniper (Linton et al., 1998; McDowell et al.,

2008b). Increases in TL across each day may have buffered
any drought effect and prevented greater reduction of gm,

but such complex interactions cannot be determined

with the current data set. Finally, cooporins, the CO2-

transporting protein channels, may have played a strong

role in regulating diurnal shifts in gm, but their regulation

and interactions are still not well understood (Uehlein et al.,

2008; Heinen et al., 2009).

Significant relationships existed between gm and gsc, gm

and TOD, and gm and PPFD. The gsc–gm data show that gm

was higher than gsc, and thus was not substantially limiting

CO2 transfer to the sites of carboxylation or, as discussed

below, substantially affecting D. These findings agree with

data in other species demonstrating that gm was higher than

Fig. 6. Model tests of observed discrimination (Dobs) on 1 June (A), 20 June (B), 19 July (C), and 23 August 2007 (D). Four models were

tested against Dobs including the simple model of discrimination (Dsimple; filled circles), the comprehensive model of discrimination using

a mean mesophyll conductance (gm) of 1.72 lmol m�2 s�1 Pa�1 (Dc.mean; open triangles), the comprehensive model of discrimination

using a gm estimated from the regression between diurnal gm and time of day (TOD) (Dc.TOD; filled squares), and the comprehensive

model of discrimination using a gm estimated from the regression describing the relationship between stomatal conductance of CO2 and

gm (Dc.gs; open circles). Dpredicted represents discrimination predictions of any of the four models. On two dates Dc.mean or Dc.TOD

performed best, but on other dates and across the whole study Dsimple exhibited the lowest model error. These results support the use of

Dsimple to predict leaf-level diurnal carbon discrimination of field-grown juniper.

Table 3. Results from sensitivity tests where the parameters

representing the day respiration fractionation (e; &) and

fractionation during carboxylation (b) were adjusted in the

comprehensive model of carbon discrimination where gm was held

constant at 1.72 lmol m�2 s�1 Pa�1 (Dc.mean; Equation 1),

and b was adjusted in the simplified version of carbon

discrimination (Dsimple; Equation 2)

All other variables are as described in Model parameterization.

Dc.mean Dsimple

e
(&)

b
(&)

Bias
(&)

RMSE
(&)

b
(&)

Bias
(&)

RMSE
(&)

–1 29 3.04 2.42

27 1.77 2.34 27 3.80 2.30

25 0.50 2.27

–3 29 3.57 2.42

27 2.30 2.32 24 1.87 2.22

25 1.03 2.24

–6 29 4.36 2.46

27 3.09 2.35 22 0.59 2.19

15 1.82 2.25
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gsc (Loreto et al., 1992; Galmés et al., 2006), but differ from

studies showing lower gm compared with gsc (Hanba et al.,

2003). These comparisons could be confounded if point-

based calculations consistently overestimated juniper gm,

but estimates from this study are similar to point-based gm

values observed in a previous study of juniper (Bickford

et al., 2009). gsc–gm data in this study deviate from a 1:1 re-

lationship, possibly due to different regulatory processes
between stomatal and mesophyll conductance to CO2 (but

see Mott, 2009). Consensus is lacking, as others have

observed nearly 1:1 gsc–gm relationships (Lauteri et al.,

1997), no significant relationship between gsc and gm

(Bunce, 2009), and substantial variability in the gsc–gm

relationship between species (Warren, 2008b). The diurnal

decline in gm observed across all study dates did not

consistently improve D predictions, but using TOD as
a relatively simple method to capture recurrent diurnal

environmental patterns (i.e. declining leaf water status and

parabolic temperature shifts) that affect mesophyll conduc-

tance and other photosynthetic processes may be productive

in other systems. The weak relationship between gm and

PPFD shows that variation in light had little impact on

juniper gm, a finding that generally agrees with a study

showing no effect of light on gm in wheat (Tazoe et al.,
2009) but contrasts with those showing stronger effects of

light on gm (Loreto et al., 2009; Monti et al., 2009).

D, environmental, and physiological parameters

Diurnal patterns across the study were consistent with

previous studies showing environmental regulation of Dobs.

As previously observed in model and empirical studies,

VPD and PPFD acted as environmental drivers of

D (Baldocchi and Bowling, 2003; Chen and Chen, 2007;

McDowell et al., 2008a; Bickford et al., 2009), probably

through their strong influence on A and gsc. Leaf water

status was also a likely co-regulator of discrimination.
D was inversely related to Ww, increasing when Ww de-

creased from 1 June to 19 July, and decreasing when

Ww again increased in August. D was comparable with

previous observations in juniper during the same months in

2006, but was lower on 23 August (Bickford et al., 2009),

probably due to substantially more negative pre-dawn Ww

in August 2007 (�2.75 MPa) compared with August 2006

(�0.58 MPa; McDowell et al., 2008b). The non-significant
relationship between Ww and mean Dobs was probably due

to low sample size (n¼4).

Variation in the physiological parameters A and pi/pa, but

not gsw, was correlated with variability in Dobs. Consistent

with theory, Dobs was generally higher when A was low and

pi/pa was high (Fig. 4). Conversely, Dobs tended to be lower

when A was high and pi/pa was low. The diffuse pattern

between Dobs and pi/pa seen at higher pi/pa (>0.7) is
attributed to variation among measured trees (data not

shown). A large range of Dobs was seen at low gsw,

consistent with previous work showing relatively high

D when gsw and A are low (Bickford et al., 2009), and

probably contributed to the non-significant relationship

between the two factors. This was unexpected because

gsw regulates CO2 transport into the leaf, but the poor

relationship may support an even stronger role for carbox-

ylase activity in regulating D in juniper. Finally, the isotope

effect associated with diffusion through airspaces and

dissolution of CO2 to HCO3
– to equilibrium is accounted

for in Dcomp, but the diffusion or facilitated passage of CO2

or bicarbonate across the cell wall and organelle membranes
is still being elucidated (Uehlein et al., 2008) and may create

further fractionation events that influence the D that is

measured, though these data do not demonstrate a strong

gm effect on juniper D.

Model performance

Parameterizing gm based on its relationship to gs and TOD

did not consistently improve model predictions over Dsimple,

nor did the use of a mean gm in Dcomp. Incorporating gm via

Dcomp did reduce model bias when set to low values, but had

a negligible effect on the error term whether set to low or

high values. Thus, much unexplained variance remains in
predictions of juniper D in the field, as is evident in the large

unresolved model bias between predicted and observed

D inherent in all models tested across the four dates. From

a whole-study perspective, the results demonstrate no

improvement in model error when using Dcomp compared

with Dsimple, supporting the use of the parsimonious simple

model to predict juniper D over the diurnal periods and

across the seasonal gradient in this study. It is possible,
however, that utilizing the gm–TOD or gm–gsc relationship

to parameterize Dcomp may result in significant reductions in

model error in other plant systems. These findings contrast

with previous work showing improved model fit when

utilizing a mean gm in Dcomp across diurnal and seasonal

time scales (Bickford et al., 2009), though Dsimple did

outperform Dcomp on one date in that limited study. These

results also contrast with a recent study showing improved
model predictions of respired d13C values when gm was

linked to variation in gsw compared with using a static gm in

model predictions (Cai et al., 2008). These discrepancies

demonstrate the need for more studies in diverse systems.

The substantial unexplained variance observed in the model

bias, and subsequently in the error term, across all months

warrants further examination. Model bias was relatively

high on most days (Fig. 5), particularly 23 August, and in
the pooled data (Table 2), showing that all models

consistently overestimated Dobs. The most likely reason for

this is model parameterization error (discussed below in the

sensitivity analysis).

Sensitivity tests showed that variation in e and b improved

model performance. Implementing an e value of �3&

generally minimized error compared with values of �1& or

�6&, but did not show a similar reduction in model bias.
Step-change reductions in b from the value used in this

study (29&), however, resulted in consistently lower model

bias and error. Two factors could explain these findings:

(i) that the fractionation associated with b was lower and/or

more variable than that reported until recently; or (ii) that
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Rd was higher and/or more variable than estimated in this

study. The simultaneous reduction in model bias and error

observed in this study when reduced b values were

implemented demonstrates the strong regulatory role of

b in model performance, but without assays of PEP and

Rubisco activity and Rubisco discrimination no conclusions

about the isotope effect or variability in b over diurnal

periods can be made. Importantly, this does not suggest
that the result of the sensitivity tests demonstrates that b is

lower than shown in theoretical (Tcherkez and Farquhar,

2005) or empirical studies (Roeske and O’Leary, 1984;

McNevin et al., 2007). A lower b, however, could be

explained by relatively high PEP carboxylation activity

proportional to Rubisco activity (Farquhar and Richards,

1984; Lanigan et al., 2008), a lower intrinsic isotope effect

of the carboxylases comprising b (Raven and Farquhar,
1990; Brugnoli and Farquhar, 2000), or temperature effects

on carboxylase activity, as mean TL was >30 �C. PEP

carboxylation is typically associated with C4 photosynthesis

and results in low discrimination against 13C when hydra-

tion of CO2 to HCO3
– by carbonic anhydrase is in

equilibrium (approximately �5.7&; Farquhar et al., 1989),

but the extent of PEP carboxylase activity in C3 photosyn-

thesis is not well understood.
Alternatively, the influence of respiratory activity may

have been higher than was estimated in this study.

Estimates were based on previous work showing a high

dark respiration rate, which were used as a surrogate

estimator of Rd, and a 2–3& dark respiration fractionation

in juniper (Bickford et al., 2009). Error may have been

introduced if Rd was subject to diurnal variation that was

not accounted for, or if a substantial offset exists between e

and the dark respiration fractionation. Recent evidence

shows the day and dark respiratory biochemical pathways

are not the same, and may result in different isotopic

fractionation (Tcherkez et al., 2008); however, the magni-

tude of the difference at the leaf level is not yet understood.

Dsimple also showed sensitivity to variation in b, and

sensitivity tests support greater variability in b among

C3 plants than is currently assumed. Previous studies using
Dsimple have shown b values <27& resulting in the best fit of

observed D (Brugnoli and Farquhar, 2000), and this is

usually attributed to the reduced b value accounting for

omitted fractionation factors. Dcomp and Dsimple were tested

with the same Dobs data set, however, and improvements

were found in both models when lower b values were used.

The results of the sensitivity tests are slightly confounded by

the use of Dpred and Def, of which e and b are components,
in the calculations of gm. In this application, however, the

impact on the sensitivity tests is minimal since the exercise

was designed to illustrate the impact of varying b and e at

given a constant gm. That said, the results would be

strengthened by estimates of gm from an independent

method such as chlorophyll fluorescence, which relies on

assumptions different from those of the isotopic method

(Pons et al., 2009). Previous work has shown similar
gm estimates (Loreto et al., 1992) and small differences in

gm estimates from the two methods (Vrábl et al., 2009), and

chlorophyll fluorescence-based estimates may have provided

useful data on the variability in gm observed in this study.

Overall, the results of the model tests and sensitivity

analysis show non-negligible model bias and error in

predicting juniper leaf D which was not reconciled by

incorporating variability in gm or other parameters.
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