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Abstract

Aluminium (Al) toxicity and drought are the two major abiotic stress factors limiting common bean production in the

tropics. Using hydroponics, the short-term effects of combined Al toxicity and drought stress on root growth and Al

uptake into the root apex were investigated. In the presence of Al stress, PEG 6000 (polyethylene glycol)-induced

osmotic (drought) stress led to the amelioration of Al-induced inhibition of root elongation in the Al-sensitive

genotype VAX 1. PEG 6000 (>> PEG 1000) treatment greatly decreased Al accumulation in the 1 cm root apices even

when the roots were physically separated from the PEG solution using dialysis membrane tubes. Upon removal of

PEG from the treatment solution, the root tips recovered from osmotic stress and the Al accumulation capacity was
quickly restored. The PEG-induced reduction of Al accumulation was not due to a lower phytotoxic Al concentration

in the treatment solution, reduced negativity of the root apoplast, or to enhanced citrate exudation. Also cell-wall

(CW) material isolated from PEG-treated roots showed a low Al-binding capacity which, however, was restored after

destroying the physical structure of the CW. The comparison of the Al3+, La3+, Sr2+, and Rb+ binding capacity of the

intact root tips and the isolated CW revealed the specificity of the PEG 6000 effect for Al. This could be due to the

higher hydrated ionic radius of Al3+ compared with other cations (Al3+ >> La3+ > Sr2+ > Rb+). In conclusion, the results

provide circumstantial evidence that the osmotic stress-inhibited Al accumulation in root apices and thus reduced

Al-induced inhibition of root elongation in the Al-sensitive genotype VAX 1 is related to the alteration of CW porosity
resulting from PEG 6000-induced dehydration of the root apoplast.
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Introduction

Soil acidity (pH <5.5) is one of the important limitations to
crop production worldwide. Acid soils make up approxi-

mately 30% of the world’s total land area and more than

50% of the world’s potentially arable lands, particularly in

the tropics and subtropics (von Uexküll and Mutert, 1995;

Kochian et al., 2004). When the pH drops below 5,

aluminium (Al) is released into the soil solution and becomes

the single most important factor limiting crop production on

67% of the total acid soil area (Eswaran et al., 1997).
Common bean (Phaseolus vulgaris L.) is the most

important food legume for direct human consumption in

the world, and it is a staple food crop for small farmers and
the urban poor in many Latin American and African

countries. It is also the second most important source of

protein (65% of all protein consumed) and the third most

important caloric source (32% of all calories consumed)

after cassava (Manihot esculenta Crantz) and maize (Zea

mays L.) (Rao, 2001; Broughton et al., 2003). Under field

conditions, common bean often experiences different abiotic

stresses including drought, toxicities of Al and manganese,
low soil fertility, and high temperatures (Thung and Rao,

1999; Singh, 2001; Ishitani et al., 2004). Among these, Al
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toxicity and drought are the two major abiotic stresses for

bean production in the tropics (Ishitani et al., 2004). About

40% of the common bean production areas in Latin

America and 30–50% of central, eastern, and southern

Africa are affected by Al phytotoxicity resulting in a yield

reduction of 30–60% (CIAT, 1992).

The easily observable symptom of Al toxicity is a rapid

(minutes to a few hours) inhibition of root growth (Horst
et al., 1992; Delhaize and Ryan, 1995), resulting in a reduced

and damaged root system that limits mineral nutrient and

water uptake (Kochian et al., 2004). Ryan et al. (1993)

found that the root apex is the most Al-sensitive root zone,

and Sivaguru and Horst (1998) identified the distal transi-

tion zone (DTZ) as the specific site of Al injury in maize.

However, in common bean, Rangel et al. (2007) showed that

both the transition zone (TZ, 1–2 mm) and the elongation
zone (EZ) are targets of Al injury. Aluminium resistance

was related to a lower Al accumulation in the root tip (Shen

et al., 2002; Rangel et al., 2007). Under short-term Al

supply, Al accumulates primarily in the root apoplast

(Taylor et al., 2000; Wang et al., 2004; Rangel et al., 2009),

where Al3+ strongly binds to the negatively charged binding

sites (Zhang and Taylor, 1989; Blamey et al., 1990; Horst

et al., 2010) provided by unmethylated pectin in the cell wall
(CW) (Schmohl et al., 2000; Eticha et al., 2005). Thus,

a lower CW negativity reducing Al accumulation (Horst,

1995) and the detoxification of Al in the apoplast through

root exudates play an important role in Al resistance. Lower

Al accumulation in the root tips and thus Al resistance is

mediated by citrate exudation in common bean (Mugai

et al., 2000; Shen et al., 2002; Rangel et al., 2010).

Drought stress is another important limiting factor for
common bean production in the developing world, since as

much as 60% of the common bean production occurs under

conditions of drought stress (Graham and Ranalli, 1997;

Beebe et al., 2008). Particularly on many acid soils, dry

spells during the main growing period of crops are a major

yield-limiting factor (Welcker et al., 2005). Adaptation

to drought involves complex multigenic components that

interact holistically in plant systems (Cushman and
Bohnert, 2000). In plants growing in dry soil, both shoot

and root growth is hampered (Westgate and Boyer, 1985;

Sharp et al., 1988). The maintenance of root growth during

water deficit facilitates water uptake from the subsoil

(Sponchiado et al., 1989; Serraj and Sinclair, 2002).

However, the exploitation of the subsoil for water and thus

the ability of the plants to withstand drought stress may be

strongly impeded by Al toxicity in acid subsoils (Goldman
et al., 1989). Thus, on acid soils that permit deep rooting,

both Al and drought resistance are required for yield

improvement particularly in common bean, a generally Al

and drought-sensitive crop (Rao, 2001; Beebe et al., 2008).

Therefore, studies on individual and combined stress factors

of these two limitations are important to clarify the

opportunities and constraints in breeding for adaptation to

these abiotic stresses.
In light of the importance of root development under

conditions of Al toxicity and drought, the short-term effects

of combined Al toxicity and drought stress on root growth,

with special emphasis on Al/drought interaction in the root

apex, was investigated in the present study in hydroponics

which allow a detailed study of Al toxicity. Drought stress

was imposed through the application of polyethylene glycol

(PEG). PEG 6000 is a high molecular weight solute, which

cannot enter the apoplastic space (Carpita et al., 1979; Hohl

and Schopfer, 1991). It is therefore being amply used as
a non-absorbed osmoticum to induce osmotic stress and it

allows the response of plants to drought stress in hydro-

ponic studies (Jia et al., 2001; Fan and Neumann, 2004) to

be mimicked.

Materials and methods

Plant materials and growing conditions

Seeds of the four common bean genotypes, Quimbaya, G 21212,
BAT 477, and VAX 1 were germinated on filter paper sandwiched
between sponges. After 3–4 d, uniform seedlings were transferred
to a continuously aerated simplified nutrient solution containing
5 mM CaCl2, 1 mM KCl, and 8 lM H3BO3 (Rangel et al., 2007).
Plants were cultured in a growth chamber under controlled
environmental conditions of a 16/8 h light/dark cycle, 27/25 �C
day/night temperature, 70% relative air humidity, and a photon
flux density of 230 lmol m�2 s�1 of photosynthetically active
radiation at plant height. The pH of the nutrient solution was
gradually lowered to 4.5 within two days. Then the plants were
transferred to treatment solutions containing a factorial combina-
tion of Al (0, 25 lM) and PEG 6000 (Sigma-Aldrich Chemie
GmbH, Steinheim, Germany) (0, 200 g l�1) for 24 h in the
simplified nutrient solution, pH 4.5. At harvest, the culture
solutions were collected and filtered immediately through
0.025 lm nitrocellulose membranes. Mononuclear Al (Almono)
concentrations were measured colorimetrically using the pyrocate-
chol violet method (PCV) according to Kerven et al. (1989). The
Almono concentration of the Al treatment solution was kept at
25 lM by adding Al stock solution when necessary to prevent
a decrease of the Almono concentration in the solution owing to the
Al absorption by the roots. There was no difference between the
PEG treatments (data not shown), suggesting that PEG supply did
not lead to precipitation or complexation of Al in the treatment
solution.

If not otherwise mentioned PEG 6000 (PEG) was used. In
some experiments different PEG 6000 concentrations were used.
The corresponding osmotic potentials (OPs) of the 0, 50, 100,
150, 200, and 250 g l�1 PEG 6000 solutions were 0.00, –0.06,
–0.24, –0.60, –1.20, and –2.10 MPa, respectively, measured with
a cryoscopic osmometer (Osmomat 030, Gonotec GmbH, Berlin,
Germany).

Dialysis membrane tubes (DMTs) (3500 Da MWCO, Spectra/
Por, California, USA) were used to separate the roots from
the PEG 6000 solution. After 2 d of acclimation, plants were
transferred into DMTs, and then the DMTs were transferred into
200 g l�1 PEG treatment solution and kept in an upright position
in solution for 8 h, then the DMTs were transferred to 100 lM Al
treatment solution without or with 200 g l�1 PEG for 1 h. In
parallel, experiments without DMT were conducted for compar-
ison. The PEG and Al concentrations in the parallel experiments
were 150 g l�1 and 25 lM, respectively. When treating the plants
in the DMTs with 200 g l�1 PEG and 100 lM Al, inhibition
of root elongation and Al contents were comparable to the
treatment of the plants without DMTs at 150 g l�1 PEG and
25 lM Al, respectively (data not shown). Thus different concen-
trations of Al and PEG were used in the different growing
systems.
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Diffusion of low molecular weight (LMW) PEG through DMTs and

the effect of LMW PEG on root growth and Al accumulation in the

root apex

A 250 ml PEG 6000 (200 g l�1) solution in DMTs was incubated in
1.0, 1.5, and 2.0 l distilled water for 4 h. During this period, the
external solution was stirred gently and subsamples were collected
at 15 min interval. In these samples the OP was determined with
a cryoscopic osmometer either directly or after concentrating
ten times with a rotational-vacuum-concentrator RVC 2-25
(Martin Christ Gefriertrocknungsanlagen GmbH, Osterode/Harz,
Germany).

To compare the effect of different molecular weight PEG on
root growth and Al accumulation in root apices, plants were pre-
treated with PEG 1000, 3000, and 6000 (Sigma-Aldrich Chemie
GmbH, Steinheim, Germany) at different OPs (0, –0.06, –0.24,
–0.60 MPa) for 8 h in simplified nutrient solution, pH 4.5. Then
half of the plants were harvested for the determination of root
elongation. The remaining plants were allowed to grow for 1 h in
the same solutions in the presence of 25 lM Al, pH 4.5. After the
Al treatment, 1 cm root tips were excised for Al analysis.

Measurement of root elongation rate

Two hours before the treatment was initiated tap roots were
marked at 3 cm behind the root tip using a fine point permanent
marker (Sharpie blue, Stanford) which did not affect root growth
during the experimental period. Afterwards, the plants were
transferred into a simplified nutrient solution (see above) without
or with PEG in the absence or presence of 25 lM Al. Root
elongation was measured after the treatment period using a mm
scale.

Collection of root exudates and determination of organic acids in

exudates and root apices

To collect root exudates from root apices, plants were pre-treated
with 0 or 25 lM Al in the absence or presence of 150 g l�1 PEG
for 3, 7, and 23 h, then ten plants were bundled in filter paper
soaked with nutrient solution. Approximately 1 cm of the main
root apex of each plant was immersed in 15 ml of a constantly
aerated incubation solution containing 5 mM CaCl2, 1 mM KCl,
8 lM H3BO3, and 0 or 40 lM AlCl3, pH 4.5. During this
treatment process, the basal part of the root system was constantly
moistened with incubation solution (see above) to prevent dryness
but avoiding dripping into the columns. After 2 h, the incuba-
tion solution containing the root exudates were immediately frozen
at –20 �C. After thawing, the incubation solution was passed
through 5 g of a cation-exchange resin (AG50W-X8 with a 75–
150 lm mesh) in 20 ml poly-prep columns with a 200–400 lm
mesh filter at the bottom of the column, at a flow rate of
1 ml min�1. The resulting solution containing the organic acids
(OA) was concentrated to dryness in a rotary vacuum evaporator
(RCT 10-22T, Jouan, Saint-Herblain, France). The residue from
each sample was re-dissolved in 500 ll (10 mM) perchloric acid,
sonicated for 15 min, filled into micro-filtration tubes with
a membrane pore size of 0.45 lm (GHP Nanosep MF Centrifugal
Device, Pall Life Sciences, Ann Arbor, USA), and filtered by
centrifugation at 20 000 g for 25 s. The filtered samples were
immediately used for measurement or frozen.

The OA content of root tips was determined by the modified
method of de la Fuente et al. (1997). Plants were treated with 0 or
25 lM Al in the absence or presence of 150 g l�1 PEG for 4, 8, and
24 h, then the root tips (1 cm) were excised and frozen immediately
in liquid nitrogen. Before thawing, 400 ll of cold 70% (v/v) ethanol
was added to the samples which were then homogenized in a
micro-homogenizer (MM200 Retsch, Haan, Germany) for 3 min
at 20 cycles s�1. OAs were extracted at 75 �C for 1 h with
intermittent shaking on a vortex every 15 min. Thereafter, the
samples were centrifuged at 23 000 g for 10 min and the

supernatant was transferred into a new Eppendorf tube. The
supernatant was concentrated to dryness in a rotary vacuum
evaporator. The concentrated residue from each sample was re-
dissolved in 200 ll 10 mM perchloric acid, sonicated for 15 min,
transferred to centrifugal micro-filtration tubes with a membrane
pore size of 0.45 lm, and centrifuged at a speed of 20 000 g for
25 s. The samples were immediately used for measurement or
frozen.

The concentrations of OAs in the root exudates as well as in the
extracts of root tissue were measured by isocratic High Pressure
Liquid Chromatography (HPLC, Kroma System 3000, Kontron
Instruments, Munich, Germany). The OAs were detected through
a 20 ll loop-injector (Auto-sampler 360) of the HPLC, separating
different OAs on an Animex HPX-87H (30037.8 mm) column
(Bio-Rad, Laboratories, Richmond, California, USA), supple-
mented with a cation H+ micro-guard cartridge, using 10 mM
perchloric acid as eluent at a flow rate of 0.5 ml min�1, at
a constant temperature of 35 �C (Oven 480), and with a pressure of
7.4 kPa. Measurements were performed at k¼214 nm (UV
Detector 320).

Freeze-fracture scanning electron microscopy

The effect of PEG on the structure of the root tips was studied at
the Research Centre of Bayer CropSciences at Monheim, Rhein,
Germany, in co-operation with P Baur and S Teitscheid. After
treating the plant with PEG 6000 and PEG 1000 (–0.60 MPa OP)
for 4 h, root tips were excised about 7 mm from the root apex and
placed onto a custom-made specimen holder, partly embedded in
Tissue-Tek OCT Compound (Sakura, Fine Technical, Tokyo,
Japan), and then quickly frozen with liquid nitrogen. Frozen
specimens were rapidly transferred to a pre-cooled (–150 �C)
specimen stage in a freeze-etch unit and fractured with knife and
tweezers at a distance of about 3 mm from the root apex.
The samples were then etched for 15 min at 110 �C under 10�6

Torr to remove surface ice. The structure of root tip cross-sections
was examined using a scanning electron microscope (SEM, JSM-
5600 LV, Jeol, Tokyo, Japan) after gold sputtering with high
vacuum in the SEI modus at 9 kV. The sample was kept at –95 �C
by means of a Gatan Alto 2100 cryo system. Image recording was
done with a Point Electronic, DISS5 scanning system.

Isolation of cell-wall material

After pre-treating with PEG (0–200 g l�1) for 24 h, 30 root tips of 1
cm length were excised and transferred to 1 ml of 96% ethanol
(method A) or immediately frozen in liquid nitrogen and then
ground to a fine powder with a mortar and pestle in liquid nitrogen
before 1 ml of 96% ethanol was added (method B). Cell-wall
material was prepared as an alcohol-insoluble residue after repeated
washing with ethanol, modified after Schmohl and Horst (2000).
Root samples were thoroughly homogenized in ethanol using a mixer
mill at a 30 cycles s�1 for 2 min. The homogenization was repeated
twice. Then the samples were centrifuged at 23 000 g for 15 min and
the supernatant was discarded. One millilitre of 96% ethanol was
added and the pellet was re-suspended. The washing procedure was
repeated twice. The remaining CW material was dried using
a centrifugal evaporator (RC10-22T, Jouan SA, France), weighed,
and stored at 4 �C for further use.

Determination of pectin and its degree of methylation

The dried cell-wall material isolated from 1 cm root tips was
weighed, hydrolysed according to Ahmed and Labavitch (1977)
extending the incubation time to 10 min in concentrated H2SO4

and 2 h after each step of water addition. The uronic acid content
was determined colorimetrically according to Blumenkrantz and
Asboe-Hansen (1973) using a microplate spectrophotometer
(lQuant�; Bio-Tek Instruments, Winooski, VT, USA). Galactur-
onic acid was used as a calibration standard; thus the root pectin
content was expressed as galacturonic acid equivalent (GaE).

Osmotic stress enhances aluminium resistance in common bean | 3247



For the determination of the degree of methylation (DM), the
cell-wall material from root apices was prepared in the same way
as for pectin determination. Methanol was released from the cell-
wall material by saponification according to Fry (1988), and
modified after Wojciechowski and Fall (1996). After the addition
of 2 U of alcohol oxidase (EC 1.1.3.13 from Pichia pastoris; Sigma,
Deisenhofen, Germany) the complex of formaldehyde with
Fluoral-P (15 mg ml�1) (Molecular Probes, Leiden, The Nether-
lands) was measured fluorometrically (excitation k¼405 nm,
emission k¼503 nm). The degree of methylation (%) was
calculated as the molar ratio of methanol/uronic acid3100.

Cell-wall binding-capacity and uptake of Al3+, La3+, Sr2+, Rb2+ in

1 cm root apices

The isolated cell-wall material from 30 root tips (approximately
3 mg) was incubated for 30 min in 1 ml of a solution (pH 4.3)
containing 300 lM AlCl3 or 300 lM LaCl3, 450 lM SrCl2 or
900 lM RbCl without or with 150 g l�1 PEG. Then the suspension
was centrifuged at 23 000 g for 10 min. The supernatant was
discarded. The pellet was re-suspended in 1 ml of ultra-pure
deionized water and centrifuged again. The procedure was re-
peated twice. Then the residues were prepared for Al, La, Sr, and
Rb determination.

To study the effect of PEG on the accumulation of La3+, Sr2+,
and Rb+ in the root apices, intact plants were pre-treated with the
simplified nutrient solution and 0 or 50, 100, 150, or 200 g l�1 PEG
(pH 4.5) for 8 h. Then the plants were treated with 25 lM AlCl3,
5 lM LaCl3, 2.5 mM SrCl2, or 0.5 mM RbCl minus or plus 150 g
l�1 PEG in the same nutrient solution for 1 h, pH 4.5.

Determination of Al, La, Sr, and Rb

For the determination of Al, La, Sr, and Rb, 1 cm root tips or cell-
wall material were digested in 500 ll ultra-pure HNO3 (65%, v/v)
by overnight shaking on a rotary shaker. The digestion was
completed by heating the samples in a water bath at 80 �C for
20 min. Then 1.5 ml ultra-pure deionized water was added after
cooling the samples in an ice-water bath. Aluminium was
measured with a Unicam 939 QZ graphite furnace atomic
absorption spectrophotometer (GFAAS; Analytical Technologies
Inc., Cambridge, UK) at a wavelength of 308.2 nm after
appropriate dilution, and an injection volume of 20 ll. La, Sr,
and Rb were measured by inductively coupled plasma mass
spectroscopy (ICP-MS) (7500cx, Agilent Technology, Santa Clara,
California, USA) after appropriate dilution.

Statistical analysis

A completely randomized design was used, with 4–12 replicates in
each experiment. Statistical analysis was carried out using SAS 9.2.
Means were compared using t or Tukey test depending on the
number of treatments being compared. *, **, *** and ns denote
significant differences at P <0.05, 0.01, 0.001, and not significant,
respectively.

Results

Four common bean genotypes differing in Al resistance

were selected to investigate the relationship between Al

toxicity and drought stress. The genotypes responded to Al

treatment as previously reported, with Quimbaya as the
most Al-resistant and VAX 1 as the most Al-sensitive

(Fig. 1A; Rangel et al., 2005). PEG treatment led to severe

osmotic stress and thus inhibition of root growth. Although

the comparison of means did not show significant differ-

ences between genotypes in response to PEG, the ANOVA

showed a highly significant genotype3Al interaction with

genotype Quimbaya showing the highest and BAT 477 the

lowest root growth in the presence of PEG. Combined Al

and PEG stress did not lead to further inhibition of root
growth. By contrast, PEG in addition to Al stress enhanced

root growth compared with Al stress alone (highly signifi-

cant PEG3Al interaction) particularly in genotype VAX 1

(highly significant genotype3PEG3Al interaction). The

lack of Al-induced inhibition of root elongation and even

the positive effect of PEG on root growth in the presence of

Al can be explained by a strongly reduced Al accumulation

in the root tips (Fig. 1B).
Since among the genotypes tested the PEG-improved

root growth in the presence of Al was most marked in VAX

1, the study was continued with this genotype only. The

lower Al accumulation in the root apices of PEG-stressed

plants could be due to an enhanced synthesis and exudation

of organic acids because citrate exudation has been reported
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Fig. 1. Root elongation rate (A) and Al content of 1 cm root tips (B)

of four common bean genotypes under osmotic (200 g l�1 PEG)

and Al stress (25 lM Al). Plants were pre-cultured in a simplified

nutrient solution containing 5 mM CaCl2, 1 mM KCl, and 8 lM

H3BO3 for 48 h for acclimation and pH adaptation, then treated

without or with 25 lM Al in the absence or presence of 200 g l�1

PEG in the simplified nutrient solution for 24 h, pH 4.5. Bars

represent means 6SD, n¼12 for (A) and n¼4 for (B). Means with

the same small letter and capital letter are not significantly different

at P <0.05 (t test) for the comparison of PEG treatments within Al

supplies and comparison of Al treatments within PEG supplies,

respectively. For the ANOVA, **, *** denote significant differences

at P <0.01, P <0.001, respectively; ns, not significant.
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to be one of the most important mechanisms of Al

resistance in common bean. Therefore, the contents and the

exudation rates of organic acids were determined after 4, 8,

and 24 h of PEG and Al treatment in order to take into

account the adaptations to Al (Rangel et al., 2007) and

PEG (data not shown) over the treatment period.

Whereas Al treatment decreased the contents of most

organic acids with increasing treatment duration, PEG
treatment/drought stress strongly enhanced OA contents in

the root tissue, particularly of citrate and malate indepen-

dent of the Al treatment (Fig. 2). Since organic acids could

not be analysed in the presence of PEG and PEG could not

be satisfactorily separated from the solution, organic acid

anion exudation had to be determined during a 2 h period

without PEG (but with Al) supply after the corresponding

PEG pre-treatment. After the removal of PEG from the
treatment solution, the amount of organic acid in 1 cm root

apical tissues did not change during the subsequent 2 h

exudate collection period and confirmed the organic acid

contents (data not shown). Only malate, but not citrate

exudation was affected by PEG treatment (Fig. 3). On the

other hand, Al significantly enhanced citrate exudation

independently of the PEG pre-treatments up to 9 h (Fig. 3).

Another reason for the impeded Al accumulation in the

root apices could be a lower negativity of the CWs formed

in the presence of PEG. The cell-wall pectin-content and its

degree of methylation determine the Al binding capacity of

the root cell-wall (Schmohl and Horst, 2000). PEG treat-

ment reduced total CW pectin content but also decreased

the degree of methylation of pectin in 1 cm root tips. Thus

the content of unmethylated pectin representing the nega-
tivity of the CWs remained unaffected by the PEG

treatment (Fig. 4).

In order to differentiate between a direct effect of PEG

accumulation on/in the root and of PEG-induced osmotic

stress on Al accumulation in the roots, the roots were

enclosed in a DMT, which has a molecular weight cut-off

(MWCO) of 3500 Da and does not allow PEG 6000 to cross

the membrane. Thus, the direct contact of PEG with the
root was prevented while maintaining the osmotic stress.

Higher PEG and Al concentrations were used with, rather

than without, DMT according to preliminary experiments

to compensate for impeded PEG and Al diffusion through

the DMT (data not shown). As shown above, the presence

of PEG during the Al treatment period of 1 h reduced the

Al accumulation in the root tips to low levels even in plants

Fig. 2. Organic acid contents in 1 cm apical roots of common bean genotype VAX 1 (Al-sensitive) affected by osmotic stress and Al

supply. Plants were pre-cultured in a simplified nutrient solution containing 5 mM CaCl2, 1 mM KCl, and 8 lM H3BO3 for 48 h for

acclimation and pH adaptation, then treated without or with Al (25 lM) in the absence or presence of PEG (150 g l�1) in the simplified

nutrient solution for 4, 8, and 24 h, pH 4.5. Bars represent means 6SD, n¼4. Means with the same small letter and capital letter are not

significantly different at P <0.05 (t test) for the comparison of PEG treatments within Al supplies and comparison of Al treatments within

PEG supplies, respectively. For the ANOVA, *, **, *** denote significant differences at P <0.05, P <0.01, P <0.001, respectively; ns¼not

significant (F test).
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not exposed to PEG during the 8 h pre-treatment period

(–/+ PEG) (Fig. 5A). Discontinuing the PEG treatment

during the 1 h Al treatment period after 8 h PEG pre-

treatment (+/– PEG) completely restored the Al accumula-

tion capacity of the root apices. This recovery is a very

rapid process since, as early as 15 min after interrupting the

PEG treatment, the difference in Al accumulation between
PEG-treated and untreated plants disappeared (Fig. 5C).

When the roots were protected against direct contact with

PEG using DMT (Fig. 5B) Al accumulation by the roots

was similarly reduced when osmotic stress was applied

during the 1 h Al uptake period. However, when the

osmotic stress was discontinued during the Al uptake period

(+/– PEG), the Al uptake capacity was not fully restored to

the level observed without DMT. This suggests a slower
recovery from osmotic stress in the dialysis tubes.

Since the presence and thus penetration of the DMT by

LMW PEG in PEG 6000 cannot be excluded, the OP was

studied as an indirect measure of the presence of LMW

PEG in the solution passing through the DMT in a model

experiment in which the PEG 6000-filled DMT was in-

cubated for 4 h. There was only a slight decrease of the

OP which was only significant in the 103 concentrated

incubation solution (see Supplementary Fig. S1 at JXB

online). Even then the OP did not decrease beyond –0.06

MPa which did not affect root growth (Fig. 6A). This
suggests that there is only a low amount of LMW PEG in

the PEG 6000 product used for our experiments.

To clarify how LMW PEG affects Al accumulation in the

root apex, the effect of PEG 6000, PEG 3000, and PEG

1000 on Al contents in the root tips was compared at the

same OPs corresponding to PEG 6000 concentrations of 0,

50, 100, 150 g l�1. The root elongation rate was decreased

with decreasing OP independent of the molecular weight of
the PEG (Fig. 6A). However, PEG 6000 reduced the Al

contents of the root tips much more efficiently than PEG

3000 and particularly PEG 1000 (Fig. 6B).

The effect of different molecular weight PEG on the

structure of the root tip has been studied using freeze-

fracture electron microscopy. The resolution of the tech-

nique did not allow any conclusion to be drawn about the

cell wall structure. However, the root cross-sections, shown
in Supplementary Fig. S2 at JXB online, clearly showed

that, in spite of comparable osmotic stress induced by the

different molecular weight PEG (compare Fig. 6A), the

effects on the root structure were different. In roots exposed

to PEG 6000 (see Supplementary Fig. S2C, F at JXB

online) the epidermis and the outer cortical cell layers were

very closely packed and nearly all the intercellular spaces

disappeared. By contrast, PEG 1000 (see Supplementary
Fig. S2B, E at JXB online) hardly affected the intercellular

space compared with the control (see Supplementary Fig.

S2A, D at JXB online) indicating that in addition to

osmotic stress, PEG 6000 dehydrates the root apoplast

more than PEG 1000.

The specificity of the PEG 6000 effect on Al uptake into

the root apex was evaluated using La, Sr, and Rb uptake

for comparison (Fig. 7). PEG pre-treatment did not affect
La uptake, while PEG applied together with La slightly

but significantly decreased La accumulation (Fig. 7A).

By contrast, neither PEG pre-treatment (+/–PEG) nor

re-supply of PEG (–/+PEG) during the Sr uptake period

affected Sr (as a tracer of Ca) accumulation in the root

apices (Fig. 7B). However, Rb (as a tracer of K) accumula-

tion was reduced by PEG pre-treatment (+/–PEG) and PEG

application (–/+PEG) during the Rb exposure period
(Fig. 7C), which might be explained by a significant increase

of the K content in the root tips (from 212 to 342 nmol root

tip�1, data not shown) caused by osmotic stress.

Cell-wall material isolated from 1 cm root apices of

plants treated without or with PEG (150 g l�1) was exposed

to Al, La, Sr, or Rb for 30 min in the absence or presence of

PEG. PEG pre-treatment strongly reduced Al binding to

the CWs (Fig. 8A). By contrast to Al, La accumulation was
only slightly reduced (Fig. 8B), and Sr and Rb accumula-

tion was not affected by PEG (Fig. 8C, D). Application of

Fig. 3. Effect of PEG and Al treatment on organic acid exudation

from 1 cm root apices of Al-sensitive common bean genotype

(VAX 1). Plants were pre-cultured in a simplified nutrient solution

containing 5 mM CaCl2, 1 mM KCl, and 8 lM H3BO3 for 48 h for

acclimation and pH adaptation and then treated without or with Al

(25 lM) in the absence or presence of PEG (150 g l�1) for 3, 7,

and 23 h. Thereafter, the roots of 10 plants were bundled and the

root tips (1 cm) were incubated in 15 ml of Al (0, 40 lM) treatment

solution containing the above simplified nutrient solution without

PEG for 2 h. Bars represent means 6SD, n¼4. Means with the

same small letter and capital letter are not significantly different at

P <0.05 (t test) for the comparison of PEG treatments within Al

supplies and comparison of Al treatments within PEG supplies,

respectively. For the ANOVA, *, **, *** denote significant differences

at P <0.05, P <0.01, P <0.001, respectively; ns¼not significant (F

test). nd¼not detected.
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PEG during the Al loading period only did not affect the

Al-binding properties of the isolated cell-wall material

(Fig. 8A). Moreover, the different effects of osmotic stress

on Rb accumulation in vivo (Fig. 7C) and in vitro (Fig. 8D)

conditions suggest that the apoplast is not the main binding

site of Rb, which may play an important role in the osmotic

adjustment of the cytoplasm similar to K (Ogawa and
Yamauchi, 2006).

Al accumulation in 1 cm root apices of intact plants

(Fig. 9A) and Al binding to the CWs of these root tips

(Fig. 9A’) decreased with increasing PEG concentration (0–

150 g l�1) in the treatment solution. A similar decreasing

tendency was also observed for La, although the relative

change was much lower compared to Al (Fig. 9B, B’).

Unlike that of Al and La, Sr uptake/binding was not
reduced by PEG treatment (Fig. 9C, C’). A higher

concentration of PEG (200 g l�1) did not further reduce Al

and La uptake and its binding to the CW of root tips

(Fig. 9). A PEG supply of 250 g l�1 was found to be lethal

to the plants since it seriously damaged the root system

(data not shown).

To elaborate the role of PEG-induced alteration of cell-

wall structure on Al binding, a simple physical method
(method B) was used to destroy the CW structure by

vigorously grinding the root apices with a mortar and pestle

in liquid nitrogen. PEG pre-treatment resulted in about

a 70% reduction of Al binding when the CW structure was

widely unaltered (method A; Fig. 10). However, by destroy-

ing the CW structure (method B) Al binding was restored in

the PEG pre-treated samples. This indicates that PEG

reduces CW porosity and restricts the access of Al ions to
binding sites.

Discussion

Generally, there is a positive relationship between Al-

induced short-term inhibition of root elongation and Al

accumulation in the root tip apoplast of common bean

(Rangel et al., 2009) indicating that Al resistance involves

the exclusion of Al from the root tip apoplast (Horst et al.,

2010). In the present study, PEG 6000-induced osmotic

stress significantly inhibited Al accumulation in the root

tips, almost reaching the level of the control (Fig. 1B).

Consequently, there was no Al toxicity which is reflected by
the lack of any additional Al effect on the root elongation

of PEG 6000-stressed plants (Fig. 1A). The possibility that

PEG or contaminants associated with PEG may decrease Al

uptake into the root apex by complexing or precipitating Al

in the treatment solution can be excluded because PEG

application did not affect the mononuclear phytotoxic Al

concentration of the treatment solution (data not shown).

Citrate exudation contributes to the Al resistance of
common bean by excluding Al from the root apex. In the

present study, Al stress significantly increased citrate

exudation from the root apices during the early Al injury

period (3–9 h), but the exudation was reduced with time

(Fig. 3), which is typical for this Al-sensitive genotype VAX

1 (Rangel et al., 2010). The reduction of citrate exudation

was related to the decreasing citrate content in the root apex

(Fig. 2). These results confirm our previous studies that the
Al resistance of common bean through citrate exudation

requires the maintenance of the cytosolic citrate concentra-

tion through up-regulated synthesis and down-regulated

degradation (Eticha et al., 2010; Rangel et al., 2010).

Abscisic acid (ABA), known as a stress-inducible phytohor-

mone, plays important regulatory roles in the adaptation of

root growth to drought and salt stress (Sharp, 2002; Ren

et al., 2010). As an early Al-stress signal it may also regulate
citrate exudation since the exogenous application of ABA

increased the activity of citrate synthase (CS) and citrate

exudation, thus decreasing Al accumulation in the root apex

of soybean (Shen et al., 2004). Therefore, it is speculated

that drought stress-induced ABA synthesis may directly or

indirectly enhance citrate exudation through stimulating

citrate production in the root apex which detoxifies Al and
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Fig. 4. Total cell-wall pectin-content (A), its degree of methylation (B), and unmethylated pectin content (C) in 1 cm root tips of Al-

sensitive common bean genotype (VAX 1). Plants were pre-treated without or with 150 g l�1 PEG in a simplified solution (pH 4.5)

containing 5 mM CaCl2, 1 mM KCl, and 8 lM H3BO3 for 24 h, then 30 root tips (1 cm) were harvested and cell-wall material was isolated

according to Method A described in the Materials and methods for the determination of pectin content and degree of methylation. Bars

represent means 6SD, n¼4. Means with the same letters are not significantly different at P <0.05 (t test).
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contributes to improved root growth under Al stress

condition. Under medium-term (4–24 h) Al stress, the

citrate content in the root apex was enhanced by PEG

(osmotic stress) treatment (Fig. 2). However, PEG pre-

treatment did not affect citrate exudation from the root

apex (Fig. 3), suggesting that osmotic stress did not induce

the exclusion of Al from root apices by increasing citrate

exudation. Since relieving of the osmotic stress by with-

drawing PEG from the solution rapidly restored the Al

accumulation capacity of the root apices (Fig. 5), the
contribution of citrate exudation in reducing the Al binding

capacity in the presence of PEG cannot be unequivocally

ruled out.

The apoplast of the root apex has been proposed to be

the primary site of Al toxicity (Horst, 1995; Horst et al.,

2010). Many reports indicate that Al in the root primarily

accumulates in the CW. Rangel et al. (2009) found that

about 80% of the total Al in the root of common bean was
bound in the CW. Similar findings were reported for

soybean (Yang et al., 2009). The density of the negative

charge carried by the CW is determined by the degree of

methylation (DM) of pectin which thus determines the Al

binding capacity of roots (Schmohl et al., 2000; Eticha
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genotype (VAX 1). (A) Without dialysis membrane tubes (DMT);

plants were pre-treated without or with 150 g l�1 PEG solution for

8 h, and then treated with 25 lM Al in the absence or presence of

150 g l�1 PEG solution for 1 h. (B) With DMT; plants were pre-

treated without or with 200 g l�1 PEG for 8 h, then treated with

100 lM Al in the absence or presence of 200 g l�1 PEG solution

for 1 h. (C) Without DMT; plants were pre-treated without or with

150 g l�1 PEG solution for 8 h, and then treated with 25 lM Al

solution for 15, 30 and 60 min. The background solution of the

above treatment solution was the simplified solution containing 5

mM CaCl2, 1 mM KCl, and 8 lM H3BO3, pH 4.5. –/– PEG: without

PEG during pre-treatment and Al treatment; +/– PEG: with PEG

during pre-treatment, without PEG during Al treatment; –/+ PEG:

without PEG during pre-treatment, with PEG during Al treatment;

+/+ PEG: with PEG during pre-treatment and Al treatment. Bars

represent means 6SD, n¼4. Means with the same small letter and

capital letter are not significantly different at P <0.05 (t test) for the

comparison of PEG pre-treatments within PEG re-treatments and

comparison of PEG re-treatments within PEG pre-treatments,

respectively.
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Plants were pre-treated with different molecular weight PEGs at
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H3BO3, pH 4.5. Bars represent means 6SD, n¼4. For the
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significant (F test).
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et al., 2005; Yang et al, 2008). Therefore, reduced Al

accumulation in PEG-stressed plants could be due to CW

modification. However, in disagreement with salt (NaCl)-

induced osmotic stress of our previous studies in maize,

which led to an increased pectin content in root apices,

enhanced Al accumulation, and thus higher Al sensitivity

(Horst et al., 1999), our present results showed that PEG-

induced osmotic stress did not affect the content of
unmethylated pectin in the root apices of common bean

(Fig. 4). Therefore, the results do not support the assump-

tion that osmotic stress leads to low Al accumulation by

decreasing the CW negativity.

The use of PEG in studies on osmotic stress relies on the

assumption that this high molecular weight solute cannot

enter the symplastic space of the root (see Introduction).

However, there are several reports clearly showing that
PEG may be accumulated in roots and even transported to

the shoot (Lawlor, 1970; Janes, 1974; Yaniv and Werker,

1983; Jacomini et al., 1988). This may depend on the plant

species, PEG source (contamination by LMW PEG) and

concentration, time of exposure, and root damage. If PEG

accumulates at the root surface or enters the root apoplast

it may physically interfere with Al uptake and its binding to

the CW. Therefore, in order to clarify the importance of

apoplastic PEG or PEG-induced osmotic stress decreased

Al accumulation in root tips, the roots were separated from

the PEG in solution using DMT which has a molecular

weight cut-off of 3500 Da. Aluminium accumulation in the

root tips grown in DMTs was also strongly reduced by PEG

treatment (Fig. 5) suggesting that it was not the physical
presence of PEG 6000 but the PEG 6000-induced osmotic

stress that was the cause of lower Al accumulation. A

possible contribution of LMW PEG present in the PEG

6000 used in the experiments is unlikely because of two lines

of evidence: (i) LMW PEG diffusing through the DMT

reduced the OP of the equilibrium solution only to an OP

value which hardly affected the Al binding of the roots (see

Supplementary Fig. S1 at JXB online, Fig. 6B); (ii) PEG
6000 reduced the Al binding of the roots more than PEG

3000 and particularly PEG 1000 in spite of similar osmotic

stress and inhibitory effects on root elongation rate (Fig. 6).

Compared with La, Sr, and Rb, the strong reduction of

cation accumulation in the root apex by osmotic stress

appears to be specific to Al. Osmotic stress had only a much
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smaller, yet, significant effect on La accumulation (Figs 7,

9). By contrast, neither PEG pre-treatment nor re-supply of

PEG during the Sr uptake period affected Sr accumulation

in the root apices (Fig. 7B). Rubidium accumulation was

reduced by PEG pre-treatment and PEG application during

the Rb exposure period (Fig. 7C). The reduction of Rb
accumulation was only found under in vivo conditions.

Binding of Rb to the isolated CW of root apices in vitro was

not affected by PEG pre-treatment (Fig. 8D). This suggests

that the apoplast is not the main binding site of Rb, which

may play an important role in the osmotic adjustment of

the cytoplasm similar to K (Premachandra et al., 1995;

Ogawa and Yamauchi, 2006).

The specificity of cation accumulation might be related to
the hydrated ionic radius of the cations: Al3+ (0.475 nm) >

La3+ (0.452 nm) > Sr2+ (0.412 nm)¼Ca2+ (0.412 nm) > K+

(0.331 nm) > Rb+ (0.329 nm) (Nightingale, 1959). Since

the pore size of the CW plays an important role in the

apoplastic transport of water, ions, metabolites, and

proteins (Carpita et al., 1979; Brett and Waldron, 1996;

Cosgrove, 2005), the differences between the ions in Al

accumulation of the PEG-exposed root apices may suggest
that PEG (osmotic stress) affects CW porosity. This

assumption is supported by the fact that a similar reduction

in accumulation specific for Al could also be observed in

cell walls isolated from PEG-treated root tips (Fig. 8).

Microscopic evaluation showed that the CW material was

fairly intact (not shown) indicating that the CW porosity

was not disrupted. After physically destroying the structure

of the CW, Al binding to the CW was almost restored

(Fig. 10).

The CW porosity is reported to be largely controlled by

the pectin matrix (Baron-Epel et al., 1988). Schmohl and

Horst (2000) suggested that the cross-linking of pectins by

Al reduces the permeability of the CW for macromolecules

such as proteins by reducing the CW porosity. McKenna

et al. (2010) showed that Al and other metals reduced the
hydraulic conductivity of bacterial cellulose–pectin compo-

sites, used as plant cell-wall analogues to about 30% of the

initial flow rate. SEM revealed changes in the ultrastructure

of the composites suggesting that metal binding decreased

the hydraulic conductivity through changes in pectin

porosity.

Pectin can form hydrated gels that push microfibrils

apart, easing their sideway slippage during cell growth,
while also locking them in place when growth ceases

(Baron-Epel et al., 1988; Fleischer et al., 1999; Cosgrove,

2005). For example, Jarvis (1992) indicated that pectin may

act as a hydrophilic filler to prevent aggregation and

collapse of the cellulose network. Therefore, the reduction

of pectin in the CW of root apices under osmotic stress

(Fig. 4) may change the structure of the CW, consequently

resulting in a rearrangement of wall polymers and affecting
the porosity.

Generally, the pore diameter of the plant CW is in the

range of 3.5–5.5 nm, which mainly depends on CW

structure, hydrophobicity, CW chemical composition, and

physical properties (Carpita et al., 1979; Chesson et al.,

1997). Thus any change in these factors may result in the

subsequent alteration of porosity. For example, Bauchot

et al. (1999) reported that low temperature decreased the
pore size of the CW of kiwifruit by modifying CW

composition. The addition of boric acid to growing borate-

deficient suspension-cultured Chenopodium album L. cells

rapidly decreased the pore size of the CW by the formation

of a borate ester cross-linked pectic network in the primary

walls (Fleischer et al., 1999). However, although it is

reported that plant cells interact with their environment

through the porous network of the CW (Carpita et al.,
1979), and water stress can induce changes in CW

composition and CW properties of the roots (Iraki et al.,

1989a, b; Wakabayashi et al., 1997; Leucci et al., 2008), to

our knowledge, there is no report addressing the effect of

drought stress on CW porosity.

Water is the most abundant component of the CW

making up about two-thirds of the wall mass in growing

tissues. This water is located mainly in the matrix (� 75–
80% water), which suggests that the matrix has properties of

a relatively dense hydro-gel (Cosgrove, 1997). This visco-

elastic nature of the plant CW allows it to respond to

stresses and limitations imposed upon it (Moore et al.,

2008). Loss of water from the wall matrix can result in

serious disruption to polymer organization. One obvious

effect is that polymers usually well separated in the

hydrated wall are brought into close proximity to each
other, thus causing polymer adhesion or cross-linking under

water stress. A model illustrating the effect of water loss on
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Fig. 10. Al3+ binding of cell-wall material isolated from 1 cm root

tips of Al-sensitive common bean genotype (VAX 1). Plants were

pre-treated without or with 150 g l�1 PEG for 24 h in a simplified

solution (pH 4.5) containing 5 mM CaCl2, 1 mM KCl, and 8 lM

H3BO3. Then, 30 root tips (1 cm) were harvested and cell-wall

material was isolated according to Method A or Method B,

described in the Materials and methods. Then the isolated fine

cell-wall powder was treated with 1 ml 300 lM Al for 30 min, pH

4.3. Bars represent means 6SD, n¼4. Means with the same small

letter and capital letter are not significantly different at P <0.05 (t

test) for the comparison of the method of CW isolation within PEG

pre-treatments and comparison of PEG pre-treatments within the

method of CW isolation, respectively.

Osmotic stress enhances aluminium resistance in common bean | 3255



CW polymer organization was presented by Moore et al.

(2008).

The extent of loss of water from the apoplast and,

consequently, shrinkage of the root structure appeared to

be dependent of the molecular size of the applied PEG:

PEG 6000>PEG 3000>>PEG 1000 (see Supplementary Fig.

S2 at JXB online). The difference between the PEG sources

at the same OP of –0.60 MPa might be related to the
penetration of the PEG molecules into the root apoplast:

the higher the hydrodynamic radius the better the exclusion

from the apoplast and, consequently, the dehydration of the

apoplast. The estimated hydrodynamic radii of PEG 6000,

3000, and 1000 are 2.7, 1.6, and 0.89 nm, respectively (Kuga

et al., 1981).

Also, the rapid recovery of Al accumulation in the living

root apex after transfer of the roots into PEG-free solution
(Fig. 5C) suggests that the water content of the apoplast is a

decisive factor for PEG-induced alteration of CW porosity.

However, the CW extension of living cells must involve

biochemical (enzymatic) cleavage of load-bearing cross-

linkages between wall polymers. Since the restoration of the

Al accumulation capacity of the cell walls after the cessation

of the PEG stress could only be observed in living root

apices (Fig. 5), but not in ethanol-insoluble CW material
isolated from root apices pre-treated with PEG (Fig. 8A),

a role of enzymes mediating the inhibition of Al accumula-

tion has to be postulated. Several CW proteins/enzymes are

believed to play important roles in modifying the wall

network and thus, possibly, the wall’s ability to extend,

such as expansin, xyloglucan endotransglycosylase (XET),

and glucanase (Wu and Cosgrove, 2000). Therefore, it is

speculated that some proteins related to the modification of
the CW structure are involved in the PEG 6000 (osmotic

stress)-induced alteration of CW porosity. This needs to be

substantiated through further physiological and molecular

studies.

In conclusion, the observed results provide circumstantial

evidence that the osmotic stress-inhibited Al accumulation

in root apices and thus reduced Al-induced inhibition of

root elongation in the Al-sensitive common bean genotype
VAX 1 is related to the alteration of CW porosity resulting

from PEG 6000-induced dehydration of the root apoplast.

Supplementary data

Supplementary data are available at JXB online.

Supplementary Fig. S1. Diffusion of low molecular weight

PEG through DMT.
Supplementary Fig. S2. Freeze-fracture scanning electron

micrographs of root tip cross-sections of common bean

genotypes VAX 1 in the presence of different molecular

weight PEG.
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Kochian LV, Hoekenga OA, Piñeros MA. 2004. How do crop

plants tolerate acid soils? Mechanisms of aluminum tolerance and

phosphorous efficiency. Annual Review of Plant Biology 55, 459–493.

Kuga S. 1981. Pore size distribution analysis of gel substances by

size exclusion chromatography. Journal of Chromatography 206,

449–461.

Lawlor DW. 1970. Absorption of polyethylene glycols by plants and

their effects on plant growth. New Phytologist 69, 501–504.

Leucci MR, Lenucci MS, Piro G, Dalessandro G. 2008. Water

stress and cell wall polysaccharides in the apical root zone of wheat

cultivars varying in drought tolerance. Journal of Plant Physiology 165,

1168–1180.

McKenna BA, Kopittke PM, Wehr JB, Blamey FP, Menzies NW.

2010. Metal ion effects on hydraulic conductivity of bacterial cellulose-

pectin composites used as plant cell wall analogs. Physiologia

Plantarum 138, 205–214.
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