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We have developed a computational framework for accurate and efficient simulation of stochastic
spatially inhomogeneous biochemical systems. The new computational method employs a fractional
step hybrid strategy. A novel formulation of the finite state projection �FSP� method, called the
diffusive FSP method, is introduced for the efficient and accurate simulation of diffusive transport.
Reactions are handled by the stochastic simulation algorithm. © 2010 American Institute of Physics.
�doi:10.1063/1.3310809�

I. INTRODUCTION

On the cellular level of biological systems, molecules
with small copy number interact randomly. The resulting
fluctuations, or noise, in cellular species, play an important
role in cell-cell variability and cell fate decisions. A classic
example is the case of gene regulatory networks where low
counts of genes and mRNA create stochastic effects that re-
sult in phenotypic differentiation.1,2 Much recent work has
focused on the development of efficient computational meth-
ods for discrete stochastic simulation of well-mixed bio-
chemical systems.3 However, the cell is not a spatially ho-
mogeneous environment. Spatial localization plays an
important role in many cellular processes. For example, in
the MinCDE system of Escherichia coli, stochastic chemical
reactions of spatially inhomogeneous species cause end-to-
end oscillations.4 In discussing the modeling of mutant phe-
notypes for this system, Feng and Elf5 highlighted the need
for spatial stochastic simulations by noting that their “results
emphasize that local copy number fluctuation may result in
phenotypic differences, although the total number of mol-
ecules of the relevant species is high.” Additional examples
are found in Refs. 6 and 7 among others.

Spatial stochastic simulation is an extremely computa-
tionally intensive task. This is due to the large number of
molecules, which, along with the refinement of the dis-
cretized spatial domain, results in a large number of diffusive
transfers between subvolumes. In this paper, we present a
novel formulation of the finite state projection �FSP�
method,8 called the diffusive FSP �DFSP� method, for the
efficient and accurate simulation of diffusive processes. Us-
ing the FSP method’s ability to provide a bound on the error,
we are able to take large diffusion time steps with confidence

in our solution. We then show how to construct a fractional
step method for spatial stochastic simulation of reaction-
diffusion processes, which treats diffusion with DFSP and
reactions with stochastic simulation algorithm �SSA�.

The dynamics of spatially inhomogeneous stochastic
systems is governed by the reaction-diffusion master equa-
tion �RDME�, which was originally proposed and derived in
Ref. 9. More recently, it was shown that the biologically
observed self-organized criticality emerges only when diffu-
sion and reactions are treated as discrete stochastic
processes.10 This led to the adaptation of Gillespie’s SSA to
spatially inhomogeneous problems, called the inhomoge-
neous SSA, or ISSA. In this formulation, the domain is dis-
cretized into subvolumes or voxels. Each voxel is well mixed
so that intravoxel reactions are unchanged from the homoge-
neous case. Diffusive transfers between voxels are modeled
by unimolecular decay and creation events occurring simul-
taneously in adjacent voxels. The state of the system is then
the number of molecules of each species in each voxel at a
given time.

It is important to note that the spatially inhomogeneous
stochastic model is formulated on the mesoscopic scale. The
voxel size is bounded by the well-mixed assumption of its
mathematical formulation. We need to choose the length � of
a voxel small enough to capture the desired features of our
system, but large enough so that the system can be consid-
ered to be well mixed in each voxel. Specifically, � should
satisfy ��Kn /D, where K is the reaction rate constant, n is
the number of molecules in a given voxel, and D=DA+DB is
the combined diffusion rates of the reactants.11 It is possible
to reduce the voxel size by correcting the reaction propensi-
ties down to a hard limit of ����K /D, where ��

�0.25272.12

Recent efforts have focused on speeding up the ISSA.
The next subvolume method �NSM� �Ref. 7� is an efficient
formulation of the ISSA for the reaction-diffusion systems.
NSM utilizes the priority queue structure found originally in
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the next reaction method.13 MesoRD �Ref. 14� is a widely
used implementation of this algorithm. The binomial tau-leap
spatial stochastic simulation algorithm15 seeks to improve
performance by combining the ideas of aggregating diffusive
transfers with the priority queue structure found in the NSM.
The multinomial simulation algorithm �MSA� �Ref. 16� em-
ploys another strategy to improve performance. Noting that
fast diffusive transfers between voxels often dominate the
computational cost, MSA aggregates the diffusive transfers.
Instead of executing each diffusive event individually, it cal-
culates the intervoxel flux of particles by sampling from a
binomial distribution.

Under some circumstances it is possible to treat diffu-
sion deterministically, thus eliminating the tracking of fast
diffusive transfers almost entirely. Reactions are typically
handled by the SSA. The hybrid multiscale kinetic Monte
Carlo method17 and the Gillespie multiparticle method18 are
examples of this approach. The adaptive hybrid method for
stochastic reaction-diffusion processes described in Ref. 19
and implemented as part of the URDME software20 integrates
multiple methods for stochastic and deterministic diffusion
adaptively for different components of a model.

The remainder of this paper is organized as follows. Sec-
tion II briefly reviews the mathematical background, includ-
ing the chemical master equation �CME�, SSA, FSP, RDME,
and ISSA on which our method is built. Section III describes
the DFSP method and shows how to combine it with SSA or
tau leaping for reaction events to solve reaction-diffusion
problems. In Sec. IV we present numerical experiments that
demonstrate the speed and reliability of the new computa-
tional method. Finally, we conclude with an assessment of
the proposed DFSP method, possible applications, and future
directions.

II. BACKGROUND

In this section we briefly review the CME, SSA, and
FSP algorithms for well-mixed chemical reacting systems, as
well as the RDME and ISSA algorithm for spatially inhomo-
geneous systems.

A. CME and SSA

Consider a system involving N molecular species
�S1 , . . . ,SN�, represented by the state vector X�t�
= �X1�t� , . . . ,XN�t��T, where Xi�t� is the number of molecules
of species Si at time t. There are M reaction channels, labeled
�R1 , . . . ,RM�, in the system. Assume that the system is well
mixed and in thermal equilibrium. The dynamics of reaction
channel Rj is characterized by the propensity function aj and
by the state change vector � j = ��1j , . . . ,�Nj�T: aj�x�dt gives
the probability that, given X�t�=x, one Rj reaction will occur
in the next infinitesimal time interval �t , t+dt�, and �ij gives
the change in Xi induced by one Rj reaction.

The system is a Markov process whose dynamics is de-
scribed by the CME �Ref. 21�

�P�x,t�x0,t0�
�t

= MP�x,t�x0,t0�

= 	
j=1

M

�aj�x − � j�P�x − � j,t�x0,t0�

− aj�x�P�x,t�x0,t0�� , �1�

where the function P�x , t �x0 , t0� denotes the probability that
X�t� will be x, given that X�t0�=x0 and M denotes the gen-
erating matrix for the Markov chain that describes the chemi-
cal reactions. For all but the most simple systems, the CME
is made up of an extremely large or infinite number �dimen-
sion� of coupled ordinary differential equations �ODEs�.
Rather than evolve the CME directly, it is common practice
to compute an ensemble of stochastic realizations whose
probability density function converges to the solution of the
CME. In chemical kinetics, the SSA �Ref. 22� is used for this
purpose.

At each step, the SSA generates two random numbers, r1

and r2 in U�0,1� �the set of uniformly distributed random
numbers in the interval �0,1��. The time for the next reaction
to occur is given by t+�, where � is given by

� =
1

a0
ln
 1

r1
� . �2�

The index � of the occurring reaction is given by the small-
est integer satisfying

	
j=1

�

aj � r2a0, �3�

where a0�x�=	 j=1
M aj�x�. The system states are updated by

X�t+��=X�t�+��. The simulation then proceeds to the time
of the next reaction. Because the SSA simulates all reaction
events in the system, it can be computationally intensive.
Much recent effort has gone into speeding up the SSA
by reformulation,23,13,24 use of advanced computer
architecture,25 and by aggregating reaction events to take
larger time steps �tau leaping�.26

B. FSP

The FSP �Ref. 8� method directly calculates an analytical
approximation to the solution of the CME, as opposed to
simulating an ensemble of trajectories by SSA. It does this
by forming a computationally tractable projection of the full
state space and computing the time evolution of the probabil-
ity density function in this projection space. The FSP was
formulated to solve spatially homogenous stochastic models,
but can be adapted to solve the diffusion master equation
�DME�. Techniques for taking advantage of time scale sepa-
ration in spatially homogenous chemically reaction system
were explored in Refs. 27 and 28.

The FSP method determines the approximate probability
density vector �PDV� of the populations in a chemically re-
acting system by solving the CME in a truncated state space.
Two theorems provide the foundation for the FSP. The first
shows that the solution of the projected system increases
monotonically as the size of the projection increases. The
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second guarantees that the approximate solution never ex-
ceeds the actual solution and provides a bound on the error.
It is important to note that while the evolution of a trajectory
is random, the evolution of the PDV for a given initial con-
dition is deterministic.

For a truncated state transition matrix AJ �see Ref. 8 for
its construction� and initial truncated PDV PJ�t=0�, the FSP
finds PJ�t� at any time t within any given accuracy 	 using
the truncated CME

ṖJ = AJPJ�t� . �4�

Since Eq. �4� is a linear constant-coefficient ODE, its solu-
tion is given by

PJ�t� = exp�AJt�PJ�0� . �5�

Recent work has focused on optimizing FSP through more
effective dynamic state space truncation29 and more efficient
algorithms for solving the resulting equation.30

C. RDME and ISSA

Assume now that the domain 
 in space is partitioned
into voxels Vk, k=1, . . . ,K. For simplicity of presentation,
we will assume for the moment that the domain is in one
dimension. Each molecular species in the domain is repre-
sented by the state vector Xi�t�= �Xi,1�t� , . . . ,Xi,K�t��, where
Xi,k�t� is the number of molecules of species Si in voxel Vk at
time t. Molecules in the domain are able to react with mol-
ecules within their voxel, as described in Sec. II A, and dif-
fuse between neighboring voxels. The dynamics of diffusion
of species Si from voxel Vk to Vj is characterized by the
diffusion propensity function di,k,j and the state change vector
�k,j. �k,j is a vector of length K with �1 in the kth position,
1 in the jth position, and 0 everywhere else: di,k,j�x�dt gives
the probability that, given Xi,k�t�=x, 1 molecule of Si will
diffuse from voxel Vk to Vj in the next infinitesimal time
interval �t , t+dt�. Note that if k= j�1, then di,j,k�x�=D / l2,
where D is the diffusion rate and l is the characteristic length
of the voxel, and otherwise it is zero. The DME can then be
written in a form similar to the CME

�P�x,t�x0,t0�

�t

= DP�x,t�x0,t0�

= 	
i=1

N

	
k=1

K

	
j=1

K

�di,j,k�xi − �k,j�P�x1, . . . ,xi − �k,j, . . . ,xN,t�x0,t0�

− di,j,k�xi�P�x,t�x0,t0�� , �6�

where D denotes generating matrix for the Markov chain that
describes the diffusion of molecules in the system.

The usual method of solution of the DME is to simulate
each diffusive jump event explicitly, giving an exact solu-
tion. This is the method used by the ISSA and the NSM �Ref.
7� algorithms. Another possibility is to use an approximate
method to calculate the net intervoxel transfers due to diffu-
sion. The MSA �Ref. 16� does this by realizing that the num-
ber of diffusion events conforms to a multinomial distribu-
tion which can be calculated and then sampled. The binomial
tau-leap spatial stochastic simulation algorithm15 uses a simi-
lar technique. In Sec. III we present a novel formulation of
FSP that is used to find approximate solutions to the DME.

Combining Eqs. �1� and �6� yields the RDME

�P�x,t�x0,t0�
�t

= MP�x,t�x0,t0� + DP�x,t�x0,t0� . �7�

The RDME is a linear constant-coefficient ODE; how-
ever; it has many more possible states than the corresponding
CME and, thus, is more difficult to solve. Rather than solve
the RDME directly, it is common practice to compute an
ensemble of stochastic realizations whose histogram con-
verges to the PDV of the RDME.

Many of the techniques for accelerating the SSA can be
applied to the ISSA; however, the ISSA remains computa-
tionally expensive. The problem is that fast diffusive trans-
fers between adjacent voxels dominate the computation time
and limit the possibility for exploiting parallelism.

III. THE DIFFUSIVE FSP METHOD

The DFSP method is based on two observations. First,
diffusion of any one molecule is independent of the diffusion
of all other molecules in the system. Using this indepen-
dence, we note that the diffusion of molecules originating in
one voxel is independent of the diffusion of all molecules
originating in other voxels. Thus, we can decompose the
problem of diffusing molecules in K voxels into K subprob-
lems, one for each voxel.

The second observation is that the DME describes a sto-
chastic process, but the DME itself is an ODE and, thus,
deterministic. That is, the evolution of a particular trajectory
is stochastic, but the evolution of the PDV describing the
ensemble of many trajectories is deterministic. Thus, if we
can solve the DME for a given subproblem with n molecules
for a time step t, then we can reuse this solution for any
other subproblem with n molecules and time step t. Next
we will describe more rigorously a subproblem and show
how to set up and solve a FSP for such a subproblem. Note
that to solve the full problem, one needs only to sum the
molecule distributions from each subproblem.
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A. DFSP

As above, we will consider a problem on a one-
dimensional �1D� periodic domain that is subdivided into K
equally sized voxels, each with length l. The kth subproblem
defines a diffusion problem that is initialized with empty
voxels, except for the kth voxel, which contains nk molecules
of a given species. This initial condition is considered a state.
The states of the system are defined by unique configurations
of molecules in voxels, with the total number of molecules in
the system always summing to nk. The possible number of
states is finite, though extremely large. The PDV enumerates
these states and gives the probability of being in any state at
a given time. For the initial condition, it is clear that the PDV
for the system is P�0�= �1,0 ,0 , . . . ,0�T. That is, at time zero,
the probability of being in the state of the initial condition is
1, and the probability of being in all other states is 0.

To solve the DME directly for a subproblem, the DFSP
method retains a finite set of states that carry a high prob-
ability and truncates states of little probabilistic importance.
To determine which states to retain, we will walk through the
process of diffusing molecules. The initial condition forms
the first tier. The second tier is defined by the states that can
be reached with one diffusion event from the initial condi-
tion. The third tier is defined by the states that can be reached
with one diffusion event from any state in the second tier and
is not redundant with states in higher tiers.

In defining each of these states, there is an additional
parameter, MAX, which is defined as the maximum number
of voxels a particle can diffuse away from its originating
voxel in one time step. The value of MAX is 1 less than the
number of tiers. All of the states in the last tier are one
diffusive step away from violating the MAX condition. MAX
puts a limit on the allowable number of particles for a sub-
problem without violating the error condition �error�	�. It is
important to note that MAX dictates the amount of memory
storage required by the algorithm.

For illustration, consider the situation where a voxel
contains 20 molecules at the beginning of a time step, and
MAX=2; that is, we are tracking diffusive jumps of at most
2 voxels away from the originating voxel per time step. The
initial state is given by x1= �0,0 ,20,0 ,0�. x1 is the only state
in the first tier. Since we are on a 1D domain, the states
reachable in a single diffusive jump event from x1 are x2

= �0,1 ,19,0 ,0� and x3= �0,0 ,19,1 ,0�. These two states
make up the second tier. The third tier is comprised
of x4= �1,0 ,19,0 ,0�, x5= �0,0 ,19,0 ,1�, x6= �0,2 ,18,0 ,0�,
x7= �0,0 ,18,2 ,0�, and x8= �0,1 ,18,1 ,0�. Note that x1 is
reachable from the states in the second tier, but since that
state is found in a higher tier, it is not included in the third
tier.

As each tier is added, the corresponding state transitions
are included in AJ. After each tier is added, the truncated
system can be solved and the truncated PDV �PJ�t�� is
calculated. Thus, after adding a tier, we can determine a
bound on our error for the current projection �	�. The addi-
tion of states ends when the error bound is below a predeter-
mined tolerance.

To calculate the final state of the system due to diffusion
over an interval of t, we sample the PDV by selecting K
uniformly distributed random numbers Rk�U�0,1� and find-
ing the smallest integer �k such that 	 j=1

�k PDV�j��Rk, where
PDV�j� is the probability weight of state j. Let Xs,k�t�=nk be
the number of molecules of species s in voxel k at time t and
let T��j �n� be the number of molecules in voxel � of state xj,
given n molecules initially �e.g., x1= �0,0 ,n ,0 ,0� if MAX
=2�. Then, the discrete time evolution of the system is given
by

Xs,k�t + t� = 	
i=−MAX

MAX

Ti��k+i�Xs,k+i�t�� . �8�

For a subproblem with n molecules and a time step t,
we can store its PDV and reuse it for all other subproblems
containing n molecules and time step t. As a result, if we
keep a constant time step, simulating a diffusion process be-
comes a matter of selecting K random numbers and perform-
ing a look-up and comparison.

To simulate the full RDME, we take a reaction step and
then a diffusion step, each of size �D. Following the SSA, we
take a reaction step by evolving the system through reaction
events until the time of the next reaction exceeds �D. We then
perform diffusion of the molecules at the end of the reaction
step via the DFSP as described above. At the end of the
diffusive step, the simulation time is t0+�D. We continue
interleaving reaction and diffusion steps until the final time.

B. Adaptive step splitting

In the case where an initial population for a subproblem
is large enough to exceed the error condition �	� for a given
MAX, we need to split the step. Rather than split the step in
time, we take advantage of the independence of diffusing
molecules and split the subproblem into several sub-
subproblems. For example, suppose that the maximum num-
ber of particles one can diffuse in �D without violating the
error condition is 10. In this case, we would treat this sub-
problem of 20 particles as two sub-subproblems of 10 each.
The states for each sub-subproblem are x1= �0,0 ,10,0 ,0�,
x2= �0,1 ,9 ,0 ,0�, x3= �0,0 ,9 ,1 ,0�, x4= �1,0 ,9 ,0 ,0�,
x5= �0,0 ,9 ,0 ,1�, x6= �0,2 ,8 ,0 ,0�, x7= �0,0 ,8 ,2 ,0�, and
x8= �0,1 ,8 ,1 ,0�. We then can reconstruct the solution for
the subproblem by picking a uniformly distributed random
number �as above� for each sub-subproblem, selecting the
corresponding state, and then summing these two sets. It is
clear that the states of the subproblem are all possible com-
binations of x1, x2, x3, x4, x5, x6, and x7. While some of these
combinations may be redundant, the number of unique states
for the subproblem of 20 particles has been increased from
the original 7. By the first FSP theorem, the solution of the
projected system increases monotonically as the size of the
projection increases; as a corollary, the size of the error must
decrease as we add states.
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We continue splitting the subproblems until the error
from each subproblem is less than 	 /2L, where L is the
recursion level. In the extreme case of splitting the subprob-
lem into sub-subproblems of 1 molecule, the combination of
states would provide all possible combinations of the origi-
nal nk particles in the 2�MAX+1 voxels of the subproblem.

The advantage of splitting the subproblems in this way
�as opposed to splitting the time step� is that we can keep t
constant, which allows us to reuse our lookup table. Calcu-
lation of the lookup table is the most computationally expen-
sive part of the algorithm. In order to maximize speed, we
seek to avoid changing the time stepsize whenever possible.

Next we perform an analysis of the adaptive step split-
ting error control. Consider the case where we want to cal-
culate a final state of a subproblem containing 100 molecules
of a chemical species after �D=0.1 using a local error toler-
ance of 10−5. If all 100 molecules are moved simultaneously,
then the resulting single step FSP error will be 0.38 and our
truncated state space contains 62% of the probability density.
Utilizing the fact that the FSP error has a nonlinear relation-
ship with the number of molecules moved �Fig. 1 shows the
error as a function of the number of molecules moved in one
time step�, we can split the molecules into smaller groups
where the sum of the error of diffusing the smaller groups is
less than the original error. We recursively split a group of
molecules in half if the error to move it in one step is greater
than the error tolerance �adjusted for the recursion level�. For
100 molecules, we first split them into two groups of 50
�error of 3.86�10−2�, then four groups of 25 �error of 1.46
�10−3�, and so on. In total, we will move 12 groups of 6
molecules each with error of 2.4�10−7�10−5 /24=6.3
�10−7 �four levels of recursion�, four groups of 4 molecules
each with error of 1.4�10−8�10−5 /25=3.1�10−7, and four
groups of 3 molecules each with error of 1.6�10−9

�10−5 /25=3.1�10−7 �both with five levels of recursion�.

The total error is 3.0�10−6, which is the sum of the error in
all of the recursion steps. Using this method, we are able to
satisfy the error tolerance, while continuing to utilize the
efficiency of the lookup tables.

C. Detailed algorithm descriptions

1. State space exploration

The algorithm to determine the truncated state space is
presented in detail in Algorithm 1. The input parameters are
the number nk of particles in the originating voxel k, and the
maximum number of diffusive transfers MAX that a particle
can move away from the originating voxel in one diffusion
time step. The state representing the initial condition is that
all nk particles are in the originating voxel. The algorithm is
presented for an anisotropic, 1D Cartesian mesh with peri-
odic boundary conditions, and assumes that the number of
voxels in any dimension is large relative to MAX.

Algorithm 1 State Space Exploration

INPUT: nk, MAX, Initial State
OUTPUT: TransitionMatrixn, StateListn

1: initialize: NextTierQueue← Initial State, Queue←�
2: initialize: StateList← Initial State, TransitionMatrix←�
3: for Tier � �2, MAX� do
4: Queue←NextTierQueue

5: NextTierQueue←�
6: for all states s�Queue do
7: for all non-empty voxels v�s do
8: for all inter-voxel transitions d �with probabilities p�d��

originating from v do
9: find state t←s+d�v�
10: if t�StateList then
11: add t to StateList, add t to NextTierQueue

12: end if
13: TransitionMatrix�s , t�←p�d�
14: end for
15: end for
16: end for
17: end for
18: Update Diagonal elements in TransitionMatrix

19: Truncate TransitionMatrix so that it is of dimension �StateList�
20: Create absorbing state in TransitionMatrix

We then store the TransitionMatrixn and
StateListn for later use. For all cases where the number
of particles in the originating voxel n, such that n is greater
than MAX, the structure of the TransitionMatrixn is
constant, and the values in the matrix are linear functions of
n. This matrix is obtained by performing the state space ex-
ploration algorithm with n as an unspecified parameter con-
strained to a value greater than MAX. For n�MAX it is still
necessary to go through the state space exploration, because
for these values the TransitionMatrixn will not con-
form to the general structure.
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FIG. 1. Projection error �	� for varying number of molecules given �D

=0.1 s, �=0.62 �m, and D=0.001 �m2 s−1. Adaptive step splitting allows
us to take advantage of the independence of diffusing molecules and the
nonlinear relationship of projection error to the number of molecules dif-
fused to reduce the total error of diffusion step over �D by splitting it into
sub-subproblems of fewer molecules rather than by splitting the time step.
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2. DFSP diffusion step

This is the algorithm for taking a single time step of
length �D for a single voxel k containing nk particles. We
assume that TransitionMatrixn and StateListn

have already been calculated and stored, and that MAX and
�D are constant. Model parameters for the diffusion coeffi-
cient D and voxel length � are also used.

Algorithm 2 shows the details of this process. The output
of this algorithm is a vector map where the positions corre-
spond to voxel indices and the values correspond to the num-
ber of particles that have traveled to that voxel from the
originating voxel nk via diffusion after an interval of length
�D seconds.

Algorithm 2 DFSP diffusion step with splitting

INPUT: nk, �D, TransitionMatrixn, StateListn,
ErrorTolerancen

OUTPUT: Output State
1: initialize once: PDVLookupTable, nmax←�, L←0
2: if nk� =nmax then
3: return Output State←DFSP_Diffusion��nk /2� ,L+1�

+DFSP_Diffusion��nk /2� ,L+1�
4: else
5: if PDVLookupTable contains nk then
6: PDV←PDVLookupTable�nk�
7: else
8:

PDV←exp�TransitionMatrixnk
�D /�2��D�� �1,0 ,0 , ¯ ,0�T

9: if PDV�end��ErrorTolerance /2L then
10: nmax←nk

11: return Output State←DFSP_Diffusion��nk /2��
+DFSP_Diffusion��nk /2��

12: end if
13: PDVLookupTable�nk�←PDV

14: end if
15: Generate a random number X�U�0,1�
16: Find the smallest integer � such that 	 j=1

� PDV�j��X
17: return Output State←StateListnk

���
18: end if

3. Reactions

In our computational framework for reaction-diffusion
problems, we use a fractional step method, which simulates
the diffusive transfers by DFSP and the reaction events by
SSA. We begin at t0 and calculate the first reaction event. We
simulate reactions until the time to the next reaction would
advance the simulation beyond t0+�D, at which point we
forego the last reaction and perform a diffusion step using
DFSP. After the diffusion step, the simulation is at time t0

+�D. This process is repeated until the simulation is com-
plete.

This process is detailed in Algorithm 3. Inputs to this
algorithm are �D, the stoichiometric matrix �, and the initial
state of the system. The calls to DFSP_Diffusion use a
StateList and TransitionMatrix that correspond to
the geometry and jump propensities of the problem as well
as a specified ErrorTolerance.

Algorithm 3 RDME simulation algorithm using DFSP for diffusion and
SSA for reactions

1: initialize system state: X, t=0
2: Calculate the propensity functions ajk�X� and a0←	k=1

K 	 j=1
M ajk�X�

�where M is the number of reactions and K is the number of voxels�
3: Generate two random numbers r1 ,r2�U�0,1�
4: tnext_rxn← t+ 1

a0
ln� 1

r1
�

5: tnext_dif f ← t+�D

6: while t� tfinal do
7: if tnext_rxn� tnext_dif f then
8: Find �r, �x smallest integers to satisfy 	k=1

�x 	 j=1
�r ajk�r2a0

9: Update X�x
�tnext_rxn�=X�x

�t�+��r

10: Generate two random numbers r1 ,r2�U�0,1�
11: t← tnext_rxn

12: else
13: Xnext←�
14: for k� �1. . .K� do
15: for i� �1. . .N� do
16: Xnext←Xnext+DFSP_Diffusion�Xk,i�

�diffusion of species i in voxel k�
17: end for
18: end for
19: X←Xnext

20: t← tnext_dif f

21: tnext_dif f ← t+�D

22: end if
23: Update propensity functions ajk�X� and a0←	k=1

K 	 j=1
M ajk�X�

24: tnext_rxn← t+ 1
a0

ln� 1
r1

�
25: end while

IV. EXAMPLES AND ANALYSIS

We examine two models to explore the validity, accu-
racy, and speed of DFSP. The first is a model of pure diffu-
sion. The second is a biologically inspired reaction-diffusion
spatial stochastic model.

A. Diffusion example

The first example is composed of a single chemical spe-
cies diffusing in one dimension. The domain is periodic �

=12.4 �m� and we discretized it into 200 voxels with length
of �=0.062 �m. This domain is equivalent to a circle with a
radius of 2 �m, so we will plot the results on the range of
�−2� ,2��. The initial condition is a step function such that
each voxel in the range of �−2� ,0� has 100 molecules and
the remaining voxels are empty. The chemical species move
with a diffusion coefficient of 0.001 �m2 s−1. Numerical ex-
periments show that the relaxation time of this system is
approximately 7000 s �data not shown�. In this example, we
use the adaptive step splitting with MAX=5. Figure 2 shows
the initial condition �dashed blue�, a transient state �dotted
black�, and a final state �solid blue� for a single sample tra-
jectory of this model.

1. Validation

To test the validity of solving the diffusion example with
ISSA or DFSP, we solve for the moments analytically �see
Appendix A for derivation�. Figure 3 shows the error in the
mean and variance as a function of time for three different
sized ensembles of ISSA and DFSP trajectories. The error is
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calculated using the L� norm �across space� of the difference
between the ensemble moments and the analytically derived
moments, divided by the norm of the analytical moment,

Normalized L� error�t�

=
�analytical _ moment�x,t� − ensemble _ moment�x,t���

�analytical _ moment�x,t���

.

�9�

As the ensemble size increases, the error in both the mean
and the variance decreases at the same rate for ISSA as
DFSP. Figure 4 shows the error in the mean and variance as
a function of the voxel size. As the voxel size decreases, the
error decreases. This shows convergence of RDME solution
methods to the analytical solution to the stochastic diffusion
equation. Since the ISSA is an exact simulation method to
the RDME while DFSP is an approximate method, this
analysis shows that DFSP is just as valid as the ISSA for
these parameter values.

To assess the accuracy of DFSP, we treat an ensemble of
ISSA simulations as the baseline distribution because the
ISSA is a true realization of the RDME and its ensemble
converges to the exact solution of the RDME. The Kolmog-
orov distance31 is a standard measurement of the difference
between two cumulative distribution functions �CDFs�, it is
defined as the largest deviation between two CDFs. We
choose this measure because it compares all the moments of
two distributions and is thus a stronger tool for analysis than
methods that use individual moments. We will plot the aver-
age Kolmogorov distance across space �Kmean� sampled at
each point in time. This is given by

Kmean�a,b,t� =
1

N
	
n=0

N−1

�CDFa�n�,t� − CDFb�n�,t���, �10�

where N is the number of voxels. The CDFa�x , t� is calcu-
lated from an ensemble of trajectories generated by algo-

rithm a �e.g., ISSA or DFSP� sampled at spatial location x at
time t. We compare the Kmean of two independent ISSA en-
sembles �this is known as the self-distance� at each sampled
point in time with the Kmean of an ISSA ensemble and a
DFSP ensemble. If the two Kmean values are similar, then
DFSP is statistically indistinguishable from ISSA for this en-
semble size.

Figure 5 shows Kmean values across time for the ISSA
self-distance and ISSA versus DFSP. We show results for
ISSA versus DFSP for two sets of simulation parameters: the
first uses �D=0.1 s, ErrorTolerance=10−5 and the sec-
ond uses �D=1.9 s, ErrorTolerance=10−3. These re-
sults are for an ensemble size of 105 trajectories. We note
that for an ensemble size of �104, DFSP is indistinguishable
from ISSA �data not shown�. These results show that for a
sufficiently small values of �D and ErrorTolerance
DFSP is a good approximation for ISSA. For the results with
�D=1.9 s, the adaptive step splitting fails to meet the error
tolerance; therefore, as the ensemble size grows the error
accrued by DFSP is no longer negligible. Thus, it is clear that
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FIG. 2. Solution to a pure diffusion problem with a step function as the
initial condition. Plotted is the state of the system at t=0 s �dashed blue�,
500 s �dotted black�, and 7000 s �solid red� for a stochastic trajectory. The
domain is a circle with a radius of 2 �m, subdivided equally into 200
voxels.
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FIG. 3. Plot of the normalized L� error �maximum deviation from analytical
solution� vs time in the mean �a� and variance �b� for varying ensemble sizes
for both DFSP ��D=0.1 s� and ISSA �voxel size of 0.06 �m� for an en-
semble size of 103 trajectories. The error increases with time �as expected
for a discretized solution� at the same rate for both DFSP and ISSA. Addi-
tionally, the error decreases �to the discretization error limit� with increasing
ensemble size at the same rate for DFSP and ISSA.
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for increasing values of �D and ErrorTolerance the er-
ror in the simulation grows. We will show that it is possible
to utilize this feature of DFSP to trade accuracy for compu-
tational performance.

2. Error analysis

To study the error properties of DFSP, we must first find
the limits of our adaptive step splitting error control method.
The contribution from diffusion to the total error should be
constant for all values of �D as long as we are able to move
at least 1 molecule per DFSP diffusion step without violating

our error tolerance. Figure 6 shows a plot of the maximum
possible number of molecules moved per diffusion step of
DFSP for various values of �D and a fixed error tolerance of
10−5. To find the maximum number of molecules we can
move for a given �D, we compute DFSP matrix exponentials
for increasing molecule counts. The maximum number that
can be moved is 1 less than the number at which the estimate
error first exceeds the tolerance. From this study, we deter-
mined that the maximum value of �D is 0.925 s.

To measure the error in the simulated ensembles, we
integrate the deviation between the K-distance of DFSP and
ISSA and the self-distance of ISSA over space and time,
normalized by the size of the domain,

Error�D
=

�DFSP�D
�x,t� − ISSA�x,t��dxdt

dxdt
, �11�

where ISSA�x , t� is the K-distance over space and time be-
tween two ensembles of 10 000 runs of the ISSA, and
DFSP�D

�x , t� is the K-distance over space and time between
10 000 runs of the DFSP algorithms �with diffusion step �D�
and 10 000 runs of the ISSA algorithm. We examine this
error metric for varying values of �D with a fixed error tol-
erance of 10−5. Figures 7 shows the error as a function of �D

for the diffusion example as well as the G-protein example
�discussed in Sec. IV B�. This shows that for this range of
values of �D, the error in the diffusion example is constant
and a function only of the ErrorTolerance parameter.

B. G-protein cycle example

The second example is the pheromone induced
G-protein cycle in Saccharomyces cerevisiae. We have con-
verted the PDE model from Ref. 32 into a stochastic model
and, for brevity, reduced it to ligand, receptor, and G-protein
species. The ligand level is constant in time but it varies
spatially �a cosine function� with parameters determined ex-
perimentally. The ligand binds stochastically with an initially
isotropic field of receptor proteins. The bound receptor acti-

0.10.075 0.20.15 0.250.050.03

0.1

0.15

0.2

0.25

voxel size (µ m)

N
or

m
al

iz
ed

L ∞
er

ro
r

ISSA mean
DFSP mean
ISSA var
DFSP var
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calculated at t=100 s �a transient state� for an ensemble size of 103 trajec-
tories. As voxel size decreases, the error in the mean decreases at the same
rate for both DFSP and ISSA. The error in the variance shows a similar
trend; however, it also shows increased error for small voxel sizes. This is
mostly likely sampling error due to a constant system population distributed
into an increasing number of voxels.
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vates the G-protein, causing the G� and G�� subunits to
separate. G� acts as an autophosphotase and upon dephos-
phorylation, rebinds with G�� to complete the cycle. The
spatial domain is identical to the previous model and the
simulation time is set to 100 s, as deterministic simulation
shows that steady state is achieved by that time �data not
shown�. G�� is the component farthest downstream from the
ligand input and acts as signal to the downstream Cdc42
cycle and will therefore be the output for this model. Figure
8 shows the constant ligand gradient �left� and the spatial
distribution of G�� over 1000 runs �right, mean and standard
deviation�. See Appendix B for complete description of the
reactions.

1. Validation

For the G-protein example, Fig. 9 shows the Kmean for
ISSA versus DFSP �using �D=0.1 s, ErrorTolerance
=10−5� for an ensemble size of 105 trajectories. Note that for
an ensemble size of �103 trajectories, DFSP is indistinguish-
able from ISSA. For these simulation parameters, the differ-
ence between ISSA and DFSP values of Kmean is constant
over time, and DFSP Kmean is consistent across the time span
of the simulation. This indicates that the simulation is stable,
but there is an error in the results that shows up as a differ-
ence between the DFSP and ISSA curves. We will discuss
the source of this error and provide an analysis in the follow-
ing section. We also show results for �D increased to the CFL
limit,33 which is �1.9 s, and ErrorTolerance to 10−3 in
an attempt to determine the limits of DFSP’s ability to
handle full reaction-diffusion models. For these parameters
the specified ErrorTolerance cannot be met, though the
adaptive splitting moves a single molecule per step. The dif-
ference between this curve and the ISSA curve is signifi-

cantly more, and is oscillatory in time. This indicates that the
simulation results are inconsistent.

2. Error analysis

Over a given time step of length �D we first apply the
reaction operator �SSA in this case� to the system, then the
diffusion operator �using FSP� is applied to the resulting
state of the system. Since these operators are decoupled, an
additional splitting error is incurred by the method when
reaction is included. Molecules that react in the timestep are
not diffused, and molecules produced by a reaction in the
timestep are diffused for the full length of the time step.

DFSP applied to the RDME is an operator split method,
which is a first order Strang-splitting scheme,34 and as such,
it is expected that the error should increase approximately
linearly with �D. Figure 7 shows the error as a function of �D.
We see that the error in the G-protein example is increasing
approximately linearly with respect to �D and collapses to the
error in the diffusion only system as �D goes to zero, con-
firming our expectation.
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3. Performance

Figure 10 shows the speedup of DFSP over ISSA and
MSA for the G-protein example. The performance increase
for DFSP over ISSA and MSA is due in part to the difference
in the number of times the reaction propensities must be
updated as a result of diffusion events. For one realization,
the expected number of diffusion events in an ISSA simula-
tion is 1.2�106. Thus, the reaction propensities must be up-
dated approximately 2.4�106 times �source and destination
voxels for each diffusion event�. By numerical experimenta-

tion, the average number of reaction events for any of the
methods is �170 000. The time to the next diffusion event
for MSA is given as the minimum of the time to the next
reaction step and a predetermined time step; therefore, there
must be at least as many diffusion events in a MSA simula-
tion �regardless of stencil� as reaction events. For MSA, dif-
fusion is done in all voxels, therefore updates need to be
done in every voxel at each time step. Therefore, the ex-
pected number of reaction propensity updates in MSA due to
diffusion steps is �3.4�107. For DFSP with �D=0.1 s,
1000 diffusion steps are taken, and the reaction propensities
are updated in every voxel on each DFSP step, resulting in
2�105 reaction updates. Therefore, it is reasonable to expect
that for this problem DFSP will be �102 times faster than
MSA and �10 times faster than ISSA for �D=0.1 for this
problem. Figure 10 validates this claim.

Next we examine the effect of different spatial discreti-
zation schemes on the performance. Figure 11 shows the
computation time as a function of �D for three levels of mesh
refinement, and the computation time for ISSA at each level
for comparison. The computation time for DFSP does not
vary as greatly as ISSA for different mesh sizes. In solving
for the diffusion step of the algorithm, DFSP iterates over the
voxels in the system and thus should scale linearly with the
number of voxel. For comparison, in ISSA the number of
diffusion jumps scales as 2 /�2. Further calculations show
that as we double the number of voxels the runtime for DFSP
doubles, while for ISSA it increases by a factor of 8. This
verifies our expectations.

For N=100, ISSA outperforms DFSP for the range of �D

values shown. However, for this discretization level �D can
be as large as 3.6 s, resulting in speedups proportional to the
N=200 and N=400 mesh sizes. For reaction-diffusion sys-
tems, the fractional step decoupling error is proportional to
�D. Thus, for coarse meshes where a large �D is possible,
global accuracy constraints may force a parameter selection
such that ISSA performs better than DFSP.
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V. CONCLUSIONS

DFSP is a powerful new algorithm that yields impressive
performance improvements over ISSA. DFSP provides a
means to quantify and control the error, allowing a precise
trade-off between accuracy and performance. Additionally,
unlike many hybrid algorithms, DFSP conserves mass.

As multicore and graphics processing unit computing
becomes even more prevalent, the importance of algorithms
that are able to take advantage of these new technologies will
increase. DFSP avoids many of the serial limitations imposed
on spatial stochastic simulation. We are currently exploring
enhancements that utilize these features. Another advantage
of DFSP is that it extends simply to higher dimensional sys-
tems. This will be demonstrated in our future work.

The speedup offered by DFSP enables the simulation on
a workstation of ensemble sizes that were previously feasible
only on high performance clusters. It extends the scope of
problems that are computable on high performance clusters.
To produce our validation data for the G-protein cycle model
we needed an ensemble of 100 000 runs for statistical accu-
racy. The DFSP algorithm generated this data set in 6.2 h �for
�D=0.1 s and error tolerance of 10−5� and 3.8 h �for �D

=1.9 s and error tolerance of 10−3� on a commodity desktop
workstation with a quad-core processor �computing four tra-
jectories simultaneously�. The ISSA data sets were generated
on a high performance computer cluster, so direct compari-
son is not possible. However, we estimate that each of the
ISSA data sets would take approximately 472 processor
hours, or 118 real hours �approximately 5 days� to calculate
on the desktop workstation.
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APPENDIX A: ANALYTICAL SOLUTION TO THE
DIFFUSION EXAMPLE

On a 1D infinite domain, if a single molecule is homo-
geneously distributed in the interval �a ,b�, then its probabil-
ity distribution function p�x , t� is a step function

p0�x� = � 1

b − a
, a � x � b

0 else.
� �A1�

We can evolve the probability distribution forward in time by
solving the diffusion equation

�p�x,t�
�t

= D�2p�x,t� �A2�

using Eq. �A1� as the initial condition. The solution to the
diffusion equation on a 1D infinite domain is the convolution
of the initial condition with a Gaussian kernel,

p�x,t� =
1

�2�Dt
�

a

b 1

b − a
exp
− �x0 − x�2

2Dt
�dx0. �A3�

Since we seek to compare against numerical solutions solved
on a discretized domain, we can use Eq. �A3� to find the
probability that a single molecule homogeneously distributed
in the interval �a ,b� �starting voxel� at t=0 will be in the
interval �x1 ,x2� �ending voxel� at time t,

P�x1,x2,t�a,b�

=
1

�2�Dt
�

x1

x2 �
a

b 1

b − a
exp
− �x0 − x�2

2Dt
�dx0dx . �A4�

For the solution on the domain �−2� ,2�� with periodic
boundary conditions, we can use mirroring. Mirroring is a
method of translating a periodic domain into an infinite do-
main by repeating the initial condition function periodically
from �−� ,��. The problem is then solved by integrating
across the infinite domain for solutions at points in the origi-
nal domain,

P�x1,x2,t�a,b�

= 	
j=−�

�
1

�2�Dt
�

x1

x2 �
a+4�j

b+4�j 1

b − a
exp
− �x0 − x�2

2Dt
�dx0dx .

�A5�

For finite precision of our answer, we need take only a finite
number of terms

P�x1,x2,t�a,b�

= 	
j=−J

J
1

�2�Dt
�

x1

x2 �
a+4�j

b+4�j 1

b − a
exp
− �x0 − x�2

2Dt
�dx0dx ,

�A6�

where 2J+1 is a sufficient number of terms for the required
precision of our solution.

For the diffusion example �see Fig. 2�, the step function
initial conditions is equivalent to homogeneously distributing
100 molecules in each of the 100 voxels in the interval
�−2� ,0� �for �=0.06 �m�. If a molecule starts in the kth
voxel, and we want to know the probability that it will be
within a given voxel containing the interval �x ,x+�� at time
t, we can use Eq. �A6� with the following inputs:

Pk�x,t� = P�x,x + �,t�− 2� + �k − 1��,− 2� + k�� . �A7�

To compare to our numerical solutions, we need to find
the moments of the population of molecules in a given voxel
at a given time. The generic binomial distribution is a sum of
many independent Bernoulli trials and the mean and the vari-
ance of such a distribution are equal to the sums of the
means and variances of each individual trial. A molecule
being located within a given voxel at time t is a Bernoulli
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trial with probability given by Eq. �A6� because it is either
within the voxel or it is not. Thus, the population u�x , t� of a
voxel containing the interval �x ,x+�� at any time t is bino-
mially distributed, and the analytical solution for the mean
and variance of the population is given by

E�u�x,t�� = 	
k=1

100

nkPk�x,t� , �A8�

Var�u�x,t�� = 	
k=1

100

nkPk�x,t��1 − Pk�x,t�� , �A9�

where nk is the initial population of the voxel containing the
interval �x ,x+��.

We can use Eqs. �A8� and �A9� to compare the mean and
variance obtained from an ensemble of runs from ISSA and
DFSP.

APPENDIX B: G-PROTEIN CYCLE EXAMPLE

These are the equations that describe the reactions of the
G-protein cycle example.

1. Equations

�→
kRs

�R� , �B1�

�R�→
kRd0

� , �B2�

�L� + �R�→
kRL

�RL� + �L� , �B3�

�RL� →
kRLm

�R� , �B4�

�RL�→
kRd1

� , �B5�

�RL� + �G�→
kGa

�Ga� + �Gbg� + �RL� , �B6�

�Ga�→
kGd

�Gd� , �B7�

�Gd� + �Gbg�→
kG1

�G� , �B8�

2. Rate constants

kRL = 2 � 10−3 M−1, kRLm = 1 � 10−2,

kRs = 4/SA, kRd0 = 4 � 10−4, kRd1 = 4 � 10−4,

kG1 = 1 � SA, kGa = 1 � 10−5 � SA, kGd = 0.1,

Dm = 0.001 �m2/s.

3. Total populations and initial conditions

SA = 50.2655 �m2, V = 33.5 �m3,

�R�0 = 10 000/SA, �G�0 = 10 000/SA ,

�L��z� = Lmid + Lslope�z − z0� ,

Lmid = 2 nM, Lslope = 1 nM��m�−1.
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