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We report a single-copy tempering method for simulating large complex systems. In a generalized
ensemble, the method uses runtime estimate of the thermal average energy computed from a novel
integral identity to guide a continuous temperature-space random walk. We first validated the
method in a two-dimensional Ising model and a Lennard-Jones liquid system. It was then applied to
folding of three small proteins, trpzip2, trp-cage, and villin headpiece in explicit solvent. Within
0.5�1 microsecond, all three systems were reversibly folded into atomic accuracy: the alpha carbon
root mean square deviations of the best folded conformations from the native states were 0.2, 0.4,
and 0.4 Å, for trpzip2, trp-cage, and villin headpiece, respectively. © 2010 American Institute of
Physics. �doi:10.1063/1.3435332�

I. INTRODUCTION

Molecular simulations at room temperature usually suf-
fer from a slow dynamics for large complex systems, such as
proteins in explicit solvent. A promising solution to the prob-
lem is to use tempering methods, either single-copy based
methods1,2 such as simulated tempering, or multiple-copy
based methods such as parallel tempering, also known as
replica exchange.3 In either case, the system regularly
changes its temperature in a way that is consistent to the
underlying thermodynamics. The value of these methods lies
in that they can efficiently overcome energy barriers by ex-
ploiting a fast dynamics at higher temperatures.

In traditional tempering methods, the temperature is a
discrete random variable that can only assume a few pre-
defined values. The success rate of transitions between two
neighboring temperatures depends on the overlap of canoni-
cal energy distributions at the two temperatures and decays
as the system size grows. Thus, to reach an optimal sampling
efficiency for a large system, one needs to narrow down the
temperature gap, and to increase the number of sampling
temperatures. In simulated tempering, the number of weight-
ing parameters to be estimated for simulation increases with
the number of temperatures. In replica exchange, the node-
node communication cost increases with the number of tem-
peratures. Naturally, it is desirable to have an efficient tem-
pering method that does not depend on a discrete-
temperature setup.

In this paper, we report a single-copy tempering method
in which the temperature is a continuous variable driven by a
Langevin equation. It is based on an improved version of a
previous method.2 By employing improved estimators for
thermodynamic quantities, one cannot only realize an effi-
cient tempering but also correctly calculate thermodynamic
quantities for the entire temperature spectrum. The essential
feature of the method is the calculation of the thermal aver-

age energy Ẽ��� along the simulation trajectory. After the

convergence of Ẽ���, the partition function and other ther-
modynamic quantities can be easily derived.

The paper is organized as follows. In Sec. II, we give a
theoretical derivation of the method. In Sec. III, the method
is verified on a two-dimensional Ising model and a Lennard-
Jones liquid system, where the exact thermodynamic quanti-
ties are either known or accurately computable. In Sec. IV,
we apply the method to the folding of three small proteins,
trpzip2, trp-cage, and villin headpiece, in explicit solvent.
The minimal alpha-carbon root mean square deviation
�C�-RMSDs� of the best folded conformations from the na-
tive states are 0.2, 0.4, and 0.4 Å, respectively �the last figure
for villin headpiece is measured from an x-ray reference
structure; and it should be 1.0 Å if it is measured from an
NMR reference structure�.

II. METHOD

Our method samples the system in a continuous tem-
perature range and calculates thermodynamic properties as
functions of the temperature. As we shall see, a random walk
in temperature space only requires an estimate of the average
energy at the current temperature in order to correctly popu-
late the desired distribution. We present an efficient way for
estimating the average energy and use it to perform a fast
sampling along the temperature. In addition, an adaptive av-
eraging scheme is used to improve convergence in early
stages.

This section mainly concerns the detailed description of
the method. A relatively self-contained outline is first pre-
sented in Sec. II A. The rest of the section is organized as
follows. In Sec. II B, we review basics of sampling in a
generalized ensemble where the temperature is a continuous
random variable. In Secs. II C and II D, we present integral
identities that help the ensemble to asymptotically reach the
desired distribution. In Sec. II E, we present an adaptive av-
eraging scheme to accelerate initial convergence.a�Electronic mail: jpma@bcm.tmc.edu.
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A. Brief outline of implementation

The method can be implemented as follows. It concerns
the simulation of a system in a given temperature range
��min,�max� according to a predefined temperature distribu-
tion w���, which is usually proportional to 1 /� for a molecu-
lar system �the choice is explained in Appendix C�. Note, we
work with the reciprocal temperature �=1 / �kBT�, where kB

is the Boltzmann constant and T is the regular temperature, �
here is a variable that continuously changes within the tem-
perature range.

In each simulation step, we first change system configu-
ration according either to constant temperature molecular dy-
namics or to Monte Carlo methods. Next, we update statis-
tics about the potential energy and then compute an

estimated average energy Ẽ���. The energy fluctuation, mea-
sured from the difference between the instantaneous poten-

tial energy E and the averaged value Ẽ��� at the current
temperature, determines the amount of temperature change
that the system can afford to maintain the distribution of the
generalized ensemble. It thus can be used to drive a
temperature-space random walk in a way that preserves the
underlying thermodynamics at each individual temperature.
Practically, we use the following Langevin equation to guide
the temperature space random walk,

d�1/��
dt

=
d�kBT�

dt
= E − Ẽ��� −

� ln w���
��

+
�2

�
� , �1�

where E is the current potential energy, and � is a Gaussian
white noise that satisfies ���t� ·��t���=��t− t��. Note, here t is
the time scale for integrating the Langevin equation, which
does not necessarily coincide with the actual time in molecu-
lar dynamics. Apart from the random noise, the rate of
change of the temperature is determined by the difference
between the instantaneous energy E and the average energy

at the current temperature Ẽ���. Thus, Eq. �1� tends to raise
the temperature when the instantaneous energy E rises above

the average value Ẽ���, or to lower the temperature when E

falls under Ẽ���. A derivation of Eq. �1� can be found in
Appendix A. In implementation, � is first converted to its
reciprocal kBT=1 /�; then kBT is updated according to Eq.
�1�; finally the new � is computed from the reciprocal of the
updated kBT. We use kBT instead of � as the variable of
integration, because in this way, the magnitude from the ran-
dom noise is proportional to the temperature value �2 /�
=�2kBT. The effect of the temperature change can be real-
ized as a scaling of velocity or force in molecular dynamics.
We repeat the process for each simulation step until the
simulation ends.

In order to interpolate thermodynamic quantities on a
continuous temperature range, we divide the entire range
evenly into many small bins ��i ,�i+1�. The bin size is used
for applying integral identities and is much smaller than the
gap between neighboring sampling temperatures in tradi-
tional tempering methods, such as replica exchange or simu-
lated tempering. During simulation, each bin i collects sepa-
rate statistics on the potential energy and its variance along
the trajectory for states with �� ��i ,�i+1�. Statistics in dif-

ferent bins are later combined together to form unbiased es-
timates of the average energy. For a complex molecular sys-
tem, the adaptive averaging in Sec. II E can be used to
improve the early convergence.

For statistical efficiency, Ẽ���, �� ��i ,�i+1�, is not cal-
culated from the average energy of the bin, but instead from
a large temperature window ��− ,�+� containing the bin as

Ẽ��� = 	
j

�� j�E� j�s��� j� , �2�

where �� j =� j+1−� j is the bin width; �E� j is the average
energy from the jth bin �� j ,� j+1�, �s��� j� is a modulating
factor to ensure an unbiased estimate, see Fig. 1�b�, and its
computation is detailed in the next paragraph. The tempera-
ture window ��− ,�+� is determined from the current tem-
perature � in such a way that � is approximately at the center
of the corresponding window ��− ,�+�.

The first step of computing Ẽ��� is to determine two
parameters a+ and a− by solving the following two equations:

a+ + a− = 1, �3�

��������E2������−,�+� = 0. �4�

Here, a+ and a− are parameters defined in the equation
����=�s���+�t���, whose two components �s��� and
�t��� are defined as

−1

−a+

0

a−

βi βi+1β− β+

(a) φ(β)
φs(β)
φt(β)

0
βi βi+1β− β+

(b) φs′(β)
−φt′(β)

FIG. 1. �a� Schematic illustration of auxiliary functions ����, �s��� and
�t���, which are used in the integral identity for estimating the thermal

average energy Ẽ���. The estimate computed in this way uses statistics from
a large temperature window ��− ,�+� instead of a single bin ��i ,�i+1� and
also avoids systematic bias. ���� is a combination of a smooth function
�s��� and a function �t��� localized at ��i ,�i+1�. �s��� is controlled by two
parameters a+ and a− that satisfy a++a−=1. �b� Schematic illustration of
�s���� and −�t����. �s���� �shaded� spans over the whole temperature win-
dow ��− ,�+� while −�t���� is localized in ��i ,�i+1�.
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�s��� = 
a−�� − �−�/�� j+1 − �−� , � � ��−,�i+1�
a+�� − �+�/��+ − � j+1� , � � ��i+1,�+� ,

� �5�

and

�t��� = 
− �� − �i�/��i+1 − �i� , � � ��i . �i+1�
0, otherwise,

� �6�

respectively. Figure 1�a� schematically illustrates �s���,
�t���, and ����. In Eq. �4�, the inner bracket �¯ ��� is a
configuration average of the energy fluctuation ��E2��� at a
fixed temperature ��. For ��� �� j ,� j+1�, since the bin size is
small, we compute the energy fluctuation from the states
collected in the bin �� j ,� j+1�, and use it to approximate
��E2���. The outer angular bracket �¯ ���−,�+� denotes an av-
erage over temperature �� within the window ��− ,�+�, it is
computed as a sum of the energy fluctuation from different
bins within ��− ,�+� with ����� being the coefficient of com-
bination. After the averaging, Eq. �4� is a simple linear equa-
tion of a+ and a−. By solving Eqs. �3� and �4�, a+ and a− are
determined. In a physical solution, both a+ and a− are non-
negative. If the linear equations lead to a negative value for
either a+ or a−, zero is used instead. This measure ensures the
robustness of our estimator and is thus useful in early stages
when the energy fluctuation ��E2��� is unreliable. The deter-
mination of a+ or a− completely specifies �s��� and its de-
rivative �s����.

B. Generalized ensemble with a continuous
temperature

We start our method by constructing a generalized en-
semble in which the temperature � is a continuous variable
in a given range ��min,�max�. To sample the system correctly,
we also need to make sure that the configurational distribu-
tion at a particular � is identical to that of the canonical
ensemble at the same temperature. The aim of the method is
to correctly populate states in the generalized ensemble and
to extract thermodynamic properties for the entire tempera-
ture range.

First of all, the generalized ensemble is completely
specified by an overall �-distribution p���. Once p��� is
given, the complete distribution of atomic configuration X as
well as the temperature � is also determined

p��,X� =
exp�− �E�X��

Z���
p��� , �7�

where E�X� is the potential energy of configuration X, and
Z���=�exp�−�E�X��dX is the canonical partition function.
Equation �7� is due to the requirement of preserving a ca-
nonical distribution at each temperature. It is easily verified
that p��� is recovered after we integrate p�� ,X� over all
configurations.

The usefulness of the joint distribution p�� ,X� in Eq. �7�
lies in that it specifies a temperature distribution under a
fixed configuration X. For a fixed configuration X, we can
perform temperature-space sampling according to p�� ,X�
and replace p��� by any desired temperature distribution
w���, which is fixed during simulation, in Eq. �7�. If the
configurational space is sampled according to the Boltzmann

distribution, the resulting overall temperature distribution af-
ter an infinitely long simulation trajectory, must be identical
to the desired one w���.

However, the exact Z��� is usually unknown in advance.
We therefore use a modified version of Eq. �7�

p��,X� =
exp�− �E�X��

Z̃���
w��� , �8�

to conduct sampling in the temperature space, where an ap-

proximate partition function Z̃��� is used in place of Z���.
Note, if Z̃��� differs from Z��� in Eq. �8�, w��� is no longer
the overall temperature distribution, but only a parameter
that specifies p�� ,X�, which is used in guiding the
temperature-space sampling. The overall temperature distri-
bution p��� is calculated from integrating the joint distribu-
tion p�� ,X� over configurations

p��� =
 p��,X�dX . �9�

Using Eq. �8� in Eq. �9�, we have

p��� =
Z���

Z̃���
w��� . �10�

In simulation, Z̃��� is adaptively adjusted and w��� is fixed.
Therefore, the overall distribution p��� varies according to

Eq. �10�. Upon convergence, Z̃���→Z���, the overall tem-
perature distribution p��� converges to the desired one w���.

Given a configuration X, as well as the joint distribution
p�� ,X� Eq. �8�, sampling along the temperature can be per-
formed by the Langevin equation Eq. �1�, in which the esti-

mated average energy Ẽ��� relates to the estimated partition

function as Ẽ����−� ln Z̃��� /��. One can demonstrate its
correctness by solving the corresponding Fokker–Planck
equation, see Appendix A.

The remaining task is to make sure the convergence of

the estimated partition function Z̃��� to the correct one Z���.
As evidenced by Eq. �10�, the current overall temperature
distribution p��� is close to the desired one w��� only if the

estimated the partition function Z̃��� is sufficiently accurate.
It is interesting to note that the Langevin equation Eq. �1�
does not involve the estimated partition function Z̃��� itself,

but its derivative Ẽ��� instead. We should therefore exploit
this feature and focus on a technique that adaptively im-

proves the estimate, Ẽ���.

C. Unbiased estimate of a partition function

The asymptotic convergence of the partition function re-

quires that Z̃��� approaches to Z��� at any � in the range
��min,�max�. In implementation, we divide the temperature
range to many narrow bins ��i ,�i+1�. Thus we lower the

requirement to that at any bin boundary �i, Z̃��i� should
equal to Z��i�. By choosing a small bin size, we can ensure

that the deviation from Z̃��� to Z��� is negligible for all
practical purposes. Further, to remove the dependence on a
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reference value of the partition function, the convergence
condition is unambiguously expressed as a condition on ra-
tios

Z̃��i�/Z̃��i+1� = Z��i�/Z��i+1� . �11�

Equation �11� can be rearranged as2

�Z���

Z̃���
�

�i

�i+1

= 

�i

�i+1

d��d ln Z���
d�

−
d ln Z̃���

d�
�Z���

Z̃���

= 

�i

�i+1

d��Ẽ��� − �E���
p���
w���

=� Ẽ��� − �E��

w���
�

i
,

where we have used Eq. �10� on the second line; the inner
bracket �E�� denotes the average energy at a particular en-
ergy �; on the last line, we convert the integral over the
small temperature bin ��i ,�i+1� to a temperature average in
the same bin, as represented by the outer bracket �¯ �i,
which is formally defined as �A�i���i

�i+1d�p���A.
During simulation, if we adaptively enforce the right

hand side of the above equation to be zero, i.e.,

� Ẽ���
w���

�
i
= � �E��

w���� i
, �12�

the left hand side naturally vanishes as well, i.e.,

Z̃��i+1� /Z��i+1�= Z̃��i� /Z��i�. In this way, the partition func-
tion as a function of the temperature can be obtained.2

We shall proceed by assuming a sufficiently small bin

size and �i� Ẽ��� being a constant Ẽi within a bin i, and

correspondingly, ln Z̃��� varies linearly with �, and �ii�
p��� /w��� can be treated as a constant. Equation �12� is then
simplified as

Ẽi =
��i

�i+1d��E��p���/w���

��i

�i+1d�p���/w���
� ��E���i, �13�

and the ratio of the partition function is estimated as

ln�Z��i�/Z��i+1�� = Ẽi��i,

where ��i=�i+1−�i.
A direct implication of Eq. �13� is that one can estimate

Ẽi from averages from statistics accumulated in bin i. Such
an approach �which is similar to those used in the force av-
eraging method4� is, although correct, ineffective when the
bin size is small because the amount of statistics within a bin
shrinks with the bin size. On the other hand, a large bin size
can lead to a significant deviation from the desired tempera-

ture distribution, since we assumed a constant Ẽ��� within a
bin. This dilemma can be resolved by using integral identi-
ties that remove the bin size dependence.

D. Estimators based on integral identities

We now present a method for drawing an unbiased esti-

mate Ẽi from a large temperature window instead of a small

temperature bin. The method removes bin size dependence
by combining statistics from neighboring bins in a way that
avoids systematic error. A similar technique of employing
integral identities to improve statistics was previously used
in improving statistical distributions.5,6

We aim at transforming the right hand side of Eq. �13�
from an average over a single bin ��i ,�i+1� to an average
over a larger temperature range ��− ,�+� that encloses the
bin. To do so, we use the following integral identity:

0 = �����E����−

�+ = 

�−

�+

d�������E�� − 

�−

�+

d�������E2��,

�14�

where ���� is a function that vanishes at the two boundaries,
i.e., ���−�=���+�=0; on the second line, we convert the
difference between the two boundaries to an integral within
the temperature range; the identity ��E�� /��=−��E2�� from
statistical mechanics is also used.

We choose ���� as a superposition of a smoothly vary-
ing �s��� that spans over the entire window ��− ,�+� and a
localized function �t��� limited within the bin ��i .�i+1�, see
Fig. 1 and Eqs. �5� and �6�, in which a+ and a− are two
non-negative parameters that sum to unity, i.e., a++a−=1.
Note at �=�i+1, the sudden jump in �s��� is exactly can-
celled by that in �t���, thus we can ignore the �-functions in
�s���� and �t���� in actual computation.

The purpose of the decomposition of ���� into �s���
and �t��� is to use the localized function �t���� to create an
integral exactly equal to the right hand side of Eq. �13�. In
this way, the integral over the small bin is transformed to
another one, but over a larger temperature window

Ẽi =
1

��i



�i

�i+1

d��E�� = 

�−

�+

d���s�����E�� − ������E2��� .

�15�

In early stages of simulation, the energy fluctuation
��E2�� in the second term of the right hand side of Eq. �15�
can be unreliable for a complex system. To avoid direct in-
clusion of energy fluctuation, we choose the combination
parameters a+ and a− in such a way that the fluctuation term
vanishes,



�−

�+

d�������E2�� = 0. �16�

Equation �16� and a++a−=1 yield a solution of a+ and a−,
which also determines �s����. Thus we have,

Ẽi = 

�−

�+

d��s�����E��. �17�

Since �s���� is a constant within a single bin, it can be fac-
tored out of the integral when integrating each individual
bin. The integral is thus converted to a sum over averages,
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Ẽi = 	
j

�s��� j�

�j

�j+1

d��E�� = 	
j

�s��� j��� j��E��� j .

�18�

A comparison with Eq. �13� shows that Eq. �18� is merely a

linear combination of Ẽi’s obtained from different bins. The
auxiliary function �s���� serves as a set of coefficients of
combination, whereas Eq. �16� ensures the asymptotical con-
vergence.

The above technique of extracting an estimate from an
integral identity can be employed in computing other ther-
modynamic quantities, such as the average energy, heat ca-
pacity, and energy histogram. Thus, we are able to calculate
these quantities at a particular temperature, even though the
simulation is performed in an ensemble where the tempera-
ture is continuous.

The result for the average energy is most easily obtained.
Consider a limiting case where �i+1→�i �with ���� modi-
fied accordingly�, Eq. �15� immediately becomes an unbiased
estimate of the thermal average energy �E��i

exactly at �i.
Similarly, the heat capacity CV��� can be calculated

from the energy fluctuation as �2��E2��. The energy fluctua-
tion at a particular temperature � is computed as

��E2�� = 

�−

�+

d����������E2��� − 

�−

�+

d���������E3���,

�19�

where we have substituted −��E3�� for ���E2�� /��.
Estimating the energy histogram requires additional care

in choosing the function ����, in order to ensure that the
histogram is non-negative everywhere. It is shown in
Appendix D that the optimal estimate of an energy histogram
at temperature � is

h��E,E + �E�

� 

E

E+�E

p��E��dE�

�
��−

�+�E
E+�Ep���,E��dE�d��

��−

�+w����Z̃���/Z̃����exp�− ��� − ���E + �E/2��d��
,

�20�

where on the first line, the energy histogram h��E ,E+�E� at
� is defined from the constant temperature energy distribu-
tion p��E� at the same temperature; on the second line, it is
converted to an average over the joint temperature-energy
p�� ,E� distribution in the generalized ensemble, which can
be measured from the temperature-energy histogram in simu-
lation trajectory. Note, for simplicity, we have assumed that
the energy bin size is small compared with the energy fluc-
tuation of a typical Boltzmann distribution. Equation �20�
resembles the result from the multiple histogram method,7

and therefore can be treated as its counterpart in a continuous
temperature ensemble.

For a quantity whose statistics are not fully accumulated
during simulation �e.g., it is calculated from periodically

saved trajectory snapshots after simulation�, we use the fol-
lowing reweighting formula to obtain its value at a particular
temperature �

�A�� =
��−

�+A exp�− �� − ���E�Z̃����/Z̃���d��

��−

�+exp�− �� − ���E�Z̃����/Z̃���d��
, �21�

where exp�−��−���E�Z̃���� / Z̃��� serves as a weighting
function for borrowing statistics from �� to �. Note, Eq. �21�
is unbiased estimator even if Z̃��� contains error.

E. Adaptive averaging

We now introduce an adaptive averaging scheme for ac-
celerating the convergence in initial stages of a simulation.
Since we start from zero statistics, the error in initially esti-

mated Ẽ��� can lead to a slow random walk in the tempera-
ture space. The adaptive averaging scheme2 overcomes the
problem by assigning larger weights toward recent statistics,
and thus encourages a faster random walk in the temperature
space.

Usually, for a statistical sample of size n, the average of
a quantity A is calculated as an arithmetic mean �A�
=SA

�n� /S1
�n�, where SA

�n�=	i=1
n Ai is the sum of A and S1

�n� is the
sample size n. In simulation, since statistics is collected
along the trajectory, the sample size n increases as simulation
progresses. To increase the weight toward recent Ai’s, we
redefine SA

�n� and S1
�n� as

SA
�n� = A1�n−1 + A2�n−2 + ¯ + An,

S1
�n� = �n−1 + �n−2 + ¯ + 1,

where ���1� is used to gradually damp out old statistics.
Such an average can be easily implemented as recursions,

SA
�n� = �SA

�n−1� + An,

�22�
S1

�n� = �S1
�n−1� + 1.

However, if a constant � is used, an average derived from
Eq. �22� does not asymptotically reduce its error due to that
the sample size S1 ultimately saturates to a fixed value
1 / �1−��. Therefore, we use

� = 1 − C�/n , �23�

where C� is a numerical constant, to gradually reduce the
difference between � and 1.0. In this way, both a fast random
walk in early stages and an asymptotical convergence can be
achieved.

III. NUMERICAL RESULTS

A. Ising model

As the first example, we test our method on a 32	32
Ising model, which is a nontrivial system with exactly
known thermodynamic properties.8 Results from the alterna-

tive method of estimating Ẽ���, described in Appendix B, are
also included. Parameters common to the two methods were
set to be the same.
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The temperature range was �� �0.35,0.55� or T
= �1.818,2.857�, which covered the critical temperature T
�2.27 of the phase transition, and the temperature distribu-
tion was defined by a constant w���, or a flat-� histogram.
The bin size for collecting statistics was ��=0.0002, and
thus there were 1000 bins in the entire temperature range.
For each temperature bin ��i ,�i+1�, the temperature window
for applying integral identities was given by ��− ,�+�
= ��i−�� ,�i+1+��� with ��=0.02 in evaluating Eq. �18�;
thus 201 bins were included in a window �except at tempera-
tures near the boundaries, where the largest possible value of
�� is used�. The Langevin equation was integrated after ev-
ery 100 Monte Carlo moves, with an integrating step �t
=2.0	10−5. The whole simulation stopped after 106 Monte
Carlo moves per site.

The calculated partition function, average energy and
heat capacity are shown in Fig. 2. The thin solid lines and
dashed lines are for the method introduced in Sec. II D
�method 1�, and that introduced in Appendix B �method 2�,
respectively. In most cases, both results for the partition
function and the average energy coincide with exact results,8

see Figs. 2�a�, 2�c�, and 2�d�. Even for the heat capacity,
which is the second order derivative of the partition function
and is harder to compute, the deviations in both cases are
small. This indicates that our method is unbiased and it can
produce exact thermodynamic quantities asymptotically.

We now show that the correct energy distribution can be
reconstructed from Eq. �20�. Since the energy levels are dis-
crete and the energy bin size we used was equal to the small-
est gap between energy levels, a normalized energy histo-
gram is equivalent to the energy distribution. During

simulation, the current potential energy was registered into
the histogram every 100 Monte Carlo moves, thus there were
roughly 105 samples in the entire histogram. The recon-
structed energy distributions at a few representative tempera-
tures are shown in Figure 3. The temperature window for
estimating the energy distribution at � was ��−�� ,�+���
with ��=0.02. One can see a good agreement between the
integral identity Eq. �20� �the thin solid line�, and the exact
distribution �thick solid line�, which was computed from the
exact density of states.9 For comparison, distributions con-
structed by averaging energy distributions of two adjacent
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bins are shown as dashed lines. It is apparent that the simple
average yields more noisy results than the integral identity
Eq. �20�. The reduced error is due to Eq. �20� being able to
access statistics from a much larger temperature window
than from two neighboring bins.

B. Lennard-Jones system

As the second example, we test the method on an 864-
particle Lennard-Jones liquid. In reduced units, the Lennard-
Jones potential for a particle pair separated by distance r is

u�r� = 4� 1

r12 −
1

r6� ,

where the units of energy, mass, and length are 1.0. In the
simulation, the density was 0.8; the cutoff was 2.5; and the
temperature range was �= �0.48,1.02�, corresponding to T
= �0.98,2.08�. We used Monte Carlo to generate configura-
tion changes. In each step, a random particle was displaced
randomly in each of x, y, and z directions according to a
uniform distribution in �
0.1,0.1�. After a Monte Carlo step,
we applied the Langevin equation Eq. �1� with an integration
time step �t=0.0002. The system was simulated for 105

sweeps �a sweep=a step per particle�. Coordinates were
saved every ten sweeps for data analysis. The overall tem-
perature distribution w��� was proportional to 1 /� �the
choice of optimal w��� is discussed in Appendix C�. The
temperature bin for collecting statistics was ��=0.0005. The
window size �� for applying the integral identity Eq. �18�
was 0.05.

The simulation results for the estimated average energy

�E�� and Ẽ��� are shown in Fig. 4�a�. Due to a small bin
size, the difference between the two is invisible. The dots on
the figures represent results from independent constant tem-
perature simulations, each of which uses the same amount of
simulation time. A good agreement between the two indi-
cates that our method can produce exact thermodynamic
quantities for the entire temperature spectrum with less simu-
lation time.

Furthermore, we reconstructed the radial distribution
function g�r� at a particular temperature according to Eq.
�21�. The reconstruction was performed after simulation and
was based on the saved coordinates along the trajectory.
From Fig. 4�b�, we see a good agreement between recon-
structed g�r�’s and those from constant temperature
simulations at two different temperatures �=0.5 and 1.0, or
T=2.0 and 1.0, respectively.

IV. APPLICATIONS IN FOLDING SMALL PROTEINS

In this section, we report applications of the method in
folding of several small proteins. The method was imple-
mented in a modified GROMACS 4.0.5,10 using AMBER force
field ports11 with TIP3P water model.12 In all cases, the
particle-meshed Ewald method13 was used for handling long
range electrostatic interaction, and the velocity-rescaling
method was used as thermostat.14 For constraints, we used
the SETTLE algorithm for water molecules,15 and the parallel
LINCS algorithm16 for proteins. Since proteins drastically
changed their configurations during simulations, dynamic

load balancing was turned on when using domain decompo-
sition.

For configuration-space sampling under a fixed tempera-
ture, the canonical ensemble, i.e., the constant �N ,V ,T� en-
semble, was used. A 10 Å cutoff was used for Lennard-Jones
interaction, electrostatic interactions and neighboring list.
Since the temperature in our method is a variable, the tem-
perature change was realized by scaling the force according
to F�= �� /�0�F= �T0 /T�F, with F� and F being the scaled
and the original force, respectively. In this way, the scaled
potential energy transforms a canonical ensemble at T0 to
another temperature T, for sampling in the configurational
space. On the other hand, the thermostat temperature T0,
which controls the kinetic energy, is unaffected and can be
maintained at a fixed value T0=480 K. Three separate ther-
mostats were applied to protein, solvent and ion groups, and
the coupling time �T for the thermostats was 0.1 ps.

The time step for molecular dynamics was 0.002 ps. The
center of mass motion was removed every step. Trajectory
snapshots were saved every 2 ps. Since the force and energy
calculation was much more time consuming than estimating

Ẽ���, we applied the Langevin equation in every molecular
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dynamics step using an integration step of �t=10−4. The
parameter C� in the adaptive averaging Eq. �23� was 0.1 in
all cases.

A. Trpzip-2

The first system is a 12 amino acid �-hairpin tryptophan
zipper, whose Protein Data Bank �PDB� ID code is 1LE1,
and its sequence is SWTWENGKWTWK.17 A unique feature
of this short hairpin is that its four tryptophan side chains are
locked against each other to stabilize the structure.

Previously, the system was intensively studied both in
explicit solvent18 and in implicit solvent.19,20 However, de
novo folding in explicit solvent from an extended chain, see
Fig. 5�a�, is much more challenging. We used AMBER99SB
as the force field, which is a modified version of AMBER99
force field21 with updated � and 
 torsions.22

We report four simulation trajectories. All of them
reached atomic accuracy within in a time scale of 1 �s. In
all the cases, we used a cubic 45	45	45 Å3 box, filled
with 2968 water molecules as well as two Cl− ions. The
temperature range was �� �0.20,0.41�, which corresponded
to T=293.6–601.9 K temperature range. The grid spacing
for Fourier transform was 1.15 Å, and the alpha parameter
was 0.3123 Å−1 for the Ewald method. In application of
integral identities equations �18�–�20�, the temperature

windows size was 8% of temperature value, e.g., at
�=1.0 / �kB500 K��0.241 the temperature window is
��−�� ,�+���, with ��=4%	��0.010, which can be
translated to T= �480.8,520.8� K. At boundaries, we used
the largest possible size that allows a symmetrical window.

A typical folded structure is shown in Fig. 5�b�, with its
root mean square deviations �RMSD� for alpha-carbon �C��
and heavy atoms being 0.25 and 1.08 Å, respectively. The
lowest C�-RMSD and heavy atom RMSD found in the four
trajectories are listed in Table I, in which we also list the
approximate first time of stably reaching the atomically
accurate native structure �the criteria were C�-RMSD
�0.5 Å�. It is interesting to note that even among structures
with lowest RMSDs, tryptophan side chains can still adopt
different conformations. For example, in trajectories 1 and 3,
we found nativelike structures with one of the tryptophan
side chain �TRP9 or TRP4� flipped 180° with respect to the
native configuration. This suggests that the free energy
change involved in flipping a TRP side chain is small.

In Fig. 6, C�-RMSD, radius of gyration, instantaneous
temperature, and potential energy along trajectory are shown
in �a�–�d�, respectively, for the two independent simulations,
trajectory 1 and 3. In trajectory 1, the folded state was
reached within 20 ns. This suggests the possibility of fast
folding. However, in other trajectories, it took longer for the
system to reach the native structure. In trajectory 3, upon
reaching of the native structure, the system lingered in a state
of low-temperature, low-energy state, and small radius of
gyration for about 100 ns. This corresponds to the fact that
the folded state has a lower energy than the unfolded state
and thus occupies a larger fraction in a low temperature Bolt-
zmann distribution. This feature serves as a signature of the
system reaching a native structure, and can be useful in fold-
ing prediction where the native structure is unknown.

Figure 7�a� shows the distribution along the C�-RMSD
at three different temperatures calculated from trajectory 3.
The distribution demonstrates two well-separated peaks, cor-
responding to roughly defined folded and the unfolded states,
respectively. The average C�-RMSD from the native struc-
ture is roughly 0.8 and 5.5 Å for folded and unfolded states,
respectively. As the temperature increases, the first peak
gradually diminishes, whereas the second peak dominates.

The folding temperature can be computed by assuming a
two-state model of folding. The folding fraction P was first
calculated as the fraction of configurations with C�-RMSD
less 2.0 Å at different temperatures. The curve P��� as a

FIG. 5. Trpzip2: �a� the initial fully extended conformation, �b� a typical
folded structure from trajectory 2. The C�-RMSD and heavy atom RMSD
are 0.25 and 1.08 Å, respectively. Gray: reference structure �PDB ID:
1LE1�.

TABLE I. Lowest RMSDs and folding time from four independent folding trajectories of trpzip2. Snapshots of
reaching the lowest C�-RMSDs can differ slightly from those of reaching the lowest heavy atom RMSDs.

Traj. ID
Lowest C�-RMSD

�Å�
Lowest heavy atom

RMSD �Å�

First time of stably reaching atomic
accuracy of the native state

�ns�

1 0.20 1.00 20
2 0.25 0.84 520
3 0.20 0.88 530
4 0.25 1.31 1080
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function of temperature � was then fitted against a
two-state model in the range �� �0.24,0.4�, equivalently
T� �300.9 K,501.5 K�,

P =
P0

1 + exp��E��m − ���
, �24�

where the values of the three parameters were determined as
P0=0.61, �E=38.96 kJ mol−1, and �m=0.350 kJ−1 mol by
regression, see Fig. 7�b�. Here, �E is the energy difference
between the folded state and the unfolded state; �m is the
melting temperature. In the simplest two-state model, the
folding fraction increases monotonically to unity as the tem-
perature decreases to zero. Here, the maximal fraction was
changed from 1.0 to an adjustable parameter P0, which
helped fitting the calculated P��� to the two-state model.
Physically, such a modification implies the existence of
many configurations with energy similar to that the native
one but with different structures in our simulation trajectory.

If the volume change during folding is ignored, the en-
thalpy change between the folded state and the unfolded state
is roughly equal to the energy change �H�39.0 kJ mol−1.
The entropy difference of the folded and unfolded states is
�S=�m�E=113 J mol−1. These values are relatively small
compared with the experimental values �Hexp

=70.2 kJ mol−1, �Sexp=203.3 J mol−1.17 However, the esti-
mated folding temperature from our calculation 344 K is
close to the experimental result 345 K.17 From trajectory 3,
which yields the highest folding fraction at 300 K among
four trajectories, the fraction of folded states at 300 K is
roughly 55%, which still differs significantly from the ex-

perimental value 91%.17 For the other three trajectories, the
calculated fractions are even smaller. The difference between
our calculation and experiments were likely due to insuffi-
cient sampling and/or force field inaccuracy.

Figure 8 shows the heat capacity versus temperature
from Eq. �19�. The difference between three independent tra-
jectories was small, suggesting thermodynamic properties of
the entire system, protein and water, reaching convergence. It
is interesting that in our simulation, the heat capacity is not a
constant, but inversely proportional to the temperature as
CV�4.2	103 /T kJ mol−1 K−1.

Figure 9�a� shows the joint distribution of the radius of
gyration Rg �calculated from C� atoms� and the C�-RMSD.
Generally the two measures are positively correlated. How-
ever, the smallest radius of gyration does not occur at the
native structure for the hairpin, whose Rg is roughly around
5.8 Å. A non-native structure, on the other hand, had a
smaller Rg around 4.9 Å, but a larger RMSD around 3 Å.
Figure 9�b� shows the joint distribution of temperature and
energy. A typical temperature fluctuation is only around 5 K,
which is roughly the magnitude of temperature gap in other
tempering methods based on a discrete temperature, such as
replica exchange. On the other hand, the temperature win-
dow size used in our simulation was much larger. This sug-
gests that our method could more efficiently use statistics to
facilitate the temperature-space random walk.

B. Trp-cage

The second application is a 20 amino acid alpha helical
protein, tryptophan cage �trp-cage�.23 The PDB code is

FIG. 6. Trpzip2: quantities along two independent simulation trajectories. Left: the first 200 ns of a fast-folding trajectory �trajectory 1�. Right: 2 �s of
trajectory 3. Panels from top to bottom: �a� C�-RMSD from native structure, �b� C� radius of gyration, �c� temperature, and �d� potential energy.
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1L2Y, and the amino acid sequence is NLYIQWLKDG-
GPSSGRPPPS. The system was extensively studied by
experiments23,24 as well as by various sampling techniques,
either in explicit solvent25,26 or in implicit solvent.20,27 We
again used AMBER99SB as the force field.22

We simulated the system in a cubic 46	46	46 Å3

box, filled with 3161 water molecules and two Cl− ions. The
grid spacing for Fourier transform was 1.19 Å, and the alpha
parameter was 0.3123 Å−1. The initial structure was an open
chain see Fig. 10�a�, which was constructed by bending a
fully extended chain to fit into the box.

We report three independent 1 �s simulation trajecto-
ries. The temperature range for trajectory 1 was �

� �0.24,0.41�, or T� �293.6 K,501.5 K�. In trajectories 2
and 3, we used a larger temperature range �� �0.20,0.41�,
which covered a 293.6 K�601.9 K temperature range. The
temperature bin size �� was 0.0005, 0.0005, and 0.0002 re-
spectively. In applying integral estimators, the temperature
windows size was 10%, 10%, and 8% of temperature value
for trajectories 1, 2, and 3, respectively. In all cases, we used
the alternative estimator introduced in Appendix B.

All three simulations independently reached atomically
accurate native configurations. A typical folded structure in
trajectory 1 is shown in Fig. 10�b�. The C�-RMSDs from the
three trajectories were 0.43, 0.48, and 0.44 Å, respectively.
The average C�-RMSD for the native structure was around
0.8 Å. The lowest RMSDs for all heavy atoms were 1.34,
1.47, and 1.46 Å, respectively.

The C�-RMSD, radius of gyration, instantaneous tem-
perature, and potential energy along trajectory are shown in
panels �a�–�d�, respectively, of Fig. 11, for the three indepen-
dent simulations. In each trajectory, there were two folding
events reaching an atomic accuracy, e.g., for trajectory 2, the
native structure was reached at 350 and 560 ns. As in the
trpzip2 case, the system stayed around a low-temperature
and low-energy state for 30–100 ns upon reaching the native
state. For the folding speed, it appears that simulations 2 and
3, which used a higher roof temperature Tmax=600 K,
tended to reach the native state sooner than simulation 1,
whose roof temperature Tmax=500 K was lower. However,
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in simulation 1, the system was able to stay in the native
states longer and performed a more detailed sampling at the
low temperature end.

Trajectory 1 yielded the largest fraction of the folded
state at 300 K, 19%, which is still much lower than experi-
ment value, 70%.23,28 By fitting the folding fraction, com-
puted from the fraction of states with C�-RMSD less than 2.2
Å cutoff, to the two-state formula Eq. �24�, the parameters
are P0=0.50, �E=21.1 kJ mol−1, and �m=0.367 kJ−1 mol.
The enthalpy change is thus �H�21 kJ mol−1, which is
relatively small compared with the experimental values

�Hexp=56.2 kJ mol−1.28 The estimated folding temperature
from our calculation is 328 K, which is slightly higher than
the experimental result 315 K.28

C. Villin headpiece

Our last application was the villin headpiece, a 36 resi-
due alpha-helical protein HP36. The PDB ID is 1VII, and the
amino acid sequence is MLSDEDFKAVFGMTRSAFAN-
LPLWKQQNLKKEKGLF. This system was the first protein
partially folded in explicit solvent.29 Recently, a high reso-

FIG. 10. Trp-cage: �a� the initial fully extended structure, �b� a typical folded structure. The C�-RMSD and the all heavy atom RMSD are 0.44 and 1.54 Å,
respectively. Gray: reference structure �PDB ID: 1L2Y�.

FIG. 11. Trp-cage: three independent trajectories �a� C�-RMSD from native structure, �b� C� radius of gyration, �c� temperature, and �d� potential energy.
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lution x-ray structure of slightly modified protein HP35,
PDB ID 1YRF, was published.30 The sequence of HP35 is
LSDEDFKAVFGMTRSAFANLPLWKQQHLKKEKGLF, in
which the N-terminal methionine �MET� of the original se-
quence was chopped off and the 28th residue, an asparagine,
was replaced by a hisidine. Both sequences were studied in
literature, both by simulations,31–34 and in experiments.35,36

However, there is a significant difference between the
NMR structure of HP36 and the x-ray structure of HP35,
about 1.62 Å difference in terms of C�-RMSD. Further,
while molecular dynamics simulations on HP35 reached an
atomic accuracy in implicit solvent32 as well as in explicit
solvent,34 simulations on HP36, especially in explicit sol-
vent, yielded relatively poorer results. The difference be-
tween the two structures could be due to �1� the intrinsic
difference between HP35 and HP36 or �2� differences in the
two experimental techniques, NMR versus x ray.30

In this simulation, we used AMBER03 �Ref. 37� as the
force field, which was previously used to fold HP35 to an
atomic accuracy in implicit solvent.32 Another reason of
choosing AMBER03 instead of AMBER99SB was that the
latter force field might slightly disfavor helical
conformations.38 To reduce simulation size, we used a
dodecahedron simulation box with edge length being 24.1 Å
to accommodate the protein as well as 3343 water molecules,
and two Cl− ions. The volume of the box was 53.3	53.3
	37.6 Å3=1.069	105 Å3. The initial conformation of the
protein was a fully extended chain, which was bent from a
linear chain to fit into the box, see Fig. 12�a�. The grid spac-
ing for Fourier transform was 1.19 Å and the alpha param-
eter was 0.3123 Å−1.

We report two independent simulation trajectories, each
of 2 �s. The temperature range for trajectory 1 was �
� �0.18,0.41�, or T� �293.6 K,668.7 K�; that for trajectory
2 was �� �0.20,0.41�, or T� �293.6 K,601.9 K�. The tem-
perature bin size was 0.0002 in both cases. The integral es-
timator introduced in the Sec. II was used, and the tempera-
ture windows size was 8% of current temperature value.

The alpha-carbon root mean square deviation can be cal-
culated from the NMR structure as well as the x-ray struc-
ture. In both cases, the N-terminal MET and leucine �LEU�
as well as the C-terminal phenylalanine �PHE� are not in-
cluded in our calculation.32 Due to the flexibility of the
C-terminal and the N-terminal helix, we also calculate the
C�-RMSD for residues 9–32 of HP36 as in the literature,29,31

denoted as RMSDcore here. Note, in terms of C�-RMSDcore,
the NMR reference structure differs from the x-ray reference
structure by 0.87 Å.

The lowest C�-RMSDs reached in the two simulation
trajectories are listed in Table II. The lowest C�-RMSDcore

from the NMR structure are 0.72 and 0.73 Å, for the two
trajectories, respectively. These figures are smaller than those
from a previous study, in which the lowest RMSDcore was
around 1.5 Å.31 In both trajectories, the best folded structures
are more similar to the x-ray structure than to the NMR
structure. The average C�-RMSD and C�-RMSDcore from the
NMR structure are 1.30 and 1.95 Å, respectively. In com-
parison, the two figures drop to 0.90 and 1.10 Å if the refer-
ence is switched to the x-ray structure.

FIG. 12. Villin headpiece: �a� the initial fully extended structure, �b� a

typical folded structure compared with an NMR reference structure �gray,

PDB ID: 1VII, C�-RMSD: 1.15 Å�, �c� a typical folded structure compared

with an x-ray structure �gray, PDB ID: 1YRF, C�-RMSD: 0.47 Å�, and the

N-terminal is not shown due to the sequence difference.
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Table II also lists the first time for reaching the native
structure. In both trajectories, the time �310 ns for trajectory
1 and 26 ns for trajectory 2� is significantly shorter than
those in a very recent study �where the folding occurs in
5–6 �s�.34

In Figs. 12�b� and 12�c�, we show the superposition of
typical folded structures to the NMR reference structure and
the x-ray reference structure, respectively, from simulation 1.
Although generally deviations from the native structures are
small, the position of the N-terminal helix differs appreciably
from the NMR native structure �notice the difference in po-
sition of PHE 7 and PHE 11 in Fig. 12�b��, whereas the
difference is much smaller compared with the x-ray structure
�PHE 7 and PHE 11 of the two structures are superimposable
in Fig. 12�c��.

Figures 13�a� and 13�b� show the C�-RMSDcore �the
stable region residues 9–32� versus the C�-RMSD �entire
chain� for the NMR and x-ray reference structures, respec-
tively. It is clear that the best folded structures have larger
deviations from the NMR structure than from the x-ray struc-
ture. Moreover, the C�-RMSDcore is less consistent with the
C�-RMSD with respect to the NMR structure than to the
x-ray structure, which can be a result of the extremely flex-
ible N-terminal helix. In general, we found that the folded
structures in our simulation are closer to the x-ray structure.
In both case, we observe many metastable states around the
native state, demonstrating an extremely rugged energy land-
scape.

The folding fraction, computed according to C�-RMSD
from the x-ray structure and using 3.0 Å as cutoff, was fitted
against Eq. �24�, and yielded P0=0.21, �E=20.9 kJ mol−1,
and �m=0.349 kJ−1 mol. Assuming that the volume change
during folding is negligible, we estimate the enthalpy change
�H=21 kJ mol−1, and the folding temperature Tm=345 K.
Although the folding temperature agrees well with the ex-
perimental value 342 K, the folding enthalpy is relatively
small compared to �Hexp=113 kJ mol−1.35

V. CONCLUDING DISCUSSIONS

In conclusion, we presented a single-copy enhanced
sampling method for studying large complex biological sys-
tems. The method was validated in an Ising model as well as
in a Lennard-Jones fluid, and was successfully applied to
folding of three small proteins, trpzip2, trp-cage, and villin
headpiece, in explicit solvent. In all three protein cases, we
reversibly reached atomic accuracy of the native structures
within a microsecond. Since our method is based on a single
trajectory, it is computationally less demanding to reach a

long time scale than tempering methods based on multiple
copies, such as the replica exchange method.

In terms of sampling efficiency, in addition to the advan-
tage from using a continuous temperature generalize en-
semble, which eases the issue of low temperature-transition
rate in large complex systems,2 a major improvement in this
work is the employment of integral identity that efficiently

estimates the average energy Ẽ��� for the temperature space
random walk. The integral identity draws estimates from a
large temperature window instead of from a single bin to
improve statistics. This strategy makes the method more ro-
bust and applicable to large and complex systems.

Additionally, the adaptive averaging scheme used for re-
freshing statistics can effectively boost the temperature space
random walk in early stages, when the damping magnitude �

TABLE II. Lowest RMSDs in angstrom reached in two folding trajectories of villin headpiece. Snapshots of
reaching the lowest C�-RMSDs can differ slightly from those of reaching the lowest heavy atom RMSDs. The
reference structures �either the NMR or x-ray structure� are denoted in parentheses.

Traj. ID
RMSDcore

�NMR�
RMSD
�NMR�

RMSDcore

�x ray�
RMSD
�x ray�

First time of reaching atomic
accuracy of the native state

�ns�

1 0.72 1.32 0.30 0.42 310
2 0.73 0.99 0.30 0.40 26

FIG. 13. Villin headpiece: joint distributions of �a� C�-RMSD and
C�-RMSDcore �from residues 9�32� using the NMR structure as the refer-
ence and �b� C�-RMSD and C�-RMSDcore, using the x-ray structure as the
reference. Statistics from the two trajectories were combined.
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still differs significantly from unit. It could account for sev-
eral fast folding ��50 ns� events we observed. However, in
later stages of simulations, the boosting effect gradually
weakens as the damping magnitude � is switched toward 1.0
�see Eq. �23�� to achieve an asymptotic convergence.

In folding applications, the calculated values for the
folding enthalpy and folding temperature still showed dis-
crepancies from experimental results. This was possibly due
to errors in the force fields26,34 as well as limited simulation
time. These factors might lead to overpopulation of non-
native conformations at room temperature. This observation
is in line with a very recent long time replica exchange simu-
lation on trp-cage with an aggregated 40	1 �s, which also
revealed discrepancy between experimental and simulation
results.26 Even in the presence of enhanced sampling, one
would desire to perform much longer simulations to allow
much more folding events to atomic accuracy. In this way,
one can more accurately examine population ratios of the
native conformation to various folding intermediate and non-
native conformations.
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APPENDIX A: FOKKER–PLANCK EQUATION AND
STATIONARY DISTRIBUTION

Though the temperature distribution of the generalized
ensemble is uniquely specified by Eq. �8�, various Langevin
equations exist for sampling the distribution, e.g., both Eq.
�1� and the one used in the previous study2 correctly populate
the distribution.

Before applying a Langevin equation, one needs to find a
proper “potential” V��� for the temperature to guide its dif-
fusion. The potential is the negative logarithm of the tem-
perature distribution

V��� � − ln p��,X� .

The negative derivative of the potential naturally serves as
the force of driving the temperature space random walk. Ac-
cording to Eq. �8�, we have

�V���
��

=
��− ln p��,X��

��
= E +

� ln Z̃���
��

−
� ln w���

��
.

Equation �1� is now simplified as

d�1/��
dt

=
dV���

d�
+

�2

�
� . �A1�

To show that Eq. �A1� is correct, we introduce a new
variable �=1 /�=kBT and write down the Fokker–Planck
equation that governs the distribution of � or ����

�����
�t

=
�

��
�−

�V

��
����� +

�2

��2 ��2�����

=
�

��
������2�V

��
� +

�2

��2 ��2����� , �A2�

where we have used −�2�� /���=� /��. A stationary solution
of Eq. �A2� can be found by solving the following equation:

− ��2�����
�V

��
=

�

��
��2����� ,

whose solution is readily obtained,

�2���� � exp�− V� = p��,X� .

Finally, we translate the distribution of � back to that of �
according to the probability invariance ����d�=����d�,

����d� = ����d� = ����d�/�2 = �����2d� .

We thus conclude that ����=�2����= p�� ,X�, which proves
that Eq. �8� is the stationary solution of the Fokker–Planck
equation.

APPENDIX B: ALTERNATIVE FITTING BASED
ESTIMATOR

Here we introduce an alternative estimator for Ẽ���
based on linear extrapolation. First, we generalize Eq. �15� to
the following. For any function

f��� = �E�� + k��̄i − �� , �B1�

where �̄i= ��i+�i+1� /2 and k is an arbitrary constant, we
have

Ẽi =
1

��i



�i

�i+1

d��E�� =
1

��i



�i

�i+1

d�f���

= 

�−

�+

d��s����f��� + 

�−

�+

d�����f���� , �B2�

where on the second line, the linear term in Eq. �B1� van-
ishes after the integration. Equation �15� can be considered
as a special case for k=0.

Equations �B1� and �B2� allow a properly extrapolation

for the average energy �E�� from � to �̄i before applying the
integral identity, or the temperature averaging. If we assume
that �E�� is roughly linear function of � in the window
��− ,�+�, the slope k of �E�� versus � can be obtained from
linear regression as

k = ����E�+/���2�+, �B3�

where the angular bracket �¯ �+ denotes a temperature aver-
age over ��− ,�+�.

The advantage of using Eq. �B2� is that it reduces the
magnitude of the second integral and thus makes the estima-

244101-14 C. Zhang and J. Ma J. Chem. Phys. 132, 244101 �2010�



tor more robust. If the relation of �E�� and � is perfectly
linear, f����=��E�� /��−k vanishes everywhere, and thus
the second integral yields zero.

In practice, we use a ���� parameterized with a+=a−

=1 /2, and restrain the magnitude of the second integral
within the average energy fluctuation ���E2�+ in the window
to ensure stability of the estimator.

The estimator introduced here can be thought as a first-
order generalization of Eq. �15�, and thus allows a large tem-
perature window or application to larger systems. Besides,
one can also apply additional constraints to the derivative to
improve the accuracy and stability of the estimator. For ex-
ample, in our case of estimating the average energy, the de-
rivative k corresponds to the negative energy fluctuation as
��E�� /��=−��E2��=−kBT2CV �where CV is the heat capac-
ity�, and its value can be restrained within a certain range. In
the systems tested in this work, however, it did not produce
significantly different estimates from the one introduced in
the Sec. II D.

APPENDIX C: CHOICE OF THE TEMPERATURE
DISTRIBUTION �„�…

Here, we discuss the optimal choice of w���. For mo-
lecular systems, we invariably use w���� p����1 /� basing
on the following reason. The overall energy distribution p�E�
of the generalized ensemble is a superposition of energy dis-
tributions of canonical ensembles from different tempera-
tures. To ensure a fixed degree of overlap, the height of p�E�
only needs to match that of a canonical distribution at �,
whose average energy �E���� is roughly equal to E. The
average height of a canonical ensemble is inversely propor-
tional to its width ���E2��, and thus,

p�E�dE �
dE

���E2��

.

To translate the energy distribution to the temperature space,
we change variable from E to �. According to the probability
invariance p�E�dE= p���d�, and �dE /d��= ��E2��, we have

w��� �
�dE/d��
���E2��

� ���E2�� �
�C

�
,

In the last step, we have used fact that kB�2��E2��=C, where
C is the heat capacity.

For a Lennard-Jones-like system, the heat capacity C is
roughly a constant, accordingly the optimal w��� is propor-
tional to 1 /�. On the other hand, our protein simulations
show that the heat capacity of the entire system, water and
protein, roughly follows C��, see Fig. 8. According to this
observation, the optimal w��� should be proportional to
1 /��. However, in our simulations, we still used 1 /� as
w���, this setup slightly biases the ensemble toward the high
temperature end in order to encourage a faster motion at
higher temperature and to help overcome broken ergodicity
at lower temperature.

APPENDIX D: INTEGRAL IDENTITY
FOR A NON-NEGATIVE QUANTITY

For a histogram-like quantity, regular integral identities
such as Eq. �15� should be modified to ensure the output is
non-negative. Here, we briefly sketch a technique for this
purpose �a more detailed and general treatment is presented
elsewhere6�.

Suppose h��� is a non-negative quantity, and we are in-
terested in estimating its value at a particular temperature ��.
Instead of applying an integral identity to h��� itself, we
introduce a smooth modulating function f���, with f����=1,
and apply the identity to the product h���f���,

h���� = h����f����

= 

�−

�+

�h���f���������d� + 

�−

�+

�h���f���������d� .

�D1�

If we choose

f��� = exp�− 

��

�

�ln h������d��� , �D2�

the second term on the right hand side of Eq. �D1� vanishes
because �h���f�����=0 everywhere. Thus, the estimated
value is always non-negative given that ������0. �����
satisfies the normalization condition ��−

�+�����d�=1, and
should be proportional to w��� / f��� to minimize the error.
Thus, the general expression for h���� is

h���� =
��−

�+w���h���d�

��−

�+w���exp����
� �ln h������d���d�

. �D3�

In the case of energy histogram, h��� can defined as an
integral of the canonical energy distribution at � over a small
energy bin �E,

h��� = 

E

E+�E g�E��exp�− �E��
Z���

dE�

= �

E

E+�E

p��E��dE��/w��� ,

where g�E�� is the density of states; on the second line, we
have used the distribution function of the generalized en-
semble p��E��=w���g�E��exp�−�E�� /Z���.

It can be straightforwardly verified that

�ln h����� = − �ln Z����� −
�E

E+�EE�g�E��exp�− �E��dE�

�E
E+�Eg�E��exp�− �E��dE�

� − �ln Z����� − �E + �E/2� ,

where on the last line, we assumed that the energy bin size
�E is sufficiently small such that a typical energy distribu-
tion does not vary drastically within a bin. Practically, it only
requires the bin size �E to be much smaller than the fluctua-
tion �or width� of a typical energy distribution. We finally
reached
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h���� �
��−

�+�E
E+�Ep��,E��dE�d�

��−

�+w���Z����/Z���exp�− �� − ����E + �E/2��d�
.

By substituting Z̃��� for Z���, we recover Eq. �20�.
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