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Abstract
Algorithmically and energetically efficient computational architectures that operate in real time are
essential for clinically useful neural prosthetic devices. Such devices decode raw neural data to obtain
direct control signals for external devices. They can also perform data compression and vastly reduce
the bandwidth and consequently power expended in wireless transmission of raw data from
implantable brain-machine interfaces. We describe a biomimetic algorithm and micropower analog
circuit architecture for decoding neural cell ensemble signals. The decoding algorithm implements
a continuous-time artificial neural network, using a bank of adaptive linear filters with kernels that
emulate synaptic dynamics. The filters transform neural signal inputs into control-parameter outputs,
and can be tuned automatically in an on-line learning process. We provide experimental validation
of our system using neural data from thalamic head-direction cells in an awake behaving rat.
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I. INTRODUCTION
Brain-machine interfaces have proven capable of decoding neuronal population activity in real-
time to derive instantaneous control signals for prosthetics and other devices. All of the
decoding systems demonstrated to date have operated by analyzing digitized neural data [1]–
[7]. Clinically viable neural prosthetics are an eagerly anticipated advance in the field of
rehabilitation medicine, and development of brain-machine interfaces that wirelessly transmit
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neural data to external devices will represent an important step toward clinical viability. The
general model for such devices has two components: a brain-implanted unit directly connected
to a multielectrode array collecting raw neural data; and a unit outside the body for data
processing, decoding, and control. Data transmission between the two units is wireless. A 100-
channel, 12-bit-precise digitization of raw neural waveforms sampled at 30 kHz generates 36
Mbs−1 of data; the power costs in digitization, wireless communication, and population signal
decoding all scale with this high data rate. Consequences of this scaling, as seen for example
in cochlear-implant systems, include unwanted heat dissipation in the brain, decreased
longevity of batteries, and increased size of the implanted unit. Recent designs for system
components have addressed these issues in several ways. However, almost no work has been
done in the area of power-efficient neural decoding.

In this work we describe an approach to neural decoding using low-power analog preprocessing
methods that can handle large quantities of high-bandwidth analog data, processing neural
input signals in a slow-and-parallel fashion to generate low-bandwidth control outputs.

Multiple approaches to neural signal decoding have been demonstrated by a number of research
groups employing highly programmable, discrete-time, digital algorithms, implemented in
software or microprocessors located outside the brain. We are unaware of any work on
continuous-time analog decoders or analog circuit architectures for neural decoding. The neural
signal decoder we present here is designed to complement and integrate with existing
approaches. Optimized for implementation in micropower analog circuitry, it sacrifices some
algorithmic programmability to reduce the power consumption and physical size of the neural
decoder, facilitating use as a component of a unit implanted within the brain. Trading off the
flexibility of a general-purpose digital system for the efficiency of a special-purpose analog
system may be undesirable in some neural prosthetic devices. Therefore, our proposed decoder
is meant to be used not as a substitute for digital signal processors but rather as an adjunct to
digital hardware, in ways that combine the efficiency of embedded analog preprocessing
options with the flexibility of a general-purpose external digital processor.

For clinical neural prosthetic devices, the necessity of highly sophisticated decoding algorithms
remains an open question, since both animal [3], [4], [8], [9] and human [5] users of even first-
generation neural prosthetic systems have proven capable of rapidly adapting to the particular
rules governing the control of their brain-machine interfaces. In the present work we focus on
an architecture to implement a simple, continuous-time analog linear (convolutional) decoding
algorithm. The approach we present here can be generalized to implement analog-circuit
architectures of general Bayesian algorithms; examples of related systems include analog
probabilistic decoding circuit architectures used in speech recognition and error correcting
codes [10], [11]. Such architectures can be extended through our mathematical approach to
design circuit architectures for Bayesian decoding.

II. A BIOMIMETIC ADAPTIVE ALGORITHM FOR DECODING NEURAL CELL
ENSEMBLE SIGNALS

In convolutional decoding of neural cell ensemble signals, the decoding operation takes the
form

(1)
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(2)

where N⃗ (t) is an n-dimensional vector containing the neural signal (n input channels of neuronal
firing rates, analog signal values, or local field potentials, for example) at time t; M ⃗ (t) is a
corresponding m-dimensional vector containing the decoder output signal (which in the
examples presented here corresponds to motor control parameters, but could correspond as
well to limb or joint kinematic parameters or to characteristics or states of nonmotor cognitive
processes); W is a matrix of convolution kernels Wij(t) (formally analogous to a matrix of

dynamic synaptic weights), each of which depends on a set of p modifiable parameters, ,
k ∈ {1, … , p}; and ○ indicates convolution. Accurate decoding requires first choosing an
appropriate functional form for the kernels and then optimizing the kernel parameters to
achieve maximal decoding accuracy. Since the optimization process is generalizable to any
choice of kernels that are differentiable functions of the tuning parameters, we discuss the
general process first. We then explain our biophysical motivations for selecting particular
functional forms for the decoding kernels; appropriately chosen kernels enable the neural
decoder to emulate the real-time encoding and decoding processes performed by biological
neurons.

Our algorithm for optimizing the decoding kernels uses a gradient-descent approach to
minimize decoding error in a least-squares sense during a learning phase of decoder operation.

During this phase the correct output , and hence the decoder error , is
available to the decoder for feedback-based learning. We design the optimization algorithm to
evolve W(t) in a manner that reduces the squared decoder error on a timescale set by the
parameter τ, where the squared error is defined as

(3)

(4)

and the independence of each of the m terms in Equation 4 is due to the the independence of

the m sets of np parameters , j ∈ {1, … , n} k ∈ {1, … , p} associated with generating each
component Mi(t) of the output. Our strategy for optimizing the matrix of decoder kernels is to

modify each of the kernel parameters  continuously and in parallel, on a timescale set by
τ, in proportion to the negative gradient of E(W(t), τ) with respect to that parameter:

(5)
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(6)

(7)

The learning algorithm refines W in a continuous-time fashion, using −∇⃗E(t) as an error

feedback signal to modify W(t), and incrementing each of the parameters  in continuous

time by a term proportional to  (the proportionality constant, ε, must be large
enough to ensure quick learning but small enough to ensure learning stability). If W(t) is viewed

as an array of linear filters operating on the neural input signal, the quantity 
used to increment each filter parameter can be described as the product, averaged over a time
interval of length τ, of the error in the filter output and a secondarily filtered version of the
filter input. The error term is identical for the parameters of all filters contributing to a given
component of the output, Mi (t). The secondarily filtered version of the input is generated by

a secondary convolution kernel, , which depends on the functional form of each primary
filter kernel and in general differs for each filter parameter. Figure 1 shows a block diagram
for an analog circuit architecture that implements our decoding and optimization algorithm.

Many functional forms for the convolution kernels are both theoretically possible and practical
to implement using low-power analog circuitry. Our approach has been to emulate biological
neural systems by choosing a biophysically inspired kernel whose impulse response
approximates the postsynaptic currents biological neurons integrate when encoding and
decoding neural signals in vivo [12]. Combining our decoding architecture with the choice of
a first-order low-pass decoder kernel enables our low-power neural decoder to implement a
biomimetic, continuous-time artificial neural network. Numerical experiments have also
indicated that decoding using such biomimetic kernels can yield results comparable to those
obtained using optimal linear decoders [13]. But in contrast with our on-line optimization
scheme, optimal linear decoders are computed off-line after all training data have been
collected. We have found that this simple choice of kernel offers effective performance in
practice, and so we confine the present analysis to that kernel.

Two-parameter first-order low-pass filter kernels account for trajectory continuity by
exponentially weighting the history of neural inputs:

(8)

where the two tunable kernel parameters are , the low-pass filter gain, and ,
the decay time over which past inputs N⃗ (t′), t′ < t, influence the present output estimate M ⃗ (t)
= W ○ N⃗ (t). The filters used to tune the low-pass filter kernel parameters can be implemented
using simple and compact analog circuitry. The gain parameters are tuned using low-pass filter
kernels of the form
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(9)

while the time-constant parameters are tuned using band-pass filter kernels:

(10)

When decoding discontinuous trajectories, such as sequences of discrete decisions, we can set
the τij to zero, yielding

(11)

Such a decoding system, in which each kernel is a zeroth-order filter characterized by a single
tunable constant, performs instantaneous linear decoding, which has successfully been used
by others to decode neuronal population signals in the context of neural prosthetics [5], [14].
With kernels of this form, W(t) is analogous to matrices of synaptic weights encountered in
artificial neural networks, and our optimization algorithm resembles a ‘delta-rule’ learning
procedure [15].

III. RESULTS
Head direction was decoded from the activity of n = 6 isolated thalamic neurons according to

the method described in [16]. The adaptive filter parameters  were implemented
as micropower analog circuits and simulated in SPICE; they were optimized through gradient
descent over training intervals of length T during which the decoder error, ei(t) = Mi(t)− M ̂i(t)
(where M ⃗ (t) = (cos (θ(t)), sin (θ(t))) and θ denotes the head direction angle), was made available
to the adaptive filter in the feedback configuration described in Section II for t ∈ [0, T].
Following these training intervals feedback was discontinued and the performance of the

decoder was assessed by comparing the decoder output M ⃗ (t) with  for t > T.

Figure 2 compares the output of the decoder to the measured head direction over a 240 s interval.
The filter parameters were trained over the interval t ∈ [0, T = 120] s. The figure shows M ⃗ (t)

(gray) tracking  (black) with increasing accuracy as training progresses, illustrating that
while initial predictions are poor, they improve with feedback over the course of the training
interval. Feedback is discontinued at t = 120 s. Qualitatively, the plots on the interval t ∈ [120,
240] s illustrate that the output of the neural decoder reproduces the shape of the correct
waveform, predicting head direction on the basis of neuronal spike rates.

IV. DISCUSSION
Simulations using basic circuit building-blocks for the modules shown in Figure 1 indicate that
a single decoding module (corresponding to an adaptive kernel Wij and associated optimization
circuitry, as diagrammed in Figure 1) should consume approximately 54 nW from a 1 V supply
in 0.18 µm CMOS technology and require less than 3000 µm2. Low power consumption is
achieved through the use of subthreshold bias currents for transistors in the analog filters and
other components. Analog preprocessing of raw neural input waveforms is accomplished by
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dual thresholding to detect action potentials on each input channel and then smoothing the
resulting spike trains to generate mean firing rate input signals. SPICE simulations indicate
that each analog preprocessing module should consume approximately 241 nW from a 1 V
supply in 0.18 µm CMOS technology. A full-scale system with n = 100 neuronal inputs
comprising N⃗ (t)) and m = 3 control parameters comprising M ⃗ (t) would require m × n = 300
decoding modules and consume less than 17 µW in the decoder and less than 25 µW in the
preprocessing stages.

Direct and power-efficient analysis and decoding of analog neural data within the implanted
unit of a brain-machine interface could also facilitate extremely high data compression ratios.
For example, the 36 Mbs−1 required to transmit raw neural data from 100 channels could be
compressed more than 100, 000-fold to 300 bs−1 of 3-channel motor-output information
updated with 10-bit precision at 10 Hz. Such dramatic compression brings concomitant
reductions in the power required for communication and digitization of neural data. Ultra-low-
power analog preprocessing prior to digitization of neural signals could thus be beneficial in
some applications.

V. CONCLUSIONS
The algorithm and architecture presented here offer a practical approach to computationally
efficient neural signal decoding, independent of the hardware used for their implementation.
While the system is suitable for analog or digital implementation, we suggest that a micropower
analog implementation trades some algorithmic programmability for reductions in power
consumption that could facilitate implantation of a neural decoder within the brain. In
particular, circuit simulations of our analog architecture indicate that a 100-channel, 3-motor-
output neural decoder can be built with a total power budget of approximately 43 µW. Our
work could also enable a 100, 000-fold reduction in the bandwidth needed for wireless
transmission of neural data, thereby reducing to nanowatt levels the power potentially required
for wireless data telemetry from a brain implant. Our work suggests that highly power-efficient
and area-efficient analog neural decoders that operate in real time can be useful components
of brain-implantable neural prostheses, with potential applications in neural rehabilitation and
experimental neuroscience. Through front-end preprocessing to perform neural decoding and
data compression, algorithms and architectures such as those presented here can complement
digital signal processing and wireless data transmission systems, offering significant increases
in power and area efficiency at little cost.
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Fig. 1.
Block diagram of a computational architecture for linear convolutional decoding and learning.
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Fig. 2.
Continuous decoding of head direction from neuronal spiking activity.
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