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Abstract
Background—Statistical evaluation of medical imaging tests used for diagnostic and prognostic
purposes often employ receiver operating characteristic (ROC) curves. Two methods for ROC
analysis are popular. The ordinal regression method is the standard approach used when evaluating
tests with ordinal values. The direct ROC modeling method is a more recently developed approach
that has been motivated by applications to tests with continuous values, such as biomarkers.

Objective—In this paper, we compare the methods in terms of model formulations, interpretations
of estimated parameters, the ranges of scientific questions that can be addressed with them, their
computational algorithms and the efficiencies with which they use data.

Results—We show that a strong relationship exists between the methods by demonstrating that
they fit the same models when only a single test is evaluated. The ordinal regression models are
typically alternative parameterizations of the direct ROC models and vice-versa. The direct method
has two major advantages over the ordinal regression method: (i) estimated parameters relate directly
to ROC curves. This facilitates interpretations of covariate effects on ROC performance; and (ii)
comparisons between tests can be done directly in this framework. Comparisons can be made while
accommodating covariate effects and comparisons can be made even between tests that have values
on different scales, such as between a continuous biomarker test and an ordinal valued imaging test.
The ordinal regression method provides slightly more precise parameter estimates from data in our
simulated data models.

Conclusion—While the ordinal regression method is slightly more efficient, the direct ROC
modeling method has important advantages in regards to interpretation and it offers a framework to
address a broader range of scientific questions including the facility to compare tests.
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1. INTRODUCTION
Receiver operating characteristic (ROC) curves have long been used to characterize the
inherent accuracy of medical tests for diagnosis and prognosis.1 They have been particularly
popular in evaluating imaging modalities where images are rated on an ordinal scale according
to the reader’s certainty of a positive diagnosis.2 In this context a large body of statistical
methodology has developed for ROC analysis of ordinal rating data. These methods have drawn
primarily on ordinal regression modeling methods.3 For example, the classic Dorfman and Alf
algorithm4 for estimating binormal ROC curves employs ordinal regression methods, as does
the Tosteson and Begg5 methodology for evaluating factors influencing test accuracy. This
approach continues to be refined for addressing ever more complex statistical questions.6

In parallel a second body of literature has developed for ROC analysis over the past decade
motivated by applications where test results are on a continuous scale. We call this approach
the direct ROC modeling approach and describe it in detail below. For example, biomarkers
used for diagnosis and prognosis are typically measured on a continuous scale.7 It has been
noted that the direct ROC modeling methodology can also be applied to ordinal valued tests.
8,9 The purpose of this paper is first to make explicit the close connections that exist between
the ordinal regression (OR) and direct ROC modeling (DM) methods for statistical evaluation
of ROC curves. Second, we contrast the approaches in terms of their conceptual frameworks,
the range of questions addressed by them and the statistical efficiency with which they utilize
data.

We illustrate with two applications. The first example concerns interpretation of initial
screening mammograms by radiologists using the BI-RADS scale.10 We compare 1000 women
who were found to have breast cancer within one year of the mammogram to 1000 women
with no diagnosis of breast cancer. Both groups are randomly sampled from larger populations
from the Breast Cancer Surveillance Consortium (http://breastscreening.cancer.gov/). The BI-
RADS scale is ordered in terms of increasing likelihood of breast cancer as follows: (1)
Negative; (2) Benign finding; (3) Probably benign finding; (0) Need additional imaging; (4)
Suspicious abnormality; and (5) Highly suggestive of malignancy. Due to the small number
of women without cancer who had readings in category 5, we collapsed categories 4 and 5
together for this example. It has been shown that this ordering corresponds to increasing cancer
rates.11 The zero category is intended as a placeholder until additional imaging resolves
uncertainty, but in practice the zero is often not replaced. For each subject, in addition to the
image rating and case or control status, the dataset includes data on breast density measured
on the BI-RADS coding system: (1) almost entirely fat; (2) scattered fibroglandular densities;
(3) heterogeneously dense; and (4) extremely dense. Very few women had breasts classified
as almost entirely fat in this sample so categories (1) and (2) were combined and labeled as
‘not dense’. We seek to estimate the ROC curves associated with mammography for women
with each level of breast density and to describe the effect if any that breast density has on the
accuracy of mammographic readings.

The second dataset is similarly set in the context of breast cancer diagnosis, but now a
continuous valued biomarker is measured for each woman in addition to her mammographic
reading. For women diagnosed with cancer, the stage of her disease is noted in the dataset.
Some scientific questions of interest are: (i) to compare ROC curves for the biomarker and
mammogram tests; (ii) to evaluate the accuracies of the tests for detecting late stage cancer
compared with their capacities for detecting early stage cancer; and (iii) to determine if the
relative performance of the tests varies with breast cancer stage.
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2. TWO CONCEPTUAL FRAMEWORKS
The key distinction between the OR and DM approaches to ROC analysis is in the entities that
are modeled statistically. The OR method formulates a statistical model for the probability
distribution of the test results given case or control status and covariates. That is, we model
Prob[Y=r|D, X] where Y is the image rating result (which takes values r=1,2,…,R, where R is
the number of possible ratings), D is case or control status (D=1 for a case and D=0 for a
control) and X denotes covariates. From this one can calculate the corresponding ROC curves
for the test in populations with specified covariate values X=x. In contrast, the DM method
directly formulates a statistical model for the ROC curves as an explicit function of X. In other
words, OR models probability frequencies of ratings while DM models the relationship
between those probability frequencies for cases and controls, which is the trade-off between
true and false positive rates.

2.1 Simple Binormal ROC Curves
To see the correspondence between OR and DM model formulations, consider the classic
binormal ROC curve without covariates that is discussed in depth in Pepe (2003, sections 4.4–
4.5). The binormal ROC curve assumes that the tradeoff between false positive rates (fr = Prob
[Y ≥ r | D = 0]) and true positive rates (ROC(fr)= Prob[Y ≥ r | D = 1]) associated with different
decision cut points, r = 2,…, R , for classifying an image as positive is given by:

(1)

with Φ denoting the standard normal cumulative distribution function. The parameters γI and
γS are called the binormal ROC intercept and slope parameters, respectively, with
corresponding indices I and S. The DM formulation specifies the ROC curve as having the
form in equation (1).

The OR formulation instead specifies a model for the probability frequencies of ratings
conditional on case or control status, D =1 or 0, respectively:

(2)

The θr are called intercepts or ‘cut points’ associated with the rating thresholds r. By setting
D=0 for controls, the model writes the R −1 false positive rates as Prob[Y>=r|D=0]=1−Φ(θr).
We see that θr is a reparameterization of fr. In particular, fr=1−Φ(θr) and conversely, θr =
−Φ−1(fr). The parameters α1 and β are called the mean and scale parameters for the ordinal
regression model.

To calculate the ROC curve that corresponds to the OR model, recall that the ROC curve is
defined as the true positive rate, Prob[Y ≥ r | D =1], written as a function of the false positive
rate, fr = Prob[Y ≥ r | D = 0] . Starting with the OR formulation, we write the true positive rate
corresponding to fr as:
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the last equality following from the OR stipulation that fr = Φ(−θr). Therefore the OR
formulation gives rise to the binormal ROC curve that is modeled directly with the DM
approach with correspondences between parameters being :

(3)

Conversely, one can start with the binormal ROC curve and show that one minus the true
positive rate and one minus the false positive rate derived from it follow the OR formulation
using the same correspondences between parameters, now written as:

That is, when considering a single test and no covariates, the two models are equivalent, being
simple reparameterizations of each other.

Popular formulations for OR and DM models that include covariates are:

(4)

(5)

where f ∈ {f2X, f3X, …,fRX} are the false positive rates within the population with covariate
value X. Again it is easy to see that the two formulations are equivalent:

(6)

The DM approach parameterizes the covariate specific ROC curve directly (i.e. the ROC curve
for the population with covariate value X, ROCX) as a binormal curve with intercept γI+γIXX
and slope γS while the OR approach parameterizes the distributions of the test result as an
ordinal regression model with probit link function, mean 0 and scale 1 in controls, mean
α1+α3X and scale exp{βD} in cases, with category cut points {θrX , r=2,…, R}in the population
with covariate value X. In the DM approach, one estimates (γI, γIX, γS) directly while in the
OR approach one estimates (α1,α3,β) from which (γI,γIX,γS) are calculated using the above
formulas.

2.2 Extensions and Special Cases
Observe that no particular structure is assumed for θrX, or equivalently for frX, in the
formulations discussed above. In practice we need to choose if and how to model them. When
X is comprised of a few categories, one may take an entirely nonparametric approach,
empirically estimating the false positive rates, frX (or equivalently θrX) separately for each value
of X. However, one can also choose to model them with an ordinal regression model, frX =
Prob[Y ≥ r | D = 0, X] = Φ(−θr + α2X). This will be necessary in fact when X is continuous. We
then write the two equivalent model formulations as

(7)

Morris et al. Page 4

Med Decis Making. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(8)

Here in the OR approach, the ‘cut point’ θrX is parameterized as θr−α2X. The DM approach
achieves the same model by stipulating a parametric ordinal regression model for covariate
effects on test results in controls in addition to its modeling of the ROC curve as shown in the
pair of equations (8). If the model assumption is true, the formulation as two equations (8) is
identical to the formulation as one equation (7), where frX = Φ(−θr + α2X) is the part of the
model (7) pertaining only to controls.

In the general DM framework as laid out by Pepe (2003, chapter 6), one formulates a regression
model for covariate effects on test results in controls, frX, and a separate regression model for
covariate effects on the ROC curve, denoted by ROCX(f). The covariates entering these two
models and the model forms themselves may be completely different. For example, a covariate
such as X=study site in a multicenter study may be associated with the degree of conservatism
exercised by readers in rating images. This would affect the site specific false positive values,
frX, in the sense that images from controls would be rated differently across sites. However the
ROC curves in different sites would be the same if the inherent accuracy of the test was the
same across study sites. Under this scenario the covariate X=study site would be a component
of the model for frX, but would not be a component of the model for ROCX(f). We would have
α2≠0 in the model for frX but γIX=0 in the model for ROCX(f). This would typically be described
as movement along the same ROC curve due to a criterion shift induced by the covariate. In
the OR formulation (7) this same phenomenon would manifest as a main effect of X in α2 but
no interaction with case-control status, i.e. α3=0. One cannot (easily) allow the corresponding
model forms for frX and ROCX (f) to differ when using the OR approach since both are
formulated within a single model for the probability distributions (7) with a single link function.
This contrasts with the DM approach that allows completely independent specifications of
models for frX and ROCX (f).

Another possibility is that covariates affect the ROC curve but not the image ratings in controls.
A special example concerns disease specific covariates such as stage of breast cancer. The
ROC comparing late stage cancer to controls is likely to be higher than that comparing early
stage cancer to controls, so X=stage should enter the ROC model, perhaps as a term of the form
γIXX . This covariate would not enter the frX model, since disease stage is not defined for
controls. Disease specific covariates are naturally accommodated in the DM framework. In
contrast disease specific covariates have, to our knowledge, never been suggested for inclusion
in OR models, perhaps because covariates that are defined only for cases and not for controls
are not naturally accommodated in a single model that includes case and control data
simultaneously. Nevertheless, we note that they can be incorporated into OR models by
including them as having interaction terms with D, α3DX, but not main effect terms α2X.

The seminal paper by Tosteson and Begg5 on using OR for ROC analysis allowed covariates
to enter the scale component as well as the location component:

(9)

This is equivalent to the DM formulation
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This formulation is unappealing because the effect of X on the ROC curve is complicated. It
enters the ROC model in a non-linear fashion and does not give rise to simple summaries of
the effect of X on test accuracy. An alternative DM formulation for an ROC model is written
as

(10)

An advantage of this model is that the effects of X on ROC intercept and slope are summarized
succinctly in the parameters γIX and γSX, respectively. It does not, however, in general
correspond to the general Tosteson and Begg OR model in equation (9) because Φ−1(ROCX
(f)) is a linear function of X in (10) while it is a nonlinear function of X in the DM formulation
unless β2 = β3 = 0 . In practice, most applications of the Tosteson and Begg model allow the
scale to depend only on disease status as in equation (7), so that covariates affect only ROC
intercept and not slope, as in equation (8). The DM model in (10) allows the covariate to affect
the ROC slope as well and in a simple way.

The Tosteson and Begg model is rooted in a latent decision variable conceptual framework. In
this framework, one considers that underlying the observed ordinal test result is categorization
of an unobservable latent decision variable L with a normal distribution in cases and in controls
and that (θrX , θ(r+1)X) is the interval for L that defines the rth ordinal category, Y=r. In the latent
decision variable framework one interprets (α2X, exp{β2X}) as the (mean, standard deviation)
of L in the control population with covariate value X and (α1+α2X+α3X, exp{β1+β2X+β3X}) is
interpreted as the (mean, standard deviation) of L in cases with covariate value X. Therefore
α3 and β3 are interpreted as differences between cases and controls in regards to effects of X
on the mean and scale of L. Although the concept of latent variables is popular, we note that
it is unnecessary. Instead one can think of the parameters as relating simply to the probability
frequency distributions of the observed ratings and avoid the additional assumptions
concerning existence and behaviors of unobservable latent decision variables. This is the
straightforward approach of DM which simply specifies that the relationship between the R−1
true and false positive rates in the population with covariate value X follows a parametric
mathematical function, ROCX(f).

Since (9) and (10) are not equivalent models, one must choose between them when ROC slope
appears to depend on covariates other than disease status. The choice between the two
presumably depends on which model better fits the data and the goal of the analysis –– to
summarize effects of X on the ROC curve in a simple fashion or to summarize effects of X on
test result distributions.

2.3 Illustration
To illustrate a variety of ROC analyses, in Figure 1 we show ROC curves calculated with the
Breast Cancer Surveillance Consortium data described earlier. The raw data are displayed in
the top right panel of Figure 1 as empirical ROC curves for women in each of the 3 breast
density categories. In the top left panel a fitted binormal ROC model is shown that ignores the
covariate, breast density. This corresponds to the model displayed as equation (1). The observed
false positive rates {f̂2,…,f̂5} are also displayed. The middle panels show ROC curves
associated with the three breast density categories modeled using equation (5) with the
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covariate X comprised of two binary variables X=(X1, X2) where X1 and X2 are dummy variables
for “dense” and “extremely dense” breast density. That is, the ROC intercepts were allowed
to vary with breast density but the slopes were assumed to be the same in all three categories.
In the left panel no assumptions were made about the effect of density on false positive rates
frX or equivalently on ‘cut points,’ while in the right panel we assumed that they followed an
ordinal regression model as in equations (7) and (8). The bottom panels show the ‘averaged’
ROC curve, which allows the ‘cut points’ (θrX or frX) to vary with breast density but instead
of modeling covariate specific ROC curves, it models the vertical average of breast density
specific ROC curves. That is, in equation (8) we set γIX=0. This is called the covariate adjusted
ROC curve and can be interpreted as the vertical average of breast density specific ROC curves.
12,13

3. FITTING MODELS TO DATA
In the previous section we showed that DM and OR models are different representations of the
same models. We now consider how to fit models to data. Different algorithms have
traditionally been used by analysts depending on how they formulate the model, as DM or as
OR.

3.1 Algorithms
The OR formulation naturally gives rise to maximum likelihood algorithms for estimating
parameters. However, standard software for ordinal regression maximum likelihood only
accommodates location parameters and does not allow scale parameters. Therefore, even the
simplest binormal model (equation (2)) cannot be fit using standard ordinal regression
algorithms because the model includes the scale component exp(βD). For this simple model
without covariates, several statistical software packages provide the Dorfman and Alf
maximum likelihood estimation algorithm. More generally, methods for nonlinear models can
be adapted. We wrote our own code in the R environment14 for maximum likelihood estimation
of parameters. Methods for fitting these models in SAS with the NLMIXED procedure have
been described.15 These apply when the scale component only depends on D and not on X.

Algorithms for fitting ROC models have been proposed within the general DM framework.8,
16,17 Implementation in the Stata software package18 is well developed and has been
documented in detail.9,19 We also implemented this in the R package to perform simulation
studies. The key steps in the algorithms are to (i) estimate the covariate specific rating
distributions in controls, i.e. the false positive rates, {f̂rX, r=2, …,R}, either empirically or by
fitting a standard ordinal regression model to rating data on controls; (ii) for each case test
result, Yi, create R−1 binary variables Uir = I[Yi ≥ r] for r=2,…,R; (iii) Noting that E(Ur) =
Prob[Y ≥ r | D=1,X] = ROCX (frX), use a standard binary regression package to estimate the
parameters in the ROC regression model. In the case of the general model given in (10), we
include all observations with dependent variable Uir and corresponding predictor vector
[1,Xi, Φ−1(f̂rXi), XiΦ−1(f̂rXi)], the total number of such observations being R−1 times the number
of cases and specify a probit link function for the binary regression in order to estimate the
ROC parameters (γI, γIX, γS, γSX). For models with fewer terms than (10) corresponding
predictors would be dropped; (iv) use bootstrap resampling to estimate standard errors.

The DM algorithms were originally developed for continuous test results where binary
variables Uif are defined based on a set of f values that are user specified, usually equally spaced
in (0,1) or in some subinterval of (0,1). However, equally spaced f’s can result in biased ROC
curves for ordinal data. This is demonstrated in Figure 2 for the setting where no covariates
are involved. The true ROC points associated with the 6 rating categories are shown on the top
(solid) curve. Employing 9 equally spaced f values in the DM algorithm essentially creates
some additional intermediate ROC points that have larger FPR but equal TPR values. The fitted
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binormal ROC curve is attenuated by these points (dashed curve) relative to the original curve
on which the observed ROC points lie. Therefore for fitting DM ROC models to tests with
ordinal values, the modified selection of f ∈ {f̂2Xi,…,f̂RXi} and the corresponding change to the
predictor vector [1,Xi, Φ−1(f̂rXi), XiΦ−1(f̂rXi)] are recommended in applying the DM algorithm.

The DM algorithm estimates parameters in the false positive rate model first and then estimates
parameters in the ROC model. In contrast with the OR algorithm, it is not symmetric in its
treatment of case and control data. If one switched the labeling of cases and controls, different
estimates would result. Moreover, the DM algorithms are not maximum likelihood methods.
In particular parameters in the false positive rate model are estimated only with data from
controls. In contrast, the OR algorithm estimates all parameters in both models at the same
time by maximizing the likelihood of all the data. As a consequence data from cases can impact
estimated values of the false positive rate parameters. This may lead to better efficiency for
the OR fitting algorithm. The two-step DM approach allows for the forms of the model to be
different thereby providing flexibility. However, as noted earlier, if one constrains the forms
to be the same (for example, both probit) one can fit the false positive rate and ROC models
simultaneously using the same maximum likelihood algorithm that the OR approach uses by
reparameterizing the models as a single OR model.

3.2 Comparing Statistical Efficiency of DM and OR fitting algorithms
When the DM and OR algorithms are used to fit the same model, it is of interest to know which
one is most efficient in the sense of producing the most precise estimates. It is known from
established statistical theory that estimates calculated by maximizing the likelihood function
are asymptotically optimal in terms of being consistent and having the least sampling
variability.20 This general result implies that parameter estimates and ROC values derived from
the OR fitting algorithm, which are maximum likelihood, have the smallest standard deviations
at least as sample sizes become large. The optimality of the maximum likelihood algorithm
usually manifests in small samples too. Since the DM fitting algorithm is not maximum
likelihood we use simulation studies to investigate the extent to which they are suboptimal.

For our simulations data were generated under a variety of scenarios that gave rise to different
true binormal regression models. In all scenarios simulated, subjects were first assigned their
case or control status and then their ordinal marker Y was derived by categorizing a continuous
marker L generated from a normal distribution that had standard deviation 1 and mean shown
in Table 1. In particular the cut points {Φ−1 (.1), Φ−1 (.3), Φ−1 (.5), Φ−1 (.7), Φ−1 (.9)}={−1.28,
−0.52, 0.00, 0.52, 1.28} gave rise to Y. In all, 5 scenarios were studied, one in which no covariate
was involved, two in which a categorical covariate was defined and two in which a continuous
covariate was defined. The covariate was generated from the same distribution in cases and
controls, namely from 4 categories with equal frequencies for the categorical covariate and
from a uniform distribution on (−1, 1) for the continuous covariate. We generated datasets with
equal numbers of cases and controls (n=100, 200, 500) and fit the appropriate models using
DM and OR algorithms.

Table 2 shows results of analyses when no covariates were involved. Recall that the OR
maximum likelihood algorithm is the classic Dorfman-Alf method for estimating the binormal
curve. It is compared with the DM method in Table 2. Interestingly the mean and standard
deviations for estimates calculated with the DM method are almost identical to those from the
Dorfman-Alf algorithm indicating that in this setting the DM fitting algorithm provides
estimates that are very near the theoretically optimal maximum likelihood estimates.

A subset of our results, pertaining to models generated and fit when covariates affect both the
false positive rates and the ROC curve are shown in Table 3 and in Figure 3. Conclusions were
similar for scenarios not reported. As expected the OR algorithms are somewhat more efficient
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but the differences appear to be small. Interestingly ROC values seem to be estimated with
essentially the same precision using DM and OR fitting algorithms. The FPR values associated
with each category of Y appear to be estimated a little more precisely with the OR than with
the DM method. An intuitive explanation is that the DM method uses only data from controls
to estimate the FPR values, while the OR method incorporates data from cases as well by
utilizing all the modeling assumptions in the likelihood that is maximized.

3.3 Application to Breast Cancer Surveillance Consortium Data
Results of fitting the binormal models described in relation to Figure 1 using the OR and DM
fitting algorithms are displayed in Table 4 and Table 5. The estimated ROC values at false
positive rates equal to (0.1,0.3,0.5) are shown in Table 4. The estimates agree reasonably well.
The confidence intervals are for DM and OR fitting algorithms agree closely when covariates
effects on false positive rates are assumed not to exist, or when they are assumed to follow an
ordinal regression model. However, they appear to be substantially smaller for the maximum
likelihood OR algorithm for these data when the false positive rates are calculated separately
within each breast density category.

4. Extending the Range of Research Questions to Comparing Tests
The DM approach can be applied to continuous tests essentially as we have described it here.
The analogue of the OR approach for application to continuous tests is to model the continuous
test result distributions for cases and for controls. Covariates can be incorporated into the
models if appropriate. These two approaches to evaluating continuous diagnostic tests, DM
and modeling test results, have been compared qualitatively.8,21 We refer the reader to previous
publications since similar conclusions apply in the context we consider here, namely ordinal
valued tests. Perhaps the most important advantage identified for the DM framework over the
OR framework is that DM allows one to succinctly compare the ROC accuracies of tests.
Moreover, it has been shown how such comparisons can be made while accommodating
covariate effects on test results at the same time. We now explore this methodology when
ordinal valued tests are involved.

Comparisons are possible in the DM framework even when tests themselves are on different
scales. As an example, consider the data displayed in Figure 4 where a continuous biomarker
test and an ordinal valued imaging test are available for 1000 cases and 1000 controls data
(These data were simulated and are available online at
http://labs.fhcrc.org/pepe/dabs/datasets.html). Binormal ROC curves fit to the data for all cases
combined and for controls are displayed in the left panel of Figure 5. Define a covariate,
Xtest, that specifies the test, Xtest=0 for the ordinal imaging test and Xtest=1 for the continuous
biomarker test. The following is a comprehensive ROC model that includes both tests:

When Xtest=0, the ROC curve relates to the ordinal test and has intercept γI and slope γS . When
Xtest=1, the ROC curve relates to the continuous test and has intercept γI + γIX and slope γS +
γSX . The DM methodology allows one to assess if γIX = 0 and if γSX = 0, i.e., to assess if the
binormal ROC curves are equal. We found γ̂IX = 0.421 with a 95% confidence interval
(0.275,0.842). We found γ̂SX = 0.198 with a 95% confidence interval (0.07,0.356). A joint
Wald test of these two parameters was statistically significant (p-value < .001) and we conclude
that the ROC curves for the two tests are not equal.

An additional covariate in this dataset concerns stage of disease, defined only for cases. The
curves in the lower right panel of Figure 4 incorporate this covariate into the comparison of
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the two tests. We see that the accuracy of the biomarker test appears to be superior to the
imaging test in detecting early stage disease but that they have similar performance for
distinguishing between late stage disease and controls. The DM framework allows us to make
rigorous statistical inference about these comparisons. Define Xsev=1 for late stage and Xsev=0
for early stage. We fit the following model to our data

after determining that the slope parameter was unaffected by either Xtest or Xsev. The ROC
curve for the baseline covariate values Xsev=0 and Xtest=0 (early stage disease versus controls
using the imaging test) is determined by estimates of its intercept γ̂I = 0.438 (95% CI=
0.322,0.557) and its slope γ̂S = 1.031 (95% CI= 0.96,1.1). The parameter γ̂IXtest concerns the
comparison between imaging and biomarker tests for distinguishing between subjects with
early stage disease and controls. We found = γ̂IXtest = 0.668 with a 95% confidence interval
(0.506,0.842) that does not include 0 and conclude that the biomarker test is superior in this
setting. The interaction term is statistically significant, = γ̂IXint = −0.746, 95% CI=(−0.962,
−0.537), indicating that the relative performance of the two modalities is different for detecting
late stage disease. For late stage disease, the difference in the ROC intercepts for the two tests
is γ̂IXtest + γ̂IXint = −0.078, 95% CI=(−0.269,0.088). Since this is close to 0 and not statistically
significant we conclude that the tests have similar performance for detecting late stage disease.

Methods to implement analyses for comparing tests using the DM framework have been
described previously.8 Briefly, the data are arranged as one data record per test result. Thus in
our setting each subject has 2 data records, one for the imaging test and one for the biomarker
test. Each record contains the variables (Y, D, Xtest, Xsev). Since the variable Xsev is only relevant
for cases with disease, it is coded as missing for controls. The f̂rXtest values are calculated
empirically for the imaging test. That is, the observed proportions of controls with imaging
test ratings at or exceeding r give rise to values f̂rXtest when Xtest=0. We use the same values
of f̂rXtestfor the continuous biomarker test. This means that the same values on the horizontal
axis of the ROC plot are used for fitting the test specific ROC curves. The DM algorithm
proceeds by calculating Ur,i values for r=2, …, R for each case observation (Yi, Xtest i) and
fitting the binary probit regression model to (Uir , Xtest,i , Xsev,i , Xtest,i Xsev,i , Φ−1 (f̂rX)).

DISCUSSION
The main purpose of this article is to contrast the direct ROC modeling method that is popular
for continuous tests with the ordinal regression method that is widely popular for image rating
tests. Table 6 summarizes our findings. We show that when a single test is under consideration,
the models are usually equivalent in the sense that they make the same modeling assumptions.
One is typically a reparameterization of the other. We hope that this recognition will help unify
these apparently discrepant approaches to ROC analysis.

Yet there are major advantages for using the DM framework. In particular, when several tests
are under consideration, it can be used to address scientific questions concerning comparisons
between diagnostic tests. We showed through an example that additional covariates can be
incorporated as well. Further examples of this general approach are provided in Pepe 2003
(section 6.4)8 where applications to continuous tests are illustrated. Here we applied the
methodology to compare a continuous test with an ordinal test. This sort of comparison cannot
be done within the OR framework to ROC analysis.

One advantage of the OR framework is that statistically optimal maximum likelihood methods
are naturally employed for estimation with data. A variety of algorithms have been proposed

Morris et al. Page 10

Med Decis Making. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



for model fitting in the DM framework. We investigated the efficiency of one algorithm relative
to maximum likelihood using simulation studies. We found that when the binormal model
holds for the ROC curves this algorithm has performance almost equal to maximum likelihood.
However, when the data deviate from modeling assumptions, the DM and OR methods may
produce different results.

An issue that arises frequently in evaluations of imaging tests is that readers rate multiple
images giving rise to observations that are clustered by reader. When many readers participate
in a study, such as in the Breast Cancer Surveillance Consortium data, and one wants to make
inference pertaining to the population of readers, random effect models are often entertained
in the OR framework.6,22 Random effects for readers may pertain to the thresholding criteria
or to the ROC curves, or to both. The DM framework does not yet accommodate random effects
in ROC models. Extensions to the DM approach to accommodate random effects warrants
further research.
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Figure 1.
Binormal ROC models for mammography including breast density as a covariate. Models can
be formulated either within OR or DM frameworks. Top left panel: no covariate model,
equations (1) and (2); Middle panels: ROC intercept depending on breast density category,
equations (4) and (5); Bottom panels: average ROC curve across breast density categories. In
the left panels no modeling assumptions are made about the false positive rates while in the
right panels they are assumed to follow an ordinal regression model with X=(X1, X2) where
X1 = {1 for dense, 0 otherwise} and X2 = {1 for extremely dense, 0 otherwise}. Models shown
are those estimated by applying the DM fitting algorithms to the Breast Cancer Surveillance
Consortium data. Symbols show (FPR, ROC(FPR)) points that correspond to the 5 categories
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of the test. Also shown in the top right panel are the empirical ROC curves within each breast
density category.
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Figure 2.
Biased ROC estimation when unobserved FPR values are employed with the DM fitting
algorithm. The five observable ROC points are indicated by circles on the solid curve. The
curve fitted by choosing equally spaced f values (circles and triangles) is indicated with a dashed
curve.
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Figure 3.
Accuracy estimates based on simulated data when a continuous covariate X affects both false
positive rates and ROC curves. ROC values associated with covariate values X=−.5 and X=.5
are displayed. The sample size is n=200 cases and controls. Shown are average estimates of
ROCX(fr) for r= 3,4,5,6 where fr is the theoretical FPR associated with the rth category. Mean
estimates are displayed with symbols offset by +/− .01 for visual clarity. Error bars display ±1
SD across the 500 simulations.
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Figure 4.
Data distributions for imaging and biomarker tests for breast cancer in controls, in cases with
early stage cancer (darker shading) and in cases with late stage cancer (lighter shading).
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Figure 5.
ROC curves comparing imaging versus biomarker tests for breast cancer. Left panel groups
all diseased subjects together for comparison with controls. Right panel separately compares
late stage cases and early stage cases with controls. Points displayed on ROC curves for the
imaging test correspond to estimated ROC points associated with the image rating categories.
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Table 1

Simulation scenarios used to evaluate the relative efficiency of ordinal regression (OR) versus direct ROC
modeling (DM) fitting algorithms. After assigning a subject his case-control status and covariate value, a normally
distributed variable with mean indicated in the table and standard deviation equal to 1 was generated and
categorized as described in the text. The categorical covariate with 4 levels is represented as 3 dummy variables
(X2, X3, X4) = (0, 0, 0) for level 1, (1, 0, 0) for level 2, (0, 1, 0) for level 3, (0, 0, 1) for level 4. The continuous
covariate is denoted by X.

Covariate Covariate
Effects on
FPR

Covariate
Effects on
ROC

Mean in controls Mean in Cases

none no no 0 1.19

categorical yes no −0.2 +0.1X2+0.3X3+0.4X4 1.19−0.2+0.1X2+0.3X3+0.4X4

continuous yes no X 1.19+X

categorical yes yes −0.2 +0.1X2+0.3X3+0.4X4 1.19−0.2+0.15X2+0.5X3+0.65X4

continuous yes yes 0.5X 1.19+X

FPR: false positive rate
ROC: receiver operating characteristic
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Table 6

Comparison & contrast of Direct ROC modeling and Ordinal Regression.

Direct ROC modeling Ordinal Regression

Entity modeled ROC curve and probability
frequencies of ratings for controls

Probability frequencies of ratings
for cases and for controls

Disease specific
covariates

Naturally included in the ROC
regression model

Indirectly incorporated.

Multiple tests Can be evaluated and compared
within a single ROC model

Not allowed. Suitable for single
test evaluation.

Type of test result data Can be continuous or ordinal Ordinal only

Computational
algorithms

Requires two steps to fit FPR and
ROC models in sequence.

One step.

Asymmetric treatment of cases
and controls

Symmetric treatment of cases and
controls

Statistical efficiency Less efficient Theoretically optimal. Fully
efficient with standard maximum
likelihood fitting procedures.

Random effect models
e.g. for large numbers
of raters

Not yet accommodated Are easily accommodated.
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