
[16:43 30/6/2010 Bioinformatics-btq224.tex] Page: 1899 1899–1900

BIOINFORMATICS APPLICATIONS NOTE Vol. 26 no. 15 2010, pages 1899–1900
doi:10.1093/bioinformatics/btq224

Sequence analysis Advance Access publication April 28, 2010

Parallelization of the MAFFT multiple sequence alignment
program
Kazutaka Katoh∗ and Hiroyuki Toh
Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology,
Tokyo 135-0064, Japan
Associate Editor: David Posada

ABSTRACT

Summary: Multiple sequence alignment (MSA) is an important
step in comparative sequence analyses. Parallelization is a key
technique for reducing the time required for large-scale sequence
analyses. The three calculation stages, all-to-all comparison,
progressive alignment and iterative refinement, of the MAFFT MSA
program were parallelized using the POSIX Threads library. Two
natural parallelization strategies (best-first and simple hill-climbing)
were implemented for the iterative refinement stage. Based on
comparisons of the objective scores and benchmark scores between
the two approaches, we selected a simple hill-climbing approach as
the default.
Availability: The parallelized version of MAFFT is available
at http://mafft.cbrc.jp/alignment/software/. This version currently
supports the Linux operating system only.
Contact: kazutaka.katoh@aist.go.jp
Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on February 25, 2010; revised on April 5, 2010; accepted
on April 19, 2010

Multi-core CPUs are becoming more commonplace. This type
of CPU can perform various bioinformatic analyses in parallel,
including database searches, in which tasks can be split into multiple
parts (eg. Mathog, 2003). The parallelization of a multiple sequence
alignment (MSA) calculation is a complicated problem, because
the task cannot be naturally divided into independent parts. Thus,
there have been several reports on the parallelization of multiple
alignment calculations with various algorithms on different types of
parallel computer systems (Chaichoompu et al., 2006; Date et al.,
1993; Ishikawa et al., 1993; Kleinjung et al., 2002; Li, 2003).
The present study targets a currently popular type of PC, which
has 1–2 processor(s), each with 1–4 core(s), and shared memory
space.

MAFFT (Katoh et al., 2002; Katoh and Toh, 2008) is a popular
MSA program. To improve its usefulness on multi-core PCs, we
have implemented a parallelized version, using the POSIX Threads
(pthreads) library. The aim is to efficiently parallelize MAFFT
while keeping the quality of the results. The calculation procedure
of the major options of MAFFT consists of three stages: (i) all-
to-all comparison, (ii) progressive alignment and (iii) iterative
refinement.

∗To whom correspondence should be addressed.

(i) There is no problem in the parallelization of the first stage, the
all-to-all comparison. Multiple threads can process different
pairwise alignments simultaneously and independently, with
little loss of CPU time.

(ii) In the progressive alignment stage (Feng and Doolittle,
1987; Thompson et al., 1994), group-to-group alignment
calculations are performed along with a guide tree. This
process is not very suitable for parallelization, because the
order of the alignment calculations is restricted by the guide
tree. That is, an alignment at a node cannot be performed until
all of the alignments in its child nodes have been completed.
As long as this restriction is maintained, alignments can be
performed at child nodes that are independent of each other.
Thus, in our implementation, the efficiency of parallelization
is inevitably low in this stage. Although it is possible to design
a guide tree that is suitable for parallelization (Li, 2003), we
have not adopted this approach, because in MAFFT this stage
consumes less CPU time than the other two (for details see
Supplementary Table, in which the percentage of execution
time of this stage is below 2%).

(iii) In each step of the iterative refinement process (Barton and
Sternberg, 1987; Berger and Munson, 1991; Gotoh, 1993),
an alignment is divided into two sub alignments and then
the two sub alignments are realigned, according to the tree-
dependent iterative strategy (Gotoh, 1996; Hirosawa et al.,
1995), to obtain an alignment with a higher objective score. We
implemented the best-first approach and a simple hill-climbing
approach for this stage.

In the best-first approach, the realignments are performed for all
of the possible 2N −3 divisions on the tree, and then the alignment
with the highest objective score is selected, where N is the number
of sequences. This process is repeated until no alignment with a
higher score is found. Since only the alignment with the highest score
contributes to the next step and the other alignments are discarded,
this approach is obviously inefficient.

As an alternative, in which fewer alignments are discarded,
we implemented a simple hill-climbing approach. Realignment
processes are randomly assigned to the multiple threads and
performed in parallel. If the score of a new alignment by a thread
is better than the original alignment, then it instantly replaces
the original alignment. Accordingly, there can be a case where
two or more different threads in parallel produce different, better
alignments. In such a case, the first (in terms of time) alignment
is selected, while the other alignments are discarded. The simple
hill-climbing approach is expected to be efficient when the number

© The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://mafft.cbrc.jp/alignment/software/
http://creativecommons.org/licenses/

[16:43 30/6/2010 Bioinformatics-btq224.tex] Page: 1900 1899–1900

K.Katoh and H.Toh

 1

 10

 100

 1000

 10000

 1 10

Best-first

Simple hill-climbing

Progressive

Number of threads (log scale)

E
la

ps
ed

 ti
m

e
[s

ec
.]

(lo
g

sc
al

e)

Fig. 1. Efficiency of parallelization for an iterative refinement option
(L-INS-i) with two parallelization strategies (best-first and simple hill-
climbing) and a progressive option (L-INS-1). Lines correspond to the ideal
situation where (Elapsed time with n threads) = (Elapsed time with single
thread) / n. The command-line arguments are:
Best-first, mafft-linsi --bestfirst --thread n input

Simple hill-climbing, mafft-linsi --thread n input

Progressive, mafft-linsi --maxiterate 0 --thread n input

of threads is small. With an increase in the number of threads, the
number of discarded alignments increases and thus the efficiency
will decrease. The resulting alignment depends on random numbers.

The best-first approach provides a stable result independently of
random numbers, while the simple hill-climbing approach generally
has an advantage, in terms of the speed. Therefore, we examined
which is more suitable for the multiple alignment problem. To
compare their efficiencies, the simplest iterative refinement option
with no sequence weighting was applied to all 218 alignments
in BAliBASE version 3 (Thompson et al., 2005). The simple
hill-climbing approach was run 10 times with different random
numbers. For each of the 218×10 runs with the simple hill-climbing
approach, the final objective score was compared with the final
objective score obtained from the best-first approach. The former
was higher than the latter in 972 cases, while the former was lower
than the latter in 917 cases. In the remaining 291 cases, the two
alignments were identical to each other. This result rationalizes the
use of the simple hill-climbing approach.

To confirm that the accuracies of the alignments by the two
approaches are indistinguishable from each other and from that
generated by the serial version, the BAliBASE benchmark scores
were also calculated, where the differences from the reference
alignments (assumed to be correct) were evaluated as the SP and
TC scores (Thompson et al., 1999). The overall average SP scores
of one of the most accurate MAFFT options, L-INS-i, were 0.8728±
0.0003649 (simple hill-climbing; average ± SD), 0.8720 (best-first)
and 0.8722 (serial version). The overall average TC scores were
0.5926±0.001162 (simple hill-climbing), 0.5927 (best-first) and
0.5928 (serial version). The average and the SD of the scores of the
simple hill-climbing approach were calculated from 10 runs with
different random numbers.

Figure 1 shows the actual time required to calculate the largest
alignment (BB30003; 142 sequences × 451 sites including gaps) in

BAliBASE, using different numbers (1–16) of threads on a 16 core
PC (4 × Quad-Core AMD Opteron Processor 8378). When the
number of threads is eight, the efficiencies of parallelization are
0.89 and 0.55 for the best-first approach and the simple hill-climbing
approach, respectively. As expected, the loss of speed in the simple
hill-climbing approach increases with an increase in the number
of threads. This is because the number of discarded alignments
increases, as mentioned above. The loss of speed for the best-first
approach is relatively small. However, within the range of the target
systems in the present study (common multi-core PCs), the simple
hill-climbing approach is faster, and therefore was adopted as the
default.

We also examined the applicability of the simple hill-climbing
approach to larger data. As shown in Supplementary Table, the
efficiency with eight threads is 0.55–0.74 for five datasets, each
with ∼1000 sequences.

MAFFT versions ≥6.8 switch to the pthread version by simply
adding the --thread n argument, where n is the number of
threads to use. No special configuration is required for parallel
processing on a multi-core PC with the Linux operating system.

Funding: KAKENHI for Young Scientists (B) 21700326 from
Monbukagakusho, Japan (to K.K.).

Conflict of Interest: none declared.

REFERENCES
Barton,G.J. and Sternberg,M.J. (1987) A strategy for the rapid multiple alignment of

protein sequences. confidence levels from tertiary structure comparisons. J. Mol.
Biol., 198, 327–337.

Berger,M.P. and Munson,P.J. (1991) A novel randomized iterative strategy for aligning
multiple protein sequences. Comput. Appl. Biosci., 7, 479–484.

Chaichoompu,K. et al. (2006) MT-ClustalW: multithreading multiple sequence
alignment. In Proceedings 20th IEEE International Parallel & Distributed
Processing Symposium, IEEE Computer Society Press, 280.

Date,S. et al. (1993) Multiple alignment of sequences on parallel computers. Comput.
Appl. Biosci., 9, 397–402.

Feng,D.F. and Doolittle,R.F. (1987) Progressive sequence alignment as a prerequisite
to correct phylogenetic trees. J. Mol. Evol., 25, 351–360.

Gotoh,O. (1993) Optimal alignment between groups of sequences and its application
to multiple sequence alignment. Comput. Appl. Biosci., 9, 361–370.

Gotoh,O. (1996) Significant improvement in accuracy of multiple protein sequence
alignments by iterative refinement as assessed by reference to structural alignments.
J. Mol. Biol., 264, 823–838.

Hirosawa,M. et al. (1995) Comprehensive study on iterative algorithms of multiple
sequence alignment. Comput. Appl. Biosci., 11, 13–18.

Ishikawa,M. et al. (1993) Multiple sequence alignment by parallel simulated annealing.
Comput. Appl. Biosci., 9, 267–273.

Katoh,K. et al. (2002) MAFFT: a novel method for rapid multiple sequence alignment
based on fast Fourier transform. Nucleic Acids Res., 30, 3059–3066.

Katoh,K. and Toh,H. (2008) Recent developments in the MAFFT multiple sequence
alignment program. Brief Bioinform., 9, 286–298.

Kleinjung,J. et al. (2002) Parallelized multiple alignment. Bioinformatics, 18,
1270–1271.

Li,K.B. (2003) ClustalW-MPI: ClustalW analysis using distributed and parallel
computing. Bioinformatics, 19, 1585–1586.

Mathog,D.R. (2003) Parallel BLAST on split databases. Bioinformatics, 19, 1865–1866.
Thompson,J.D. et al. (1994) CLUSTAL W: improving the sensitivity of progressive

multiple sequence alignment through sequence weighting, position-specific gap
penalties and weight matrix choice. Nucleic Acids Res., 22, 4673–4680.

Thompson,J.D. et al. (2005) BAliBASE 3.0: latest developments of the multiple
sequence alignment benchmark. Proteins, 61, 127–136.

Thompson,J.D. et al. (1999) BAliBASE: a benchmark alignment database for the
evaluation of multiple alignment programs. Bioinformatics, 15, 87–88.

1900

