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ABSTRACT

Summary: We present LOX (Level Of eXpression) that estimates
the Level Of gene eXpression from high-throughput-expressed
sequence datasets with multiple treatments or samples. Unlike
most analyses, LOX incorporates a gene bias model that facilitates
integration of diverse transcriptomic sequencing data that arises
when transcriptomic data have been produced using diverse
experimental methodologies. LOX integrates overall sequence count
tallies normalized by total expressed sequence count to provide
expression levels for each gene relative to all treatments as well as
Bayesian credible intervals.
Availability: http://www.yale.edu/townsend/software.html
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1 INTRODUCTION
The quantification of genomic gene expression variation across
conditions has become an increasingly common component of
diverse research programs. While microarray technology has been
widely and successfully applied in the past, high-throughput
sequencing technology has garnered significant attention for the
identification of differentially expressed transcripts (Creighton
et al., 2009). High-throughput sequencing technology facilitates
discrete counts of expressed sequences, enabling accurate and
precise quantification of differential expression levels, especially
for low-abundance transcripts, and is not subject to issues of cross-
hybridization. These features represent important advantages over
hybridization-based microarray technologies (t Hoen et al., 2008),
provided that suitable approaches are applied for data analysis.

Experimentally, sequencing-based expression methodologies
differ in RNA isolation and priming strategies (e.g. band-cutting,
oligo-dT primers, random primers, gene-specific primers or multi-
targeted primers), as well as sequence lengths and coverage (e.g.
454, SOLiD and Solexa). For nearly all expression assays, reverse
transcription from messenger RNA (mRNA) to complementary
DNA (cDNA) is a key step that contributes considerable
experimental variance (Yang and Speed, 2002). Throughput of the
reaction is biased for each gene by secondary and tertiary structures
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of mRNA, affinities specific to the reverse transcriptase, inhibitors
present in the sample, priming strategy and variation in priming
efficiency (Gonzalez and Robb, 2007; Graf et al., 1997; Stahlberg
et al., 2004; Stangegaard et al., 2006; Talaat et al., 2000). To make
full use of diverse datasets gathered by different methodologies
and to enable accurate and precise expression profiling, therefore,
it is necessary to be able to analyze gene expression levels based
on data from diverse methodologies. Although several recent tools
(Bloom et al., 2009; Robinson et al., 2010; Wang et al., 2010)
are appropriate for sequencing-based gene expression data, little
attention has been devoted to the development of software that can
support of analysis not just of homogeneously gathered datasets,
but also of datasets gathered by multiple methodologies (Balwierz
et al., 2009). Here, we present open-source, cross-platform software,
LOX (Level Of eXpression), enabling powerful, accurate and
precise quantification of expression from multiple treatments and/or
sequencing methodologies.

2 ALGORITHMS

2.1 Model
LOX is implemented with a Markov chain Monte Carlo (MCMC) algorithm,
facilitating integration over multiple treatments when expressed sequence
counts have been provided by one or more experimental methodologies. We
denote the set of treatments as N , the set of experimental methodologies as
M, and the set of genes as G. The expressed tag count cijk is the input data
for each gene k under treatment i and methodology j, and can range from
less than ten to thousands or more. Estimated parameter pik is the expression
level in treatment i relative to all genes, and qjk is the correction for the
omitted-variable bias imposed on gene k by methodology j, where 0<pik <1
and 0<qjk <1. The proportion of counts should reflect the proportion of
expressed mRNA, modulated by the effect q of the methodology on the
gene k. Therefore, the posterior density for pik and qjk for all i and j
can be estimated by applying Bayes’ rule to the distribution of the data
conditioned on the parameters. Assuming an uninformative prior and a
binomial distribution of the counts cijk with proportion pikqjk (0<pikqjk <1)
yields

Pr( pik
∀i∈N

, qjk
∀j∈M

|cijk,sij)∝
∏

i∈N,j∈M

(pikqjk)cijk (1−pikqjk)sij−cijk , (1)

where input data sij is the sum of expression counts across all genes with
treatment i and methodology j, formulated as sij =∑

k∈G cijk .

2.2 Implementation
LOX employs a relative expression estimation approach similar to that used
for the BAGEL (Bayesian Analysis of Gene Expression Levels) analysis
of microarray data (Townsend and Hartl, 2002). Briefly, a Markov chain is
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constructed by MCMC integration that explores the probability density for
the parameters on the basis of Equation (1). Initial values of parameters pik

and qjk are set as pik =∑
j∈M cijk

/∑
j∈M sij and qjk =∑

i∈N cijk

/∑
i∈N sij ,

respectively, and their subsequent values in the chain are determined
iteratively by choosing successive proposed values. To generate successive
proposed values, two of the expression-level parameters are first chosen at
random. Second, a triangularly distributed step size with range [−�,+�]
is generated, where the magnitude of � is the average of the two chosen
parameters’ initial values divided by two. These calibrated step sizes facilitate
rapid mixing of the Markov chain, because likely values of p and q can
vary from gene to gene over orders of magnitude. Third, one of the two
chosen parameters is incremented by the generated step size and the other is
decremented by the same quantity. Thus, the proposed state differs from the
last iteration only for the two chosen parameters.

Next, an acceptance probability is calculated as the ratio of the
probabilities of the proposed state to the current state. The acceptance
of transition from the current state to the proposed state is indicated by
comparing the acceptance probability with a random variable from 0 to 1,
viz.,

random(0,1)<

Pr( p′
ik∀i∈N

, q′
jk

∀j∈M

|cijk,sij)g(p′
ik,q

′
jk)

Pr( pik
∀i∈N

, qjk
∀j∈M

|cijk,sij)g(pik,qjk)
, (2)

where the prime symbolizes the proposed parameter and g(p′
ik,q

′
jk) is an

equiprobable (flat) prior distribution of the parameters. If Equation (2) is not
satisfied, the current state is retained for the next iteration. After stationarity,
this procedure results in a Markov chain of states that stochastically
recapitulates the posterior distributions of each parameter, integrated across
the probable states of all other parameters (Hastings, 1970; Metropolis et al.,
1953). Estimates are derived from the median of the posterior.

3 FEATURES
LOX, written in standard C++, facilitates compilation compliant
with GNU standard procedure and execution on Linux/Unix,
Macintosh, and Windows platforms. LOX is distributed as open-
source software and licensed under the GNU General Public
License. The LOX package, including compiled executables,
example data, documentation and source codes, is freely available
for academic use at http://www.yale.edu/townsend/software.html.

The input data for LOX are expression counts of multiple
genes, under one or more treatments and with one or more
methodologies. To ease data input, LOX accepts tab-delimited text
file with three header rows. Input row one is set aside for user-
customized information, row two contains text codes designating the
methodology applied and row three includes text codes designating
the treatment type. The subsequent rows contain gene ID, gene
name and expression counts under corresponding treatments and
methodologies. An example data file containing 5525 genes and
its results file accompanies the LOX package. To facilitate use of
LOX, a basic pipeline for generating the LOX input file from raw
sequence reads and genome features of interest is provided in the
LOX package.

LOX output is in the form of a tab-delimited text file with
one header row. Each row thereafter displays the results for a single
gene, including columns with gene ID and gene name, the estimate
of expression level for each treatment (the median of the posterior

distribution), 95% percent Bayesian credible intervals (the additions
and subtractions to make upper and lower bounds) for that estimate,
the stationary acceptance rates for the MCMC steps, a Boolean value
indicating whether those rates are within an acceptable range (by
default, 0.15–0.50; Gelman et al., 1996) and the best log posterior
probability. Bayesian P-values for differential expression are also
reported regarding all pairs of treatments, and may be used in
conjunction with effect sizes and credible intervals to rank genes by
their differential expression. Lastly, optional columns can be output
that report the methodological effects and the parameter estimates
at the peak of maximum likelihood.

4 CONCLUSION
LOX quantifies gene expression levels, Bayesian credible intervals
and statistical significance across multiple treatments or samples
using MCMC integration. As the cost of diverse high-throughput
sequencing methodologies decreases, LOX will provide increasing
utility to a burgeoning number of gene expression studies.
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