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Purpose: Retinitis pigmentosa 1 (RP1) is a major gene responsible for both autosomal dominant and autosomal recessive
retinitis pigmentosa (RP). We have previously identified three disease-causing mutations out of 174 RP patients. In this
study, we investigated a new cohort of Chinese RP patients to further evaluate the contribution of RP1 mutations to cause
RP.
Methods: A group of 55 nonsyndromic RP patients, the majority of them isolated cases or without information on family
history, were screened for mutations in the entire coding sequences of RP1, using direct DNA sequencing. All detected
variants were genotyped in 190 controls, while the three putative mutations were additionally genotyped in 362 controls
subjects. Web-based programs, including PolyPhen, Sorting Intolerant from Tolerant (SIFT), Prediction of Pathological
Mutations (PMUT), Single Amino Acid Polymorphism Disease-Association Predictor (SAP), ScanProsite, and
ClustalW2, were used to predict the potential functional and structural impacts of the missense variants on RP1.
Results: A total of 14 sequence changes were identified. Among them, five were novel and found only in the RP patients.
Two missense variants (p.K1370E and p.R1652L), which are conserved in primates, were predicted to have functional
and structural impacts on the RP1 protein. The other three variants (c.787+34T>C, p.I408L and p.L2015L) were considered
benign.
Conclusions: If these two novel missense variants are in fact pathogenic, then RP1 mutations account for approximately
2.18% (5/229) of RP cases in our Chinese cohort; this is similar to other ethnic groups. However, a relatively higher
frequency of missense mutations found in the Chinese patients may suggest an ethnic diversity in the RP1 mutation
patterns.

Retinitis pigmentosa (RP; OMIM 268000; Mendelian
Inheritance in Man; National Center for Biotechnology
Information, Bethesda, MD) refers to a heterogeneous group
of inherited retinal dystrophies characterized by night
blindness and progressive loss of visual field due to the
degeneration of rod photoreceptors in the retina. In the late
stage, the central vision will be affected, resulting in
irreversible blindness [1]. Prevalence of RP is between
1/4,000 [2-5] and 1/6,000 [6] in western countries. Among
Chinese, the prevalence was 1/3,784 in a dispersed region of
China [7]. In the Peking eye study, the estimated prevalence
was as high as 1/1,000 among people aged over 40 in northern
China [8].

RP can present as autosomal recessive (arRP, 10%–45%),
autosomal dominant (adRP, 10%–30%), or X-linked (xlRP,
0%–15%). Around 35%–50% of RP cases have been denoted
as simplex RP (sRP) because of the absence of known family
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history of RP or segregation pattern [2,3,5,6,9-11]. More than
40 genes have been identified to cause RP, of which 20, 26,
and two genes were responsible for adRP, arRP, and xlRP,
respectively (RetNet, the Retinal Information Network,
provided in the public domain by the University of Texas
Houston Health Science Center, Houston, TX, accessed
March 7, 2010). The RP1 locus was mapped by linkage testing
in a large adRP family in southeastern Kentucky [12,13]. The
gene subsequently linked to adRP was named retinitis
pigmentosa 1 (RP1, OMIM 603937) [13]. Later studies
revealed that mutations in RP1 cause both dominant [14-17]
and recessive forms of RP [18,19]. Most RP1 mutations are
single nucleotide substitutions that produce a premature stop
codon or insertion/deletion changes, resulting in a truncated
protein in Caucasian populations [20]. These mutations were
predicted to truncate the RP1 protein by approximately 50%
to 70% of the full length. Only a few missense variants, such
as p.T373I [18], p.K663N [16], p.A669T [18], p.D984G
[21], and p.L1808P [16], have been found to be disease
causing. RP1 is expressed prominently, if not only, in the
photoreceptor cells of the retina [15,19,22,23] and is involved
in the correct orientation and higher order stacking of outer
segment discs [24]. RP1 is a microtubule-associated protein
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forming part of the photoreceptor axoneme [25] and thus plays
an important role in photoreceptor function.

We previously evaluated the mutation profiles of RP1 in
Chinese RP patients by studying unrelated RP patients with
mixed phenotypes. We found that RP1 mutations (p.R677X
and p.D984G) accounted for about 1.2% of overall RP [21,
26,27], apparently lower than that in other populations [1,
28]. Recently, we identified two truncation mutations causing
arRP in a Chinese family [29]. In this study, we screened for
additional RP patients and control subjects to complement the
mutation profile of RP1 in Chinese patients.

METHODS
Study subjects: All study subjects recruited were of Chinese
ethnicity and were given complete ocular examinations,
including slit-lamp biomicroscopy, electroretinography, and
fundus photography. Diagnosis of nonsyndromic RP was
based on ophthalmic investigations and absence of systemic
signs associated with syndromic RP. Subjects were confirmed
to be free of any other major eye diseases, except mild senile
cataract in some elderly subjects. In total, 55 unrelated RP
patients were recruited, including 32 females and 23 males,
with ages ranging from 19 to 84 years. Inheritance patterns of
the disease were defined according to the family history of the
subjects. In some cases, however, there was no information
about the family structure for heredity classification. The
control subjects were all unrelated, older than 60 years, and
had no family history of RP from which 190 of them (53 males
and 137 females) were from Hong Kong and had been
described in our previous studies [26,27]. We also added
another 362 controls for validation of the putative mutations:
35 subjects from Hong Kong (11 males and 24 females, age
range 70 to 90 years), 180 from Beijing in northern China
[30] (88 males and 92 females, age range 60 to 89 years), and
147 from Shantou in southern China (53 males and 94
females, age range 63 to 96 years). All controls received
routine follow-up and complete ophthalmic examination to
ensure that they remained free of RP or other major eye
diseases except mild senile cataract. Written informed
consents were obtained from all study subjects after
explanation of the nature of the study. All procedures were
conducted in accordance with the tenets of the Declaration of
Helsinki. The study protocol was approved by the Ethics
Committee on Human Research, the Chinese University of
Hong Kong and the respective review board on human subject
research at each participating academic institution. Peripheral
venous whole blood, 5 ml, was collected from each patient in
EDTA tubes and stored at −80 °C before genetic analysis.
Mutational screening of the RP1 gene in cases and controls:
Genomic DNA was extracted from whole blood using a
commercial kit (QIAamp DNA Blood kit; Qiagen, Valencia,
CA), according to the manufacturer’s instructions. In brief the
frozen whole blood samples were thawed and blood cells
lysed in QIAGEN Protease and Buffer AL in the kit. The DNA

was obtained by precipitation. Twenty-six amplicons
covering all three coding exons and the exon–intron
boundaries of RP1, as previously described [21,26], were
amplified in all patients and the 190 Hong Kong controls by
PCR and analyzed by direct DNA sequencing using dye-
termination chemistry (Big-Dye Terminator Cycle
Sequencing Reaction Kit; ver. 3.1; Applied Biosystems, Inc.,
Foster City, CA) on a DNA sequencer (3130XL; Applied
Biosystems), according to the supplier’s protocol. The DNA
sequences were compared with the human RP1
(ENSG00000104237) sequence in the Ensembl database. Any
rare variants detected were double confirmed by bidirectional
sequencing. The novel putative mutations were further
genotyped in the additional 362 control subjects.

Analysis of variants: We defined a variant as “novel” if it had
not been reported in the literature or registered in the Single
Nucleotide Polymorphism (SNP) database (provided in the
public domain by the National Center for Biotechnology
Information, Bethesda, MD). A variant was regarded as
potentially disease causing if it was (1) expected to alter the
amino acid sequence of the protein, (2) exclusively observed
in patients with RP, while completely absent from the control
subjects, and (3) predicted to alter the protein structure or
function through in silico analysis.

For the common RP1 sequence variants with minor allele
frequency >5% detected in both patients and controls,
genotype frequencies were compared between the two groups
in a dominant genetic model using the χ2 test in SPSS (ver.
15.0; SPSS Inc., Chicago, IL). A Bonferroni method was used
to correct the p values in multiple comparisons. For the rare
missense variants detected exclusively in the RP patients, we
used four web-based programs to evaluate possible biologic
effects of the amino acid substitution on the structure and
function of the RP1 protein, including (1) Polymorphism
Phenotyping (PolyPhen provided by the Bork Group and the
Sunyaev Lab, Brigham and Women’s Hospital, Harvard
Medical School, Boston, MA), (2) Sorting Intolerant from
Tolerant (SIFT, provided in the public domain by the J. Craig
Venter Institute, Rockville, MD), (3) Prediction of
Pathological Mutations (PMUT, provided by the Molecular
Recognition and Bioinformatics Group, Institute for Research
in Biomedicine-Barcelona Science Park and University of
Barcelona, Barcelona, Spain), and (4) the Single Amino Acid
Polymorphism Disease-Association Predictor (SAP disease-
association predictor, provided by the Sapred Team, Center
for Bioinformatics, Peking University, Beijing, China).
Possible alterations of protein motifs and functional sites were
assessed by scanning through the PROSITE database
(ScanProsite, provided by the Swiss-Prot group, Swiss
Institute of Bioinformatics, Lausanne, Switzerland). We
further examined evolutionary conservation of the amino acid
residues in these variants by multiple sequence alignment
using the ClustalW2 program (provided by the European
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Molecular Biology Laboratory, European Bioinformatics
Institute, Cambridge, UK).

RESULTS
Classification of the retinitis pigmentosa cases: Based on
family information, the 55 nonsyndromic RP patients
presented with mixed inheritance patterns, with five (9.09%)
being classified as adRP, five (9.09%) as arRP, two (3.6%) as
xlRP, and 23 (41.8%) as sRP. The remaining 20 patients had
an unknown inheritance pattern due to the lack of familial
data.
Sequence variants detected in the RP1 gene and pathogenicity
assessment: A total of 14 RP1 variants were identified (Table
1). Among them, six (p.R872H, p.N985Y, p.A1670T,
p.S1691P, p.Q1725Q, and p.C2033Y) were common SNPs
registered in the SNP database. These six SNPs were found at
high frequencies among the control subjects. Association
analyses showed that none of them was significantly
associated with RP (pcorr>0.05). Therefore, they were not
considered disease-causing mutations.

We also identified eight rare variants, three of which
(p.G706R, p.Q1008Q, and c.6542C>T) occurred in both the
case and control subjects. The remaining five were novel and
not detected in the 552 control subjects from different areas
of China. Two of them (p.L2015L and intronic c.787+34T>C)
did not lead to amino acid change, while the other three
(p.I408L, p.K1370E, and p.R1652L) were missense changes.

The impact of variant p.I408L was predicted to be
“Borderline” by PolyPhen, “Tolerated” by SIFT, and
“Neutral” by PMUT, with a maximum reliability index of 9
(Table 2). The Grantham score was 5. Based on these
assessments, p.I408L is less likely to be a disease-causing
mutation. The variant p.K1370E was predicted as “Potentially

damaging” and “Potentially Intolerant” by PolyPhen and
SIFT, respectively. Although predicted to be “Pathological”
by PMUT (reliability index of 0). The Grantham score for this
substitution was 56, being moderately conservative.
Therefore, p.K1370E is potentially disease causing. For the
p.R1652L variant, the predictions were “Possibly damaging”
by PolyPhen, “Potentially Intolerant” by SIFT, and
“Pathological” (reliability index of 7) by PMUT. With a
Grantham score of 102, p.R1652L should be moderately
radical and highly likely to be a functional mutation.
PROSITE scanning showed that no structural or functional
domain was present at or around these two residues. However,
the variant p.R1652L was predicted to abolish one possible
protein kinase C phosphorylation site on the RP1 protein
(Table 3). Determination of the evolutionary conservation of
p.K1370E and p.R1652L by multiple amino acid sequence
alignment of the human RP1 with the protein sequences
derived from chimpanzee, rhesus monkey, dog, horse, murine,
and cattle showed that both residues 1370 and 1652 in RP1
were conserved among the primates (Figure 1).

DISCUSSION
In the present study, we sequenced the RP1 gene in 55 newly
recruited Chinese RP patients and identified five novel
variants, providing new information about the variation
pattern of the gene. Of the five variants, three missense
variants were exclusively found in RP patients and absent in
the 552 control subjects. Therefore, they are considered
excellent candidate disease-causing mutations.
Unfortunately, as the family members of these three patients
did not provide consent to join our study, we were not able to
perform segregation analysis for the putative mutations. We
therefore used in silico analysis to provide some insights into

TABLE 1. SEQUENCE VARIANTS DETECTED IN THE RP1 GENE AMONG 55 CHINESE RP PATIENTS.

    Variation frequency +

Location Nucleotide change Residual change
Patients
(n=55)

Controls
(n=190)

Intron 3 c.787+34T>C / Novel 20090 0/190
Exon 4 c.1222A>C p.I408L Novel 20090 0/190
Exon 4 c.2116G>C * p.G706R [26] 20121 1/190
Exon 4 c.2615G>A p.R872H rs444772 43/55 130/190
Exon 4 c.2953A>T p.N985Y rs2293869 20149 27/190
Exon 4 c.3024G>A p.Q1008Q [26] 20090 1/190
Exon 4 c.4108A>G p.K1370E Novel 20090 0/190
Exon 4 c.4955G>T p.R1652L Novel 20090 0/190
Exon 4 c.5008G>A p.A1670T rs446227 44/55 106/190
Exon 4 c.5071T>C p.S1691P rs414352 44/55 106/190
Exon 4 c.5175A>G p.Q1725Q rs441800 44/55 106/190
Exon 4 c.6045A>G p.L2015L Novel 20090 0/190
Exon 4 c.6098G>A p.C2033Y rs61739567 20149 27/190

Exon 4 (3′UTR) c.6542C>T / [26] 20149 2/190

*One patient was homozygous for the p.G706R variant while the other was heterozygous for the variant; +The variation
frequency was presented in a format of “variant genotypes/total genotypic counts”; / indicates “not applicable.”
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their impacts. The three programs, i.e., PolyPhen, SIFT, and
the Grantham score, are frequently used algorithms in the
prediction of the functionality of missense SNPs [31,32].
However, their predictions may sometimes be inconsistent,
although strong concordances have been observed [33]. We
therefore applied the PMUT program to provide additional
assessment. By using these tools we would expect that
p.I408L is less likely to be a functional mutation (Table 2),

although a segregation study would be of great interest to
confirm its role. This variant occurred in a patient with adRP.
Ocular and electroretinography examinations revealed a
typical sign of RP (data not shown). By mutational analyses
of rhodopsin (RHO, OMIM 180380), photoreceptor-specific
nuclear receptor (NR2E3, OMIM 604485), and neural retina
leucine zipper (NRL, OMIM 162080) [29], we did not find
any variants in this subject (data not shown). Therefore, the

TABLE 2. CARRIERS AND PATHOGENIC POTENTIALS OF THE 3 NOVEL RP1 NONSYNONYMOUS VARIANTS.

 
Nucleotide Residual Case

PolyPhen
SIFT PMUT Grantham

Location change change Type Sex Age
PSIC
score Prediction Score Prediction RI Score

Exon 4 c.1222A>C p.I408L adRP F 56 0/552 Borderline 1.234 Tolerant 0.29 Neutral 9 5
Exon 4 c.4108A>G p.K1370E sRP F 61 0/552 Potentially

damaging
1.477 Potentially

Intolerant
0.09 Pathological 0 56

Exon 4 c.4955G>T p.R1652L sRP F 50 0/552 Possibly
damaging

1.63 Potentially
Intolerant

0.1 Pathological 7 102

Type: Type of RP; PSIC: Position-Specific Independent Counts, a scoring system used in PolyPhen; RI: Reliability Index.

TABLE 3. PROTEIN DOMAIN AND POST-TRANSLATIONAL MODIFICATION SITE PREDICTIONS FOR THE RP1 WILD TYPE PROTEIN AND THE MISSENSE VARIANTS,
P.K1370E AND P.R1652L, WERE ANALYZED BY WEB-BASED ANALYSIS PROGRAM SCANPROSITE.

A. Description Wild type p.K1370E
Structural or functional domains Nil Nil
Post-translational modification site Nil Nil
B. Description Wild type p.R1652L
Structural or functional domains Nil Nil
Post-translational modification site   
Residue 1650–1652 PKC-phospho site (StR) Nil
Residue 1651–1653 PKC-phospho site (TrK) PKC-phospho site (TIK)

Difference between wild type and the p.K1370E variant, at position around residue 1370. B. Difference between wild type and
the p.R1652L variant, at position around residue 1652. Nil represents None of the protein domain or post-translational
modification site was predicted in related location . *PKC-phospho site: Protein kinase C phophosphorylation site. The prediction
is based on the amino acid sequence pattern of a serine (S) or threonine (T) residue found close to a C-terminal basic residue
such as arginine (R) or Lysine (K) [37,38].

Figure 1. Multiple protein sequence
alignment of retinitis pigmentosa 1
(RP1; partially), showing the location of
p.K1370E and p.R1652L. The two
residues are not conserved across
different species. The accession
numbers of the RP1 protein sequences
of different species are as follows:
Human NP_006260.1, chimpanzee
(Pan troglodytes) XP_528138.2, rhesus
monkey (Macaca mulatta)
XP_001083644.1, dog (Canis lupus)
NP_001003040.1, horse (Equus
caballus) XP_001498071.2, murine
(Mus musculus) NP_035413.1, and
cattle (Bos taurus) NP_776383.1
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adRP in this patient is likely to be caused by another yet-to-
be-identified mutation. In contrast, the variant p.R1652L was
likely to be a deleterious substitution with consistent
predictions by PolyPhen,SIFT,PMUT, and Grantham score.
Variant p.K1370E was also predicted to be deleterious by the
four programs, although with a lower reliability index (Table
2). Meanwhile p.R1652 and p.K1370 were conserved among
primates (Figure 1). They are located in the region of the RP1
polypeptide where many mutations occur. Furthermore,
p.R1652L was predicted to abolish one possible protein kinase
C phosphorylation site on the protein (Table 3). Protein
phosphorylation is an important posttranslational
modification process that can alter the conformation and thus
function and localization of the protein [34]. The predicted
abolishment of the phosphorylation site can affect the normal
functioning of RP1. As a whole, our results are consistent for
pathologic roles of p.R1652L and p.K1370E in RP. The
patients with these postulated mutations had typical clinical
presentations of RP (Figure 2), although the clinical
presentations appear less severe than the truncation mutation
carrier [29]. Notably, the p.R1652L and p.K1370E carriers
were classified as sRP because their parents did not have the
disease. Thus, these two variants could be de novo mutations
causing adRP or could cause arRP in a digenic pattern co-
dominantly with another yet-to-identify mutation, which is
worth further investigation.

In our previous studies, we identified two RP1 mutations,
p.R677X and p.D984G, in two out of 173 Hong Kong Chinese

RP patients [21,26]. Recently we identified two truncation
mutations (c.5_6delGT and c.4941_4942insT) causing arRP
in a Chinese pedigree [29]. Combining these findings with the
two missense mutations detected in the current study, the total
contribution of RP1 mutations is approximately 2.18%
(5/229, 95% confidence interval 0.93%–5.0%) in our Chinese
cohort. So far, studies evaluating the RP1 in other Chinese RP
cohorts are limited. Recently, Sheng et al. [30] identified the
p.N985Y variant as the disease-causing mutation for adRP,
being co-segregated with the disease in the pedigree and
absent in 105 controls. Interestingly, the p.N985Y variant was
found to be very common in our study cohort, presenting in
14.2% (27/190) of control subjects. We do not know whether
the pedigree is of Han Chinese ethnicity due to the lack of data
in the Sheng et al. [30] report. We would expect, however,
that ethnic diversity of the RP1 mutation pattern also exists
within Chinese populations. In the study of Sheng et al., [30]
another three missense variants (p.P63I, p.G79E, and
p.P903L) were also found to occur at high frequencies and
exclusively in the patient group, although the disease-
causative properties remained inconclusive [30]. In contrast,
no truncation mutation was found in their cohort. In light of
their findings and ours, missense RP1 mutations may be
playing a prominent role in the genetic epidemiology of RP
in Chinese populations. Further studies in other Chinese
cohorts with a larger sample size are warranted to confirm this.

To date, at least 41 RP1 mutations that are causative for
RP have been reported, most of which are truncation

Figure 2. Typical RP clinical presentations of the two putative missense mutation (p.K1370E and p.R1652L) carriers. They both appear to be
less severe than the truncation mutation carrier reported previously [29]. A: Electroretinogram (ERG) and automated visual field reports of
the p.K1370E carrier. B: Fundus photographs and automated visual field reports of the p.R1652L carrier, showing much milder clinical
manifestation in comparison to the carrier with p.S2RfxX16 and p.P1648SfsX13 truncation mutations [29]. Abbreviations: OD represents
Right eye; OS represents Left eye.
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mutations. It is noteworthy that, at least one-half of the known
missense mutations occur in Chinese RP patients (Table 4),
while only three out of 33 (9%) known truncations have been
identified in all the published Chinese RP1 mutations (Figure
3). In contrast, most known truncation mutations were
detected in other populations, with the most frequent
mutation, p.R677X, presenting in approximately 3% of adRP
patients in the United States [15]; it has also presented at
relatively high frequencies in the UK [20] and Italian [35]
populations. Hence, there are distinctly differential RP1
mutation patterns existing, if not globally, at least between the
Chinese and Caucasian populations.

So far, most confirmed pathologic mutations in RP1
among different populations are nonsense or frameshift
mutations located in exon 4. These mutant transcripts are
predicted to be insensitive to the nonsense-mediated decay
pathway, leading to the production of truncated proteins
lacking one-half to two-thirds of the C-terminal portion [36].
As it has been suggested that haploinsufficiency of RP1 is not
causative for RP [29], these truncated proteins may exert their
role in the pathogenesis of RP through a dominant negative
effect. Likewise, the missense mutations may also play a role

in RP etiology through a similar mechanism, which has yet to
be elucidated by functional assays.

In summary, we have identified two novel missense
mutations (p.R1652L and p.K1370E). These mutations were
predicted to have functional impacts on RP1 and are likely to
be pathogenic. In light of these findings along with the
findings of our previous studies, both RP1 truncation and
missense mutations may contribute to the etiology of RP,
accounting for approximately 2.18% of RP cases in our
Chinese cohort, similar to other populations. Nevertheless, the
Chinese population has a disproportionally high frequency of
missense mutations, providing further insights into the ethnic
diversity of the genetic epidemiology of RP.
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TABLE 4. SUMMARY OF RP1 MISSENSE MUTATIONS IDENTIFIED IN PATIENTS WITH RETINITIS PIGMENTOSA.

Mutation cDNA Study population Diagnosis Reference
p.T373I* c.1118C>T Pakistan ARRP [18]
p.K663N c.1989G.>T U.S.A. ADRP [16]
p.A669T c.2005G>A Pakistan ARRP [18]
p.D984G c.2951A>G Chinese ADRP [21]
p.N985Y c.2954A>T Chinese ADRP [39]
p.K1370E c.4108A>G Chinese SRP Present Study
p.R1652L c.4955G>T Chinese SRP Present Study
p.L1808P c.5423T>C U.S.A. ADRP [16]

Asterisk represents homozygote.

Figure 3. Summary of the Retinitis
Pigmentosa 1 (RP1) mutation pattern in
patients with retinitis pigmentosa
among different ethnic populations.
Most RP1 mutations are single
nucleotide substitutions producing a
premature stop codon or insertion/
deletion changes resulting in a truncated
protein. Only a few missense variants
have been found to be disease causing.
So far only in Chinese missense variants
have been found to be more than
truncated mutations.
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