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Abstract
Purpose—A method to register endoscopic and laparoscopic ultrasound (US) images in real time
with pre-operative computed tomography (CT) data sets has been developed with the goal of
improving diagnosis, biopsy guidance, and surgical interventions in the abdomen.

Methods—The technique, which has the potential to operate in real time, is based on a new phase
correlation technique: LEPART, which specifies the location of a plane in the CT data which best
corresponds to the US image. Validation of the method was carried out using an US phantom with
cyst regions and with retrospective analysis of data sets from animal model experiments.

Results—The phantom validation study shows that local translation displacements can be recovered
for each US frame with a root mean squared error of 1.56 ± 0.78 mm in less than 5 sec, using non-
optimized algorithm implementations.

Conclusion—A new method for multimodality (preoperative CT and intraoperative US endoscopic
images) registration to guide endoscopic interventions was developed and found to be efficient using
clinically realistic datasets. The algorithm is inherently capable of being implemented in a parallel
computing system so that full real time operation appears likely.

Keywords
Multi-modality registration; Phase correlation; Ultrasound-guided endoscopic; Ultrasound-guided
laparoscopy; CT

Introduction
Minimally invasive procedures, such as endoscopic or laparoscopic interventions, have
increased in volume, partially due to the availability of real time local imaging techniques that
increase the operator’s confidence. Ultrasound is often used since it offers a flexible, easy to
integrate, and real time imaging source that penetrates into tissue, thereby complementing
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standard optical (video) imaging. Further benefits may accrue from incorporating pre-
procedure data; the gap between novices and expert operators can be reduced when using such
“Image Registered” systems [15]. These systems are based on the use of preoperative
volumetric CT (or MRI) images, loosely registered with the real time ultrasound image (Fig.
1). The operator can navigate more effectively and better understand the content of the real
time ultrasound image by comparing it to a synthetic CT image formed in the plane of the
preoperative volume corresponding to the US plane. Using a calibrated electromagnetic
tracker, the registration error of this reference image is less than 5mm [2], which is adequate
to guide many surgical procedures.

A more ambitious goal is to improve the registration by doing a continuous real-time local
correction based on incremental shifts between the ultrasound image and a subvolume of the
CT data reformatted in the coordinate frame of the ultrasound. This approach neglects the
possibilities of non-uniform warping or movement of tissue, but merely accommodates local
displacements between the data from the two modalities. However, the image matching is
restricted to a local region, so improvement is likely.

For practical utility we require that the registration occurs quickly: ideally with no lag, but
within a few seconds at worst. Also, if the registration correction is rapid, organ shifts due to
breathing (and other motions) may easily be accommodated. We note that our registration
problem involves fitting a 2D slice to a 3D volume. Although other groups are successfully
studying the registration of 3D ultrasound to 3D preoperative volumes [7–9], clinical
laparoscopic and endoscopic procedures are carried out with 2D US probes; this is not likely
to change in the near future. Other authors have successfully applied different registration
strategies using a collection of tracked 2D transabdominal ultrasounds and CT [18,20]. Still,
these works require a set of US images before the registration can be accomplished and the
techniques are very demanding computationally.

We present here a method that is designed to register US images as they become available
during the course of the intervention. We propose a new registration method based on phase
correlation (PC). The direct application of PC to our problem is complicated by the different
signal characteristics between the preoperative CT (or MRI) source, and the US source. Also,
a successful approach must accommodate missing information in the intra-operative US images
due to shadowing and phantom reflections caused by non-orthogonal incident angles between
the US wave and the imaged object surface.

Background
The increasing use and quality of radiologic techniques (CT, MRI, SPECT, PET) for screening
and diagnosis will stimulate the demand for minimally invasive biopsy and intervention. While
these procedures might optimally be conducted inside the imaging device itself, practical
considerations, including convenience and cost, will continue to limit “in-scanner“ approaches.
Thus endoscopic and (to some extent) laparoscopic imaging are likely to be more broadly
applied to the follow-up diagnosis of disease and the staging of care. Also, optical biopsy
techniques, which can use smaller probes, may be increasingly utilized.

One approach to improving the guidance of instruments in real time is the use of intra-procedure
ultrasound. While ultrasonic laparoscopic and endoscopic devices are widely available, they
have not been maximally adopted by gastroenterologists and surgeons due to the long learning
curve and lack of confidence in ultrasound interpretation, which manifests as difficulty in
navigation and targeting for the probe to reach the radiologically determined target. We have
therefore developed Image Registration techniques [2,15] which show the position and
orientation of the ultrasound probe in anatomic context and display of re-formatted CT (or MR)
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reference images to improve the accuracy and confidence of physician operators (see Fig. 1b).
The Image Registration approach is based on two assumptions:

1. The operator may function most effectively when presented with a simplified
representation of the anatomy showing only key structures to guide probe positioning,
and

2. Real time display of the position and orientation in this anatomic context may be more
efficient than the use of more complex 3D plane displays of the radiologic
information.

That is, Image Registration techniques may have added value because the instrument position
and orientation is displayed accessibly and understood easily and intuitively.

Experimental studies in porcine models have shown that both laparoscopic ultrasound (LUS)
and endoscopic ultrasound (EUS) users are significantly more effective at identifying multiple
anatomic targets in a timed trial using the Image Registration system [16]. Kinematics
measurements, which record and analyze position, orientation, and motion of instruments, have
been shown to correlate well with the expertise of the user [14]. Experiments comparing LUS
and EUS user performance with and without Image Registration (IR) show that the IR system
permits novice users to perform like experts in some tasks, and even appears to improve the
performance of experts in limited tests [15]. Users overwhelmingly preferred the Image
Registration approach for both endoscopy and laparoscopy.

Functionally, our system requires four capabilities:

1. construction of a useful model from the pre-procedure 3D data (Segmentation),

2. alignment and fitting of the model to the real time anatomy (Registration),

3. determining the position of the instruments (Tracking), and

4. presenting the information to guide the procedure (Display).

A typical screen-shot of the display of our system is shown in Fig. 1a. Table 1 shows key
attributes for these sub-system functions to make a successful Image Registration system.

The method presented in this paper addresses the improvement of registration for small shifts
from the initial registration. The most relevant of these motions is the out-of-plane mis-
registration between the US image and the reformatted CT image. While in-plane shifts can
more easily be recovered by the operator without a huge mental burden, out-of-plane
misalignments may be critical for clinical interpretation. The integration of such a registration
technique has to be done in the main tracking loop, so continuous updates can be made available
as new US images provide more information about the mis-registration that the system is
incurring.

Traditional phase correlation
Phase correlation is a well-known image registration method that exploits the Fourier shift
theorem. Even though PC is limited to estimating translational shifts between two images, this
approach is robust to frequency-dependent noise and limited image overlap areas. Furthermore,
it can be calculated rapidly by means of the fast Fourier transform (FFT). This method can also
achieve sub-pixel accuracy by using spectral techniques [12] or by means of least squares fitting
of a Dirichlet function [3].

Let fCT (x) and fUS (x) be two n-D images defined in ℝn, where n = 2 or 3. In our case, fCT and
fUS will be the CT and US image respectively. For now we will also assume that both images
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have the same dimensionality. Let f̂CT (u) =  {fCT} = |f̂CT|ejΦCT and f̂US (u) =  {fUS} =
f̂US = |f̂|ejΦUS be the corresponding Fourier transform of the images, where u is the spatial
frequency coordinate. Let us assume that the CT image is shifted in the spatial domain fCT(x
− x0) where x0 is a translation. The normalized cross power spectrum, i.e the PC function, is
defined as

(1)

where * denotes the complex conjugate and uT x is the inner product between u and x0. As we
can see, the PC, Ψ, between the US image and the translated CT image is given by a complex
exponential of a linear term incorporating the translation. However the phase discrepancy
between the images, Φd (u) = ΦCT(u) − ΦUS(u), appears in the PC function as a nuisance term.
Therefore, the PC function in the spatial domain, Ψ(x), is not merely a Dirac delta centered at
x0 but additional terms appear complicating the estimation process.

The phase discrepancy term, Φd (u), arises from several sources: (1) Noise in both images. (2)
Deformations between the images that cannot be accounted by a simple translation. (3)
Differences between the phase signatures of the images, which are particularly evident when
the images come from different imaging modalities. Since noise is not correlated with the
signal, it is therefore easier to manage [12]. However, phase discrepancy due to high order
deformations and multimodality imaging exhibits structured components that may yield a
concentration of the phase spectrum energy in a harmonic different from that which
corresponds to the desired translation.

Since we seek to register images from different modalities, phase discrepancy makes PC, as
defined in Eq. (1), impractical. To illustrate this, we simulated an US image of a cyst phantom
using the simulator field II [4] (hereon we will use this example to illustrate our method). The
simulation is based on a scattering map (Fig. 2b). This represents the power of the scattering
sites distributed in the medium and is thus a realization of the underlying tissue density (and
therefore closer to the CT image properties). Let us assume that the scattering map is translated
x0 = [15,10] in pixel units with respect to the ultrasound image. Figure 3 shows the PC function
in the spatial domain when traditional PC is applied to the translated scattering map and the
simulated ultrasound image. Instead of a Dirac delta function at x0, the PC function exhibits
multiple local maxima and the global maximum is not located at the corresponding
displacement location as desired.

In summary, traditional PC methods cannot be directly applied to multimodality 2D-to-3D
registration due to:

• Different phase spectra content in the signals to registered: CT or MRI and US

• Different signal dimensionality: we have to perform a 2D to 3D registration where
the US data is given in a 2D plane with a given known orientation and the CT data is
given in a 3D grid that has an initial positioning with respect to the 2D plane based
on a initial registration process when the patient is place in the OR table.

Method
Here we present a new PC-based method which offers a robust approach to multimodality
registration, specially for the registration of US to CT. Figure 4 outlines our approach, which
we now discuss in detail:
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Phase spectrum compensation
The first step of our method is to produce phase compensation between the CT and the US
signal by preprocessing the signals from both modalities. This step is aimed at suppressing the
phase discrepancy term, Φd (u).

Ultrasound preprocessing—Our approach is similar to the one followed by other authors
[7,8] where the registration is achieved using edge information. The ultrasound signal is
generated by a scattering process which causes characteristic speckle noise. Although the
speckle carries useful information about the object medium, this information has a phase
component that is not present in the CT image; therefore reducing the speckle component can
improve the registration process.

Before performing the edge detection, the US signal is processed in the following manner:

• The RF ultrasound signal is usually compressed to accommodate the dynamic range
of the display device. This compression has been suggested to be a logarithm mapping
[5], fUSc = D log(fUS) + C. To recover the RF signal we compute the compression
parameter D using the method proposed by Kaplan and Ma [5] based on second order
moment of the log-compressed Rayleigh distribution.

• After that, we estimate the scattering power map, σUS(x), from the uncompressed
ultrasound image using the known statistic of the radio frequency (RF) envelope
magnitude. Under ideal conditions and assuming that the medium contains a high
number of randomly distributed scatterers, the ultrasound signal follows a Rayleigh
distribution [17]. The Rayleigh distribution is specified by one parameter, the variance
or power of the scatters, that can be estimated in a Maximum-Likelihood sense as

(2)

where  is a squared neighborhood around location x and N is the number of samples
in the neighborhood. Recovering this variance yields an estimation of the scattering
map for that ultrasound image.

An edge detection based on the magnitude of the gradient of the estimated scattering signal,
σUS, is then applied. To illustrate this process, Fig. 5 shows the estimated σUS for a horizontal
scan-line corresponding to the cyst phantom shown in Fig. 2a. We observe that the estimated
signal closely approximates the scattering map. The edge detection is performed over the
estimated scattering map. The edge image is smoothed with a Gaussian kernel to remove high
frequency components corresponding to spurious edges.

CT preprocessing—The CT is reformatted in the coordinate system of the ultrasound B-
scan plane using the tracking information [2]. Figure 6a shows an schematic view of the frame
attached to the US probe, as defined by the tracking information, that is used to locally reformat
the CT volume. Figure 6b shows the corresponding reformatted CT as an overlay. Each image
tile corresponds to one z-slice in the local CT volume. A field-of-view spanning a large enough
region is usually defined based on the expected maximum displacement that can be recovered.

Since boundaries between tissues with different CT densities may show an acoustic impedance,
we define acoustic interfaces as areas with a gradient magnitude in the CT. Following on with
our illustrative example, Fig. 7a shows the result of applying the traditional PC method after
the phase spectra has been compensated. In this case, the global maximum is close to the ideal
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solution. Let us denote gCT and gUS as the resulting signals after the phase spectrum
compensation (PSC) process for the CT and the US images respectively.

LEPART: Low-pass spEctral Phase correlAtion with HaRmonic selecTion
Although the previous preprocessing introduces a normalization of the signal phase spectra,
additional terms remain that preclude a robust estimation of the translation using the traditional
PC method. To overcome this problem, we have developed a new method based on PC named
LEPART. This method has two major components: (1) low dimensional spectral projection of
the PC function into a rank-1 approximation and (2) harmonic selection.

Spectral projection—This stage follows the method proposed by Hoge [12] for accurate
PC. In 2D, the PC matrix is ideally a rank-1 matrix; therefore the estimation of the displacement
can be done by finding the best rank-1 matrix that approximates the estimated correlation matrix
from the data. This can be achieved by means of singular value decomposition (SVD). SVD
is a spectral technique that projects a matrix onto a set of r orthogonal eigenvectors that span
the closest linear r-dimensional subspace to that matrix. In this case, finding the largest singular
eigenvectors (one per spatial dimension) yields the best rank-1 approximation to the correlation
method. This method has been also extended to deal with multiple dimensions [13] by means
of the higher-order SVD [1]. Before applying the higher-order SVD, the PC is masked with a
rectangular window to remove high frequency components that introduce noise into the
projection and spectral distortion due to aliasing and border effects (as well as reducing the
number of data points to be analyzed through the higher-order SVD). The windowed PC is
defined as

(3)

where ΠBc (ui) is the rectangular function along dimension ui with width 2Bc. Then, the
windowed PC is decomposed using the higher-order SVD

(4)

where qi (ui) is a complex eigenvector that spans the projection of Φw(u) along the dimensions
i. The projected PC for our example is shown in Fig. 7b. It is interesting to note that a clear
global maximum exists, although other extrema appear. The translation for each dimension
can be independently worked out with sub-pixel resolution by fitting a line to the unwrapped
phase of each 1D signal qi (ui) in a least squares sense. This is one of the main advantages of
the spectral projection method. Following with our example, Fig. 8a shows the unwrapped
phase of the eigenvectors corresponding to the axis x and y.

Harmonic selection—As shown in Figs. 7b and 8a, the unwrapped phase of qi (ui) can be
in some instances highly non-linear. This non-linear behavior is due to the presence of several
harmonics in the projected phase that correspond to multiple potential fittings. Harmonics can
appear due to remaining structured components of the phase discrepancy. To increase the
robustness, we have therefore implemented a harmonic selection process.

The harmonic selection stage works as follows. The optimal harmonic, , is computed by
finding the principal harmonic of qi (ui) by means of its Fourier transform
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(5)

where υi is the frequency coordinate of qi and H (υi) is a Hamming window that is designed to
give more importance to low frequency harmonics, therefore smaller rather than larger

displacements. Once the harmonic frequency has been found, the filtered eigenvector  is
computed by applying a band pass filtered centered at .

(6)

where Bhc is the bandwidth of the bandpass filter.

The result of applying the harmonic selection to our examples is shown in Fig. 8. The Fourier
magnitude spectra of qx (ux) and qy (uy) is shown in Fig. 8c, d, respectively. The filtered
eigenvectors are shown in Fig. 8a, b for the displacement in x and y respectively. It is noticeable
that the phase term is quite linear after the harmonic selection and comparably close to the
linear phase induced by the applied translation.

Linear least squares fitting—As mentioned above, the last step in LEPART is a least

squares fitting of a line to the unwrapped phase of  for each axis. The slope of the fitting
corresponds to the estimated translation term x̂0 under consideration.

2D/3D registration
The approach outlined so far assumes that the images to be registered have the same
dimensionality. In our problem this is not the case: the ultrasound image is defined in a 2D
plane and the CT image is a 3D volume reformatted in the coordinates defined by the ultrasound
plane.

The ultrasound B-scan plane can be rewritten as a 3-dimensional function by means of the
discrete delta function as

(7)

where (x1, x2, x3) is the 3D discrete coordinate system of the reformatted CT. Then, the 3D
Discrete Fourier transform of Eq. (7) is given by

(8)

where δ is the discrete delta function [11], * is the convolution operator and L is the number
of slices along the u3 axis. In summary, the 3D Fourier representation of the 2D ultrasound
plane is, no more no less, the replication the 2D spectrum along the new axis. Then, the
LEPART method is applied in 3D, where the 3D Fourier representation of the US signal is
constructed by replicating its 2D spectrum. The spectrum replication comes at no additional
computational cost.
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In summary, LEPART is a PC method for the registration of 2D ultrasound to 3D CT. After
the PSC stage, the ultrasound edge image, gUS(x1, x2), is transformed to the Fourier domain
and the spectrum is replicated according to Eq. (8). The CT edge volume, gCT(x1, x2, x3), is
reformatted in the local coordinate frame given by the US and is also transformed to the Fourier
domain. Then, LEPART is applied as described in “LEPART: Low-pass spEctral Phase
correlAtion with HaRmonic selecTion”.

Results
Phantom study

The adequacy and accuracy of the proposed method for endoscopic and laparoscopic surgery
has been validated by means of an abdominal ultrasound phantom (Fig. 9). The phantom
consists of a ultrasound pad with several hypo and hyper-echoic regions. The phantom was
scanned in a Siemens Sensation Somaton 64 Slice CT scanner with 0.6 mm isotropic voxel
size. A sequence of ultrasound images have been acquired using a laparoscopic US probe (BK-
Medical). The images were taken under controlled conditions so registration error was minimal.
Additional, manually extracted features in both the CT and US were used to increase the
registration accuracy between both modalities. This was considered our gold standard for
validation. We selected 5 ultrasound slices where different tumors were visible. The CT was
reformatted in a 0.3 mm isotropic grid and 20 mm × 5 mm × 20 mm margins were added in
x, y and z direction respectively for each US image. We drew 500 realization for each location
of uniformly random shifts in the range −5 to 5 mm. The parameters used in our algorithm
were: Bc = π/8, Bhc = π/12,  = [7,7]. The registration error results are shown in Table 2.

LEPART with PSC achieves a registration whose RMS error is less than 2 mm. LEPART
seems to be a robust approach to multimodality image registration even when PSC is not
applied, therefore accuracy can be sacrificed for the sake of performance. We have noticed
that Bc plays an important role in finding a stable solution, albeit limiting the range of
displacement that can be recovered. Increasing Bc above π/4 leads to unstable results. The
results for one of the realizations before and after registration are shown in Fig. 10.

Retrospective study
We have tested our method under real surgical conditions using a retrospective specimen
abdominal study. A laparoscopic experiment was conducted in a porcine model using the
system described in Sect. 2. A preoperative CT scans was acquired with a Siemens Sensation
64 with contrast-enhancement to visualize vascular structures. The CT resolution was 0.6 mm
isotropic. The US images were provided by a BK Panther Laparoscopic Ultrasound system.
The laparoscopic probe was equipped with an electromagnetic tracker (Micro-BIRD,
Ascension Technology Corp., Burlington, VT), and was connected to the computer through a
PCI board. The sensor attached to the endoscope tip was 1.8 mm in diameter and 8.4 mm in
length. Data from the US system and the tracking system were recorded using our navigation
system for two targeted structures: the celiac-aorta branch with Doppler enabled and the right
kidney. The acquisitions were done using the nominal system operation after an initial rigid
body registration. The goal was to successfully recover the displacement using LEPART
retrospectively.

The results for the celiac-aorta branch are shown in Fig. 11. Figure 11a depicts the clear
displacement in the z-direction with respect to the US probe. While the branch is imaged in
the US, as it is reflected in the Doppler signal shown in Fig. 11b, the reformatted CT provided
by the system, shown in Fig. 11c, does not align with the underlying US. The results after
applying LEPART is shown in Fig. 11d. The displacement recovered by LEPART was (−0.6,
−7.5, 2.7) mm defined with respect to the local US frame. We can see how the method is able
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to recover the z-displacement until the branch point is clearly visible while it was missing using
standard tracked US, as depicted in Fig. 11a. Being able to recover z-displacements is critical
given that in plane misregistration can be easily identified by the tracked US system operator.

The registration result for the kidney case is shown in Fig. 12. The displacement computed by
LEPART was (−9.6, −16.8, −4.5) mm. Both an out-of-plane and in-plane displacement is
recovered to yield a good alignment of the outermost surface of the kidney, as well as the
internal capsule. The registration worked reasonably well given the amount of edge content
present in the presented cases. The edge maps generated by the PSC step described in Sect. 5,
that are used as inputs for LEPART, are shown in Fig. 13. LEPART is able to recover the
discrepancy between the images even though some edges are either spurious or partially
missing in the US source.

Discussion
The presented registration framework has been developed to be used with abdominal
laparoscopic and endoscopic ultrasound images without relying on matching specific
geometric characteristics. Instead, it uses edge information between tissues with different
acoustic properties and CT densities to perform PC. In this sense, our approach is not organ
specific. However, the edge features must be present in both the US and CT images. This is
not always the case, due to the aberrations and distortions usually encountered in US imaging,
for example shadowing. In our experience, the kidneys and the vascular structures in the
abdomen present enough contrast and edge information to guide the registration process. As
long as minimal conditions are met for the amount of structural content both in the US and the
CT images, the algorithm is not organ-specific per se.

Edge information has been used as the main intermediate modality to achieve PSC and be able
to deal with the multimodality nature of the problem. However, other approaches to PSC are
possible and recent works on simulation of US images from [10,19] have shown encouraging
results. In turn, the simulated US is used in conjunction with the acquired US to perform the
registration. It is our interest to explore how LEPART performs when using the simulated US
as its input. We expect to exploit the phase information contained in tissues with well-defined
speckled characteristics that we are not currently benefiting from.

Our results show that the registration is achieved within a few seconds on a conventional laptop
PC. A specialized implementation using advanced computing techniques that leverage the
Graphics Processing Unit (GPU) is expected to achieve at least 10 frame per seconds
registration update, which should suffice for clinical use. This target frame rate is based on the
fact that the underlying core operation of the presented approach is the FFT. It has been shown
that the FFT can be optimally implemented on a GPU [6]. Such implementations are currently
commercially available in CUDA, the parallel computing architecture developed by NVIDIA.

Our current method poses several limitations that have to be considered. LEPART is only
capable of recovering small translations of more or less rigid structures, which may limit its
utility to reduced field of view imaging volumes. Larger displacements and other types of
deformations might be accommodated by applying a fit of the deformation model over a
temporal window. Another major limitation is related to the fact that enough structural
information has to be present in the US images to achieve a successful registration. During a
regular intervention, some US frames lack any information at all, mostly due to shadowing or
poor acoustic coupling. Those frames ideally should not be considered in the registration
process. An automatic method to perform frame selection would be desired before LEPART,
or even any other registration method, is applied. We are currently exploring different
alternatives based on the information content provided by the US image. Lastly, the current

Estépar et al. Page 9

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2010 July 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



study only presents a phantom validation that may reveal limited information about the
registration accuracy of LEPART in a clinical situation, future research lines will include an
in-vivo validation of LEPART. The clinical registration examples were based on a porcine
animal model. Further research is needed to assess the performance of LEPART in human
studies.

The systems which may clinically use LEPART are comparatively low in cost. They consist
of a personal computer workstation with parallel graphics capability, a flat panel display, and
an electromagnetic tracker system. At current commercial prices, this system can be
implemented in an endoscopy or laparoscopy suite for less than $15,000. In addition, the system
requires very little training; as shown in prior work [15,16]; new users use it effectively with
little orientation and no training.

Conclusions
In this paper, we have presented a multimodality registration method for preoperative CT
images and intraoperative US endoscopic images to guide endoscopic interventions. Unlike
traditional registration methods, the registration paradigm presented in this paper is unique in
that:

• The registration technique can potentially work in a real-time mode producing
continuous updates of the changes between the preoperative image and the US image.

• The registration technique is local to the location of the US frame. The locality of the
image source allow us to use the assumption of quasi-translational misalignments.

LEPART appears to be a fast and robust technique for near real-time multimodality registration
(under 5 s) of 2D to 3D data sets. For the cases studied, the LEPART approach gives
significantly smaller registration error (Table 2) in comparison to traditional PC techniques.
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Fig. 1.
Image Registered system. The system uses an initial rigid body registration to find the global
transformation between the preoperative CT scans and the OR coordinate system. a
Laparoscopic examination of a kidney tumor. The tumor is shown both in the US image and
the reformatted preoperative CT. b Scan of the branch point between the celiac and the aorta.
The image shows the out-of-plane misalignment incurred by the system
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Fig. 2.
Simulated ultrasound image (a) and the corresponding scattering map (b). These images are
used to illustrate the phase discrepancy associated to the use of different modalities. The
scattering map is a density map of the scatters element that forms the US signal. In our example,
the scattering map can be associated with a CT image, or at least it has phase properties that
are closer to a CT image of the same phantom
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Fig. 3.
Traditional phase correlation, ΨfCTfUS, between images a and b in Fig. 2 when a displacement
x0 = [15,10] is applied
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Fig. 4.
Approach to multimodality registration based on phase correlation
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Fig. 5.
Estimated scattering map, σUS(x), after decompression and variance estimation. Left Scattering
map image corresponding to the ultrasound image shown in Fig. 2a. Right Horizontal line
comparing the US signal, the estimated scattering map by the proposed variance estimator and
the real scattering map
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Fig. 6.
CT volume reformatted in the local frame defined by the US probe. a shows an illustration of
the US B-scan plane and the local frame attached to the plane that is used to reformat the CT
volume. b shows a tiled view of the reformatted CT images corresponding to the US plane
shows in a
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Fig. 7.
Phase correlation after phase spectrum compensation (a) and after spectral projected phase
correlation (b). Note how spectral projection reduces the amount of noise in the phase
correlation image; however, two local maxima still remains
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Fig. 8.
Harmonic selection for the projected phase correlation. a and b shows the phase of the filtered

eigenvectors  and , respectively. c and d shows the Fourier transform of qx (ux)
and qy (uy), respectively
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Fig. 9.
Model of the abdominal US phantom used for validation. The blue phantom (Blue Phantom,
Kirkland, WA) is made of silicone with acoustic properties similar to human tissue. The
phantom has different cystic regions with different echogenicity. The phantom was mounted
on a casing simulating a human torso that can be used to explore the region using either an
endoscopic or laparoscopic probe
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Fig. 10.
Example of one of the registrations for one of the tumor a before and b after applying LEPART
with PSC

Estépar et al. Page 21

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2010 July 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 11.
Registration in an animal model: celiac-aorta branch. a 3D view of the tracked probe with
respect to the anatomy extracted from CT before applying the proposed registration method.
b Ultrasound image of the celiac-aorta branch corresponding to the 3D view shown in (a).
Fusion of the CT and US before (c) and after (d) registration. The branch point is successfully
recovered in the reformatted CT view after registration
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Fig. 12.
Registration in an animal model: right kidney. a Sequence of the CT volume reformatted in
the local frame given by the US probe coordinate system. b The CT slice corresponding to the
US plane before (A) and after (B) registration are highlighted. Fusion of the CT and US before
(c) and after (d) registration. The kidney surface observable in the US is accurately aligned
with the surface defined by CT
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Fig. 13.
Edge images used by LEPART as input data to generate the registration results. a and b depicts
the edge images from US (gUS) and CT (gCT), respectively, for the celiac-aorta branch case.
c and d shows the same edge maps for the kidney case. For the CT edge images, only one slice
is shown corresponding to the optimal slice resolved by the registration algorithm
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Table 1

Main attributes for a imaged registered system for laparoscopic and endoscopic interventions

Subsystem Key attributes

Segmentation Semi-automatic, rapid

Registration Rapid set up, accurate, complaint with patient and organ motion

EM tracking Noise-free, unobtrusive, easily implemented under sterile conditions

Display Intuitively understood, high quality, real-time (lag free)
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