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Summary
Delta gene expression in Drosophila is regulated by proneural bHLH transcription factors, such as
acheate-scute. In vertebrates, multiple Delta-like and proneural bHLH genes are expressed during
neurogenesis, especially in the retina. We recently uncovered a relationship between Acheate-
scute like 1 (Ascl1), Delta-like genes, and Notch in chick retinal progenitors. Here, we report that
mammalian retinal progenitors are also the primary source of Delta-like genes, likely signaling
through Notch among themselves, while differentiating neurons expressed Jagged2. Ascl1 is co-
expressed in Delta-like and Notch active progenitors, and required for normal Delta-like gene
expression and Notch signaling. We also reveal a role for Ascl1 in the regulation of Hes6, a pro-
neurogenic factor that inhibits Notch signaling to promote neural rather than glial differentiation.
Thus, these results suggest a molecular mechanism whereby attenuated Notch levels coupled with
reduced proneurogenic activity in progenitors leads to increased gliogenesis and decreased
neurogenesis in the Ascl1 deficient retina.
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Introduction
Studies of neurogenesis in Drosophila have revealed that neuroblasts in the proneural cluster
express Delta, a Notch ligand induced by a proneural bHLH transcription factor such as
acheate-scute, which sends a lateral inhibitory signal to neighboring cells through the Notch
receptor to prevent them from acquiring this fate (reviewed by Skeath and Carroll, 1994;
Bertrand et al., 2002). The activation of Notch in neighboring cells induces a signal
transduction cascade that upregulates expression of hairy and enhancer of split genes, which
ultimately lead to the repression of proneural function. Since many components of the Notch
signal transduction pathway are expressed in the vertebrate nervous system, and
manipulations that activate or inhibit Notch signaling maintain progenitors in an
undifferentiated state or promote their differentiation into neurons, respectively, the
paradigm of Notch-Delta mediated lateral inhibition in Drosophila has been extended to
vertebrate neurogenesis (reviewed by Lewis, 1996; Lowell, 2000; Louvi and Artavanis-
Tsakonas, 2006).
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The vertebrate retina has served as an excellent model system for studies of neurogenesis,
and Notch signaling in particular. Notch signaling maintains the progenitor pool during the
course of retinal development, and regulates the evolutionary conserved sequence of
progenitor cell differentiation into the six types of neurons and one type of glia (Dorsky et
al., 1995; Austin et al., 1995; Tomita et al., 1996a; Henrique et al., 1997; Dorsky et al.,
1997; Furukawa et al., 2000; Hojo et al., 2000; Satow et al., 2001; Silva et al., 2003;
Takatsuka et al., 2004; Nelson et al., 2006; Jadhev et al., 2006; Yaron et al., 2006; Nelson et
al., 2007a). While most of these studies have demonstrated key functions of Notch and the
downstream signaling components in progenitor cells, relatively little attention has been
given to upstream components, such as the source of Delta ligands and their respective
regulation. Over ten years ago, it was discovered that Delta-like 1 (Dll1) plays a key role in
regulating Notch activity and maintaining a pool of progenitors during the period of
retinogenesis (Dorsky et al., 1997; Henrique et al., 1997). Thus, a relatively simple lateral
inhibitory model was proposed for vertebrates based on Drosophila, whereby differentiating
neurons in the retina express Dll1 to laterally inhibit and maintain neighboring progenitors
through activation of Notch signaling (Henrique et al., 1997).

Multiple Notch ligands are present during vertebrate retinal development, complicating this
simple lateral inhibitory model (Lindsell et al., 1996; Bao and Cepko, 1997; Valsecchi et al.,
1997; Henrique et al., 1997; Wang et al., 1998; Benedito and Duarte, 2005; Nimmagadda et
al., 2007; Nelson et al., 2007a; Nelson and Reh, 2008). Vertebrates have two orthologous
families of canonical Notch ligands, Delta-like and Jagged, but have different numbers of
paralogs within each family depending on the species. For example, avians (chicken) have
two Delta-like genes, Dll1 and Dll4, while mammals have three, Dll1, Dll3, and Dll4. Both
chickens and mammals have two Jagged genes, Jagged1 and Jagged2 (Serrate1 and
Serrate2 in chicken).

To understand how the functions of multiple Delta-like genes are coordinated during retinal
development, we recently investigated how their expression patterns related to the pattern of
neural differentiation in the chick. According to a previous model, Delta-like genes should
be expressed in the differentiating neurons (Henrique et al., 1997). Surprisingly, we found
that Dll1 was expressed in progenitor cells, and while Dll4 was also expressed in some
progenitors, the cohort of differentiating newborn neurons primarily expressed Dll4 (Nelson
and Reh, 2008). These results suggested that progenitor cells are themselves a primary
source of Notch ligands and may mutually inhibit their own differentiation through
activation of Notch receptors expressed in neighboring progenitors. Thus, together with
lateral inhibition from newborn neurons, the mutual inhibition between progenitors may also
be critical to maintain the progenitor pool and coordinate retinal histogenesis (Nelson and
Reh, 2008).

From the analysis of developing chick retina, we also described a relationship between Dll1,
Dll4, Acheate-scute like 1 (Ascl1) and Neurogenin2 (Neurog2), two vertebrate homologs of
Drosophila proneural bHLH genes acheate-scute and atonal, respectively. Dll1, Dll4, Ascl1,
and Neurog2 are all expressed in progenitors and exhibit similar expression kinetics during
neuronal differentiation (Nelson and Reh, 2008). Moreover, we reported that over-
expression of Ascl1 led to an increase in both Dll1 and Dll4 gene expression and Notch
signaling activity (Nelson and Reh, 2008). These data suggested that Ascl1 and/or Neurog2
might normally regulate expression of Dll1 and Dll4 in the retina.

Here, we test the hypothesis that Ascl1 and/or Neurog2 are required for Delta-like gene
expression and Notch signaling activity during mouse retinal development. We confirm and
extend into mouse, our previous observations in the chick, that Delta-like genes are
expressed in retinal progenitors, while newborn neurons express Jagged2. We report that
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Delta-like gene expression is significantly reduced in Ascl1 deficient mouse retinas, and that
Ascl1 and Delta-like are co-expressed in progenitors. We also uncovered an additional role
for Ascl1 in the regulation of Hes6, a pro-neurogenic factor that functions to promote neural
differentiation by inhibiting Notch signaling and glial differentiation. These results establish
that a conserved Ascl1/Delta-like/Notch/Hes molecular circuitry operates within the
progenitor pool itself to coordinate retinal histogenesis. They also provide a molecular
mechanism whereby attenuated Notch levels coupled with reduced proneurogenic activity
may lead to increased gliogenesis and decreased neurogenesis in the Ascl1 knockout retina
(Tomita et al., 1996b).

Methods
Animals

All mice were housed in the Department of Comparative Medicine and procedures were
performed in accordance with the guidelines of the Institutional Animal Care and Use
Committee at the University of Washington, Seattle, WA. Wildtype C57BL and/or Swiss
Webster mice were used for in situ hybridization, immunolabeling, and transfection
experiments. Ascl1 knockout animals (B6.129-Ascl1tm1And/J, available from Jackson Labs;
Guillemot et al., 1993) and Neurog2 knockout animals on a Swiss Webster background (gift
from D. Anderson; Fode et al., 1998) were used for QPCR analysis (and Ascl1 was also used
for in situ hybridization). Delta-like 3 pudgy (Dll3pu) mutant mice were obtained from
Jackson Labs (stock no. 00306; Kusumi et al., 1998). Animals were genotyped according to
their respective protocols (Guillemot et al., 1995; Fode et al., 1998; Kusumi et al., 1998;
Hartman et al., 2007). Embryonic age was staged according the morning of vaginal plug
date (E0.5) and Theiler Staging criteria. Bromodeoxyuridine (5-bromo-2-deoxyuridine,
BrdU, Sigma, 10mg/ml, .15ml/animal) was injected intraperitoneally 2h prior to sacrifice
into some animals.

In situ hybridization and immunolabeling
In situ hybridization and post-immunolabeling was performed as previously described
(Nelson et al., 2007b). IMAGE clones (Open Biosystems) corresponding to Delta-like 1
(Dll1 (BC057400, IMAGE:6402691), Delta-like 3 (Dll3, BC052002, IMAGE:6404029), and
Jagged2 (Jagged2, BC009082, IMAGE:3598850) were used to generate DIG-labeled
riboprobes as previously described (Hartman et al., 2007). We also obtained the following
IMAGE clones corresponding to Delta-like 4 (Dll4, BC042497, IMAGE:4017786), Hairy
and enhancer of split 5 (Hes5, BC103539, IMAGE:40039948), Hairy and enhancer of split 6
(Hes6, BC012897, IMAGE:4011223), and Notch1 (BC010325, IMAGE: 2651506), all of
which were confirmed by DNA sequencing. Antibodies used for immunolabeling after in
situ hybridization were rat anti-BrdU (1:200 dilution, Accurate Chemical, including 100
Kunitz units/ml DNAse1, Sigma), neuronal specific mouse anti-acetylated beta-III tubulin
(Tuj1, 1:750 dilution, Covance), mouse anti-proliferating cellular nuclear antigen (PCNA,
1:100 dilution, DAKO), rabbit anti-phosphorylated Histone H3 (PH3, 1:750, Chemicon),
and secondary species specific ALEXA 488 or 568 antibodies (Invitrogen). Colorimetric
immuno-detection of Hes1 antigen with rabbit anti-Hes1 (H140; 1:250 dilution, Santa Cruz,
Inc.) was performed as described (Hartman et al., 2007). Antibodies used for
immunolabeling of cryosections and whole-mount retinas include goat anti-Jagged1 (1:300,
Santa Cruz Biotechnology, Jag1 C-20 Cat. No. SC-6011); goat anti-Sox2 (1:300, Santa
Cruz, Inc.), rabbit anti-Sox9 (1:300, Chemicon), rabbit anti-GFP (1:1000, U of Alberta,
CA), chick anti-GFP (1:300, Abcam), rat anti-beta-galactosidase (LacZ gene product, 1:500
dilution, Saul et al., 2008), mouse anti-Ascl1 (1:100, Chemicon), and were detected with
species-specific ALEXA 488/568/594 conjugated secondary antibodies (1:500, Invitrogen).
Images were acquired with a Zeiss Axioplan2 epifluorescent microscope equipped with
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Normarski/DIC optics and a Spot camera, a Zeiss LSM 5 Pascal laser scanning confocal
microscope, or Olympus FV1000 multiphoton microscope (MPM). Images were assembled
in Adobe Photoshop and Illustrator.

Reporter constructs
We used a mouse Notch1 14.3Kb promoter construct driving GFP to identify Notch1
expressing progenitor cells (Notch1GFP; Lewis et al., 1998), a mouse Hes5 0.76Kb
promoter driving destabilized GFP to identify Hes5 and active Notch signaling in progenitor
cells (Hes5d2GFP, Takebayashi et al., 1995; Ohtsuka et al., 2006; Nelson et al., 2006), and a
mouse Dll1 4.3Kb promoter construct driving LacZ to identify Dll1 expressing progenitor
cells (Dll1LacZ; Beckers et al., 2000; Castro et al., 2006). We also created a Dll3 reporter
construct, since Ascl1 loss of function especially affected Dll3 expression. To make this
construct, we analyzed multiple alignments of vertebrate genomes to identify evolutionarily
conserved regions (ECR, ECR Browser, http://ecrbrowser.dcode.org, Ovcharenko et al.,
2004), and found one ~400bp proximal ECR with 68.6% identity between mouse and
human. Within this ECR lies the Ascl1-specific E-box/octamer motif identified by Castro
and colleagues, similar to the Ascl1-specific enhancer in the Dll1 locus (Castro et al., 2006).
We used PCR (LA Taq, TaKaRa) to amplify ~1.0Kb of sequence upstream of the mouse
Dll3 locus just proximal to the Dll3 start codon containing this ECR. BglII and EcoR1
restriction sites were included in the forward and reverse primer, respectively: BglII forward
primer CGCGCGAGATCTTGGGATTACAGGTCTGCCAT, EcoR1 reverse primer
CCCGGGGAATTCCAGGATGGGGAAATAGTCTCA. PCR product was restriction
enzyme digested, and cloned into the BglII/EcoR1 sites in a destabilized CFP expression
plasmid (pd2CFP, Invitrogen) to create Dll3d2CFP, which was verified by DNA
sequencing.

Retinal transfection and explant culture
Transfection and explant culture of retinal explants was performed as previously described
(Nelson et al., 2006; Nelson et al., 2007b). Briefly, mouse retinas from different embryonic
to postnatal ages (E13.5, E17.5-P0) were collected, extra-ocular tissue and retinal pigmented
epithelium were removed and transfered to a Milli-cell culture insert (Millipore) in a
custom-built electroporation chamber. Explants were electroporated (5 pulses, 35V, 50ms
pulse length, BTX ECM830 electroporator) with DNA solutions (~1μl of 2-5μg/μl per
explant), and cultured overnight at 37°C 5%CO2 with nutation as described (Nelson et al.,
2007b).

QPCR
Quantitave polymerase chain reaction (QPCR) was performed as previously described
(Nelson et al., 2006; Nelson et al., 2007a; Nelson et al., 2007b). All primer sequences for
QPCR were obtained from PrimerBank (http://pga.mgh.harvard.edu/primerbank, Wang and
Seed, 2003), and obtained from Invitrogen. Eye pairs from Ascl1 and Neurog2 P0 animals
were individually collected in HBSS+. Extra-ocular tissue, retinal pigmented epithelium,
and lens were dissected, and Neurog2 sister retinas were pooled, and lysed in Trizol
(Invitrogen). For the Ascl1 eye pairs, one eye was fixed in modified Carnoy's solution and
prepared for in situ hybridization as described above, while the sister retina was dissected
and lysed in Trizol. Total RNA was extracted, genomic DNA contamination was removed
by digesting with RQ1 Rnase-free DNase (Promega), isolated (RNeasy RNA isolation,
Qiagen), and converted to cDNA with SuperScriptII reverse transcriptase (RT, Invitrogen),
except for RT minus controls. All sample concentrations were normalized to wildtype
sibling glyceraldehyde-3-phosphate dehydrogenase (Gapdh) gene expression levels by
QPCR with SYBR green PCR master mix (Applied Biosystems) and a DNA Engine Opticon
System (Bio-Rad). For statistical analysis, gene expression levels from Ascl1+/+ (n=1) and
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Ascl1+/− (n=2) littermates were combined (Ascl1+/+,−/−, n=3) and compared to Ascl1−/−
(n=5) expression levels. Gene expression levels from Neurog2+/+ (n=4) were compared to
Neurog2−/− (n=5) littermates; no statistically significant differences were observed between
Neurog2+/+ and Neurog2+/− (data not shown). Student's T-test was used to determine
significant differences between samples means, error bars represent standard deviation of
the mean, and differences with p≤0.05 were considered significant.

Results
All Delta-like and Jagged genes are expressed in the developing mouse eye

As a first step towards determining the nature of cells expressing Notch ligands in the
developing mouse eye, we examined Dll1, Dll3, Dll4, Jagged1, and Jagged2 expression at
early-, mid-, and late-stages of embryonic eye development. As a control for probe
specificity, we first examined expression patterns for Dll1, Dll3, and Dll4 in the cortex,
diencephalon, and rostral spinal cord (Supp Fig 1), which reveal probe specific signals.
Within the eye, Dll1, Dll3, and Dll4 expression also exhibited unique expression patterns. At
E12.5, both Dll1 and Dll4 were strongly expressed in single cells in the neurogenic region of
the presumptive neural retina, compared to weaker Dll3 expression (Fig 1 A, G, D,
respectively). Dll4 expression could also be detected in the vasculature (Fig 1 G,
arrowheads). At E14.5 (Fig 1 B, E, H) and E17.5 (Fig 1 C, F, I), all Delta-like genes were
strongly expressed in the neurogenic zone. Interestingly, at E17.5 Dll1 was also expressed in
the peripheral non-neurogenic ciliary epithelium (Fig 1 C arrow). Jagged genes also
exhibited unique expression patterns. At both E13.5 (Fig 1 J) and E17.5 (Fig 1 K), Jagged2
expression was strongest in the developing ganglion cell layer (gcl), but occasional cells
were observed in the neural progenitor layer (Fig 1 J, K, arrows). Jagged2 was also
expressed in the vasculature (Fig 1 J arrowheads), similar to Dll4. Jagged1 immunolabeling
revealed expression in the embryonic lens at E12.5, E13.5, and postnatal day 3 (P3, Fig 1 L-
N, respectively, arrows). These results confirm and extend earlier reports by showing that
not only are all of the canonical Notch ligands expressed in the developing mouse eye, they
have both overlapping and unique patterns that change over time.

Differentiating neurons express Jagged2
To determine the identity of Dll1, Dll3, Dll4, and Jagged2 cells in the neurogenic zone, we
combined in situ hybridization with immunolabeling for neuronal-specific acetylated beta-
III tubulin (Tuj1). When we analyzed the expression of Notch ligands with respect to
differentiating neurons at E14.5, we found that strongest Jagged2 expression was localized
to Tuj1+ neurons in the ganglion cell layer (gcl), and could even be detected in migrating
Tuj1+ neurons (Fig 2 A, arrow and arrowheads, respectively). However, Dll1, Dll3, or Dll4
expression was not observed in Tuj1+ neurons in the ganglion cell layer, or in newborn
Tuj1+ neurons in the progenitor zone (Fig 2 B-D, arrowheads and arrow, respectively).
These data indicate that differentiating neurons express Jagged2 but not Delta-like genes.

Progenitor cells express Delta-like genes
At the early stages of retinal development, most cells in the neurogenic region are either
Tuj1+ neurons or Tuj1− progenitors, and the above analysis suggests the Delta-like
expressing cells are actually progenitors. To confirm Delta-like genes are expressed in
retinal progenitor cells, we first used in situ hybridization to detect Dll1, Dll3, or Dll4
expression coupled with immunolabeling for BrdU incorporation to detect S-phase
progenitors. E14.5 and E17.5 embryos received a 2h pulse of BrdU in utero prior to
sacrifice, and were prepared for in situ hybridization (Nelson et al., 2007b). At E14.5,
analysis of Dll1, Dll3, and Dll4 expressing cells revealed that many had incorporated BrdU
(Fig 2 E-G, arrowheads). Similarly, at E17.5, many Dll1, Dll3, and Dll4 expressing cells
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were found that had also incorporated BrdU (Supp Fig 2). We also noticed that Dll1, Dll3,
and Dll4 cells were located at the apical surface, suggesting that they may be in M-phase;
however, at E17.5, phospho-histone 3 (PH3) immunolabeling revealed few Dll1 and Dll4
cells that were PH3+ (Fig 3 A, C, asterisks, respectively). Thus, the majority of progenitors
undergoing mitosis do not express Delta-like genes (Fig 3 A-C, arrowheads). Nevertheless,
immunolabeling for proliferating cellular nuclear antigen (PCNA), a marker present
throughout the progenitor cell cycle, revealed strong correlation between Delta-like gene
expression and PCNA labeling at E18.5 (Fig 3 D-F, arrowheads), although we did observe
occasional Dll3+ cells that were not PCNA+ (Fig 3 E, arrow). Hes1 immunolabeling at
E17.5 confirmed that Notch signaling activity is normally lowest in mitotic progenitors at
the apical surface, and highest in progenitors located in the neuroblast layer (Fig 3 G,
arrowheads; Nelson et al., 2007a). These results indicate that progenitor cells in the retina
are themselves the primary source of Delta-like genes, and likely regulate Notch signaling
within their own pool; however, they may also receive lateral inhibitory signals via Jagged2
from differentiating neurons.

Ascl1 regulates Delta-like gene expression and Notch signaling activity
When we investigated the relationship between Delta-like and proneural bHLH genes during
chick retinal development, we found that of all of the proneural bHLH genes, both Ascl1 and
Neurog2 were expressed in progenitors that may also express Delta-like genes; however,
only Ascl1 was found to upregulate Delta-like gene expression and Notch signaling activity
in a gain-of-function assay (Nelson and Reh, 2008). To determine whether Ascl1 or Neurog2
are required for Delta-like gene expression, we used QPCR to measure the level of
expression of Notch pathway components in the retinas from Ascl1 and Neurog2 mutant
mice. Both Ascl1 and Neurog2 null (Ascl1−/− or Neurog2−/−) animals die at birth
(Guillemot et al., 1995; Fode et al., 1998), so we collected animals at P0 and prepared one or
both retinas from individual animals for QPCR (Ascl1 and Neurog2, respectively). We chose
this age for our molecular analyses because the reported phenotype of the loss of Ascl1 in
the retina arises after birth (Tomita et al., 1996b), and we did not want to introduce
molecular changes that might arise due long-term explant cultures. QPCR analysis of Ascl1
and Neurog2 gene expression levels in retinas from newborn Ascl1 and Neurog2 +/+, +/−,
and −/− animals, respectively, confirmed the changes predicted from genotyping (data not
shown).

To test whether Ascl1 or Neurog2 regulated Notch ligands and Notch signaling, we first
assayed for changes in expression of the Notch ligands Dll1, Dll3, Dll4, and Jagged2.
QPCR analysis revealed that Dll1, Dll4, and particularly Dll3 gene expression levels were
significantly decreased with loss of Ascl1, but not with loss of Neurog2 (Fig 4 A). By
contrast, a small, but significant decrease in Jagged2 expression was detected in Neurog2
deficient, but not in Ascl1 deficient retinas (Fig 4 A). Decreased Notch ligand expression
would predict a concomitant decrease in Notch signaling activity. To test whether Notch
signaling activity was decreased as well, we measured expression levels of Notch target
genes Hes1, Hes5, and Id3 (Nelson et al., 2007a). Hes1, Id3, and particularly Hes5 gene
expression levels were significantly decreased with loss of Ascl1, but were unchanged in
Neurog2 deficient reitnas (Fig 4 B).

To determine whether Neurog2 contributed any role to this molecular circuitry, we analyzed
Hes6 gene expression levels, a known target of Neurog2 in the spinal cord involved in a
negative feedback inhibitory loop with Hes5 to regulate Notch signaling (Fior and Henrique,
2005). Surprisingly, Hes6 gene expression was strongly decreased with loss of Ascl1, rather
than Neurog2 function (Fig 4 B). To determine whether loss of either Ascl1 or Neurog2
affected progenitor neural differentiation, we measured levels of Tis21, a gene that marks
progenitors biased towards neurogenic divisions (Iacopetti et al., 1999; Attardo et al., 2008).
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Tis21 gene expression was decreased with loss of either Ascl1 or Neurog2 function (Fig 4
C). To determine whether the decreased bias towards neural differentiation resulted in an
increased bias towards progenitor/glia differentiation, we measured Glast expression levels,
a marker of progenitors at this age, and a Muller Glia marker later (Gotz and Huttner, 2005).
Glast was significantly upregulated in the Ascl1 deficient mouse retina, but was unchanged
in retinas lacking Neurog2 (Fig 4 C). These data indicate that Ascl1, rather than Neurog2,
plays the primary role in regulating Notch ligands and Notch signaling in retinal progenitors,
and biases them towards neural differentiation by regulating the proneurogenic factor Hes6.

To confirm the changes in expression of Notch pathway components due to loss of Ascl1
function, we used in situ hybridization to visualize expression levels of Dll1, Dll3, Hes5,
and Hes6 genes in the sister Ascl1+/+ and Ascl1−/− retinas. Neighboring sections from
Ascl1+/+ (Fig 5 A-D) and Ascl1−/− retinas (Fig 5 A′-D′) were hybridized with Dll1, Dll3,
Hes5, and Hes6 riboprobes, respectively, incubated in equal amounts of substrate, and
developed for equivalent periods of time. Comparison of Dll1 (Fig 5 A, A′), Dll3 (Fig 5 B, B
′), Hes5 (Fig 5 C, C′), and Hes6 (Fig 5 D, D′) gene expression levels demonstrates that these
genes are downregulated with loss of Ascl1 function, confirming the gene expression
changes quantified in the sister retinas by QPCR analysis. Thus, Ascl1 is required for normal
levels of Delta-like gene expression and Notch signaling activity in the developing mouse
retina.

Delta-like genes and Notch signaling components are expressed in Ascl1 retinal
progenitors

Since reliable reagents for immunolabeling most Notch pathway components are not
available, we used reporter plasmids containing cis-regulatory elements from Notch1, Hes5,
Dll1, and Dll3 to drive expression of fluorescent proteins (GFP/CFP) or beta-galactosidase
(LacZ gene product) to further investigate the relationship between Delta-like genes, Notch
signaling components, and Ascl1 expression in retinal progenitor cells Previous studies have
demonstrated the specificity of these cis-regulatory elements, and we provide further
documentation in Supp Fig 3 (Notch1GFP, Lewis et al., 1998), (Hes5d2GFP, Takebayashi et
al., 1995; Ohtsuka et al., 2006; Nelson et al., 2006), (Dll1LacZ, Beckers et al., 2000; Castro
et al., 2006), (Dll3d2CFP, this report, see methods). We used electroporation to transfect
Notch1GFP, Hes5d2GFP, Dll1LacZ and Dll3d2CFP into embryonic retinal explants and
cultured them overnight (≤24h) to allow reporter expression (Nelson et al., 2007b). High-
resolution laser scanning confocal microscopy (LSCM) revealed that cells expressing
Notch1GFP, Hes5d2GFP, Dll1LacZ, or Dll3d2CFP reporters in intact retinas typically have
both an apical and basal process, indicative of progenitor cells (Supp Fig 3). We also noticed
a surprising degree of morphological complexity in regards to the presence of multiple, short
extensions and varicosities often observed along both apical and basal processes (Supp Fig
3). To confirm that Notch1GFP, Hes5d2GFP, Dll1LacZ, and Dll3d2CFP reporters are active
in progenitor cells, we used antibodies to Sox2 and Sox9 to immunolabel retinal progenitors
(Le Rouëdec et al., 2002; Taranova et al., 2006; Sakami et al., 2008; Moshiri et al., 2008;
this report), along with BrdU incorporation. Immunolabeling of E17.5 retinal sections
revealed that Sox2 and Sox9 identify the vast majority of the progenitor pool (Fig 6 A-C).
Transfection of Notch1GFP, Hes5d2GFP, Dll1LacZ, and Dll3d2CFP reporters into E17.5
retinas revealed that transfected cells were also immunolabeled with the Sox9 antibody (Fig
6 D-G arrowheads) and could incorporate BrdU in a 2h pulse (data not shown). We next
confirmed that Ascl1 is expressed in progenitor cells (Jasoni et al., 1994; Jasoni and Reh,
1996; Nelson and Reh, 2008) by labeling retinas with antibodies against Ascl1 and Sox9
(Fig 6 H-J), and then tested whether Dll1 and Dll3 are expressed in the Ascl1 progenitors by
transfecting E17.5 retinas with the reporter constructs and immunolabeling with Ascl1
antibodies. We found that cells expressing either Dll1LacZ, and Dll3d2CFP were also
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labeled with Ascl1 (Fig 6 M,N); moreover, both Notch1GFP and Hes5d2GFP reporters were
also expressed in Ascl1 labeled cells (Fig 6 K,L). These data altogether show that Delta-like
genes and Notch signaling components are expressed in Ascl1 expressing retinal
progenitors.

Ascl1 and Neurog2 are upstream proneural bHLH transcription factors
Synchronizing progenitor cell differentiation by timing Notch signaling inactivation
revealed that a transient and sequential cascade of proneural bHLH transcription factors
underlies the progenitor neural differentiation program (Nelson et al., 2007a; Nelson and
Reh, 2008). For example, an immediate transient wave of increased Ascl1 and Neurog2
expression is observed in progenitors due to a rapid loss of Notch activity that precedes the
later transient increases observed in downstream proneural bHLH genes such as NeuroD4,
NeuroD1, and Atoh7, which are normally expressed in differentiating, postmitotic neurons
(Nelson et al., 2007a; Nelson and Reh, 2008).

To determine whether the loss of Ascl1 or Neurog2 affects other downstream proneural
bHLH transcription factors, we quantified differences in expression levels of Ascl1,
Neurog2, Olig2, NeuroD1, Atoh7, NeuroD4, Ptf1a, and Bhlhb5 between Ascl1 or Neurog2
deficient retinas using QPCR as described above. As expected Ascl1 and Neurog2
expression were not detected in Ascl1 or Neuorg2 deficient retinas, respectively (Fig 7).
Ascl1 expression levels were unchanged in Neurog2 deficient retinas (Fig 7). By contrast,
Neurog2 expression was decreased in Ascl1 deficient retinas (Fig 7). Olig2 expression levels
were decreased in both Ascl1 and Neuorg2 deficient retinas (Fig 7). NeuroD1 expression
levels were unchanged (Fig 7). Atoh7, NeuroD4, and Ptf1a expression was downregulated in
Neurog2 deficient retinas, but only Ptf1a expression was decreased in Ascl1 deficient retinas
(Fig 7). Bhlhb5 expression was increased with loss of Ascl1 function, but was unchanged in
Neurog2 deficient retinas (Fig 7). Upregulation of other Ascl1 and Neuorg2 bHLH family
paralogs normally not expressed in the retina was not observed (data not shown). Thus, loss
of the upstream Ascl1 or Neurog2 bHLH transcription factors can affect expression of other
downstream bHLH transcription factors (Akagi et al., 2004;Cho et al., 2007), and is
consistent with their placement, particularly Ascl1, at the top of a molecular hierarchy
regulating neural differentiation in the retina.

Discussion
We report here that progenitor cells in the mammalian retina are the primary source of
Delta-like expression, and likely regulate Notch signaling among themselves. The
progenitors may also receive lateral inhibitory signals via Jagged2 from differentiating
neurons. We also found that loss of Ascl1 function down regulates Delta-like gene
expression and Notch signaling in progenitors. These data together with our previous studies
(Nelson et al., 2006; Nelson et al., 2007a; Nelson and Reh, 2008), demonstrate that a
conserved Ascl1/Delta-like/Notch/Hes molecular circuitry operates within the progenitor
pool itself to coordinate retinal histogenesis. This conserved Ascl1 function, combined with
its proneural role, may be one molecular mechanism that underlies the phenotype observed
in the Ascl1 mutant retina: a loss of late arising neurons with a concomitant increase in
gliogenesis (Tomita et al., 1996b).

Mouse retinal progenitor cells express Delta-like genes
Within the neurogenic domain of the developing mouse retina, we found that Delta-like
genes were expressed in progenitors throughout the embryonic period of histogenesis. Cells
expressing Dll1, Dll3, or Dll4 genes were not labeled with Tuj1, which marks differentiating
neurons, but rather incorporated BrdU (Fig 2, Supp Fig 2) and were immunoreactive for
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PCNA (Fig 3), identifying them as progenitors. Using a different approach, based on
plasmids expressing reporter molecules under control of cis-regulatory elements from Dll1
and Dll3 (as well as Notch1 and Hes5), we found that Dll1+ and Dll3+ cells were
progenitors based on morphology (Supp Fig 3) and immunoreactivity for Sox9 and Ascl1
(Fig 6) and BrdU incorporation (data not shown). By contrast, Jagged2 expression was
restricted to the inner region of the Tuj1+ ganglion cell layer, and in scattered Tuj1+ cells in
the outer neuroblast region (Fig 2), which are likely newly generated ganglion or amacrine
cells migrating to their final position. Thus, mouse retinal progenitor cells are the source of
Delta-like genes and likely mutually inhibit themselves, while newborn neurons express
Jagged2 that may feedback to laterally inhibit neighboring progenitors, and function
together to maintain the progenitor pool and regulate retinal histogenesis.

The notion that Delta-like genes are expressed in retinal progenitor cells in both chick and
mouse (Nelson and Reh, 2008; this report) shows that some, and perhaps most, of the Notch
signaling in the developing retina works through a “mutual inhibition” rather than a “lateral
inhibition” mechanism, as is observed in the developing proneural clusters of Drosophila.
Although this concept is novel to the vertebrate retina, Muskavitch and colleagues proposed
a similar model for the Drosophila eye imaginal disc over a decade ago. In this system, the
majority of undifferentiated cells in the morphogenetic furrow initially express Delta,
suggesting that rather than a lateral inhibitory signal from the initial differentiated
photoreceptor (R8), Delta-Notch functions in a mutual inhibitory manner to prevent them
from responding to the initial neural inductive cue and maintain their uncommitted state
(Parks et al., 1995). The reliance on mutual inhibition of differentiation may thus represent a
conserved mechanism for patterning larger neurogenic epithelia in which not all of the
progenitor cells can maintain contact with the differentiating neuroblast, as they do in the
proneural clusters.

Although our studies in both chick and mouse show that vertebrate retinal progenitor cells
express Notch ligands, there are differences between mouse and chick. First, the chick retina
does not express Jagged (Serrate) genes (Myat et al., 1996; Hayashi et al., 1996). Second,
the mammalian-specific ligand Dll3 is expressed in the mouse retina (this report), while the
chicken genome does not have a Dll3 homolog (Pintar et al., 2007; Nelson and Reh, 2008).
Third, newborn neurons in the chick express Dll4, whereas newborn neurons in the mouse
express Jagged2 (Nelson and Reh, 2008; this report), which may be a consequence of the
more limited repertoire of available Notch-ligands in the chick retina compared to the mouse
retina. Nevertheless, one emerging theme from these studies is that within the neurogenic
zone of the developing retina, different cell types express different Notch-ligands
specifically during the transition from progenitor to differentiating neuron.

This theme may extend into the progenitor pool, particularly in mammals, since all three
Delta-like genes are expressed in progenitors. These results raise an interesting possibility
that different Delta-like genes may sort out different subpopulations, or mark different steps
in the transition from multipotency to neurogenic dividing progenitors in the retina. In this
regard, it is interesting that occasional Dll3 expressing cells were not labeled with progenitor
markers (PCNA); Dll3 is not able to activate Notch signaling, and may even attenuate Notch
signaling levels (Ladi et al., 2005; Geffers et al., 2007). These data suggest that Dll3 may be
involved in the terminal neurogenic step of progenitor differentiation. However, we did not
observe any major phenotype in retinas deficient for Dll3 (data not shown), similar to our
observations in the cochlea (Hartman et al., 2007). Dll3 may mark progenitors that will
undergo a neurogenic division like the neurogenic progenitor marker Tis21 (Iacopetti et al.,
1999; Attardo et al., 2008), although live-cell imaging would be necessary to test this
hypothesis. Nevertheless, our demonstration that retinal progenitors from both chick and
mouse are a source of Notch-ligands (this report; Nelson and Reh, 2008), together with
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recent studies showing that mouse cortical progenitors themselves are also a source of
Notch-ligands (Shimojo et al., 2008; Yoon et al., 2008; Kawaguchi et al., 2008a; Kawaguchi
et al., 2008b), change the view of Notch signaling in the vertebrate nervous system.

Conserved Ascl1/Delta-like/Notch/Hes molecular circuitry in retinal progenitors
Another aspect of Notch signaling in the retina that has received little attention is the
factor(s) that regulate Delta-like gene expression. Studies of neurogenesis in Drosophila
demonstrate that Delta is regulated by proneural bHLH transcription factors such as
acheate-scute or atonal (reviewed by Skeath and Carroll, 1994; Bertrand et al., 2002). Many
bHLH homologs are expressed in the vertebrate retina, but only Ascl1 and Neurog2 are
expressed in mitotically active progenitors (Jasoni et al., 1994; Jasoni and Reh, 1996; Perron
et al., 1998; Yan et al., 2001; Marquardt, et al., 2001; Ma and Wang, 2006; Le et al., 2006;
Nelson and Reh, 2008). While the functions of proneural bHLH genes have been extensively
investigated with respect to their role in retinal cell fate specification (reviewed by Cepko,
1999; Vetter and Brown, 2001; Hatakeyama and Kageyama, 2004; Yan et al., 2005; Ohsawa
and Kageyama, 2007; Harada et al., 2007), their function in the regulation Notch ligands
have not been described in the developing retina. Recently, we found in the developing
chick retina that the expression pattern and expression kinetics of Dll1 during synchronized
progenitor differentiation most closely matched that of Ascl1, similar to observations in the
frog retina (Perron et al., 1998). Although these patterns suggested a specific role for Ascl1
in Dll1 regulation, over-expression of Ascl1, but not Neurog2, upregulated both Dll1 and
Dll4, as well as Hes5 gene expression levels, indicating that Ascl1 may play a more general
role in regulating Delta-like genes and Notch signaling activity in the retina (Nelson and
Reh, 2008).

In this report, we analyzed retinas from Ascl1 or Neurog2 mutant mice for changes in Delta-
like gene expression and Notch signaling. Dll1, Dll4, and particularly Dll3 gene expression
levels were significantly downregulated in Ascl1−/− mice, but not in Neurog2−/− mice.
These results demonstrate that Ascl1 does have a conserved regulatory input into Delta-like
gene expression and Notch signaling activity, although there must be additional positive
regulators of at least Dll1 and Dll4 expression in the mouse retina. Nevertheless, decreased
expression of Delta-like genes predicts decreased levels of Notch signaling activity. In
support of this notion, the classic Notch target genes Hes1, Id3, and particularly Hes5 were
all downregulated in Ascl1−/− mice, indicative of decreased Notch signaling activity. These
results are complementary to our over-expression experiment in the chick retina (Nelson and
Reh, 2008). These results are also consistent with the well-documented role and pattern of
Ascl1 regulation of Delta-like gene expression and Notch signaling in other regions of the
mammalian nervous system (Ma et al., 1997; Casarosa et al., 1999; Beckers et al., 2000; Cau
et al., 2002; Yun et al., 2002; Mizuguchi et al., 2006; Wildner et al., 2006; Castro et al.,
2006). Neurog2 also has well-documented roles in regulating Delta-like gene expression
(Ma et al., 1996; Fode et al., 1998; Beckers et al., 2000; Bertrand et al,. 2002; Castro et al.,
2006); however, it is not required for Delta-like gene expression in the retina. Interestingly,
regions of high Jagged expression are correlated with Neurogenin expression in the CNS
(Ma et al., 1997), and we did observe decreased Jagged2 expression in the Neurog2, but not
Ascl1, mutant retina.

Levels of Notch signaling regulate maintenance of the progenitor pool
Our data show that the loss of Ascl1 leads to a decrease in Notch signaling. Previous
analyses of loss of Notch signaling during retinal development have consistently shown
increased neural differentiation and inhibition of progenitors/gliogenesis (Dorsky et al.,
1995; Austin et al., 1995; Tomita et al., 1996a; Henrique et al., 1997; Dorsky et al., 1997;
Furukawa et al., 2000; Hojo et al., 2000; Satow et al., 2001; Silva et al., 2003; Takatsuka et
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al., 2004; Nelson et al., 2006; Jadhev et al., 2006; Yaron et al., 2006; Nelson et al., 2007a).
Notch inactivation in early embryonic progenitors increases early retinal neurons (Nelson et
al., 2007a), whereas Notch inactivation in later postnatal progenitors increases
differentiation of late retinal cell types and decreases glial differentiation (Fig 8 A normal,
Fig 8 B Notch inactivation in LP; Nelson et al., 2007a). By contrast, loss of Ascl1 results in
decreased neural differentiation of retinal cell types, such as rods and bipolar cells in
particular, with a concomitant increase in gliogenesis (Fig 8 C; Tomita et al., 1996b; Tomita
et al., 2000 Hatakeyama et al., 2001). How might these opposing Notch and Ascl1
phenotypes be resolved? One answer may lie in the fact that Hes6 gene expression is
strongly downregulated with loss of Ascl1 function. Hes6 is regulated by upstream proneural
bHLH genes, and is sufficient to promote neural and prevent glia differentiation (Bae et al et
al., 2000; Koyano-Nakagawa et al., 2000; Gratton et al., 2003; Fior and Henrique, 2005;
Jhas et al., 2006). Thus, decreased expression of pro-neurogenic Hes6 coupled with
attenuated Notch signaling levels in the progenitor pool provides one molecular mechanism
that may explain the observed increase in gliogenesis in the Ascl1 deficient retina (Fig 8 C).
In support of this view, although the cellular phenotype of decreased neurogenesis and
increased gliogenesis arises somewhat later in the postnatal Ascl1 mutant retina, we can
already detect molecular changes indicative of this switch at birth, with reduced Tis21 and
increased Glast expression levels in Ascl1 mutant retina.

Taken together with previous studies, our data show that an Ascl1/Delta-like/Notch/Hes
molecular circuitry regulates neurogenesis. In vertebrates, this pathway regulates retinal
histogenesis by coordinating progenitor differentiation, and in higher order vertebrates, this
circuitry is used to maintain the progenitor pool during their protracted period of
retinogenesis. The fact that this molecular circuit operates within progenitor cells themselves
shines new light into how vertebrate visual systems normally develop, and provides a simple
framework for understanding neurogenesis in the retina. Additionally, recent findings
indicate that this normally quiescent developmental circuit is reactivated following damage
in adult retinas, regulating the capacity for retinal regeneration in fish and chick (Fischer and
Reh, 2001; Hayes et al., 2007; Fausett et al., 2008). Since retinal regeneration is more
limited in mammals (see Lamba et al., 2008 for review), re-establishment of this Ascl1/
Delta-like/Notch/Hes molecular circuit may serve as a focal point for developing strategies
to stimulate endogenous mechanisms or guide cell-based approaches toward mammalian
retinal repair therapies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Notch ligand expression defines discrete regions of the developing mouse eye
In situ hybridization was used to detect Dll1 (A-C), Dll3 (D-F), Dll4 (G-I), Jagged2 (J, K),
and immunolabeling was used to detect Jagged1 (L-N) expression at the indicated early
stages of mouse eye development. Dll1 (A-C) and Dll4 (G-I) are strongly expressed in cells
restricted to the central neurogenic region of the presumptive retina at embryonic day 12.5
(E12.5), E14.5, and E17.5: note that Dll1 expression is upregaluted in the peripheral non-
neurogenic ciliary epithelium at E17.5 (C, arrow), and that Dll4 is expressed in the
vasculature (G, I, arrowheads). Weak Dll3 expression at E12.5 (D) becomes upregulated by
E14.5 (E), and within the developing retina, all Delta-like genes are restricted to the
neuroblast layer (Dll1 B, C; Dll3 E, F; Dll4 H, I). Jagged2 (J, K) expression is restricted to
the developing ganglion cell layer of the neurogenic zone, and in isolated cells in the
neuroblast layer (arrows), as well as extra-ocular vasculature and cells in the vitreous
(arrowheads), similar to Dll4. Jagged1 (L-N) immunolabeling was restricted to the lens at
these ages (arrows).
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Figure 2. Newborn neurons and proliferating progenitors express different Notch ligands
(A-D) Jagged2 is expressed in postmitotic differentiating neurons. In situ hybridization for
Jagged2 (A), Dll1 (B), Dll3 (C), and Dll4 (D) combined with acetylated beta-III tubulin
immunolabeling (Tuj1, red), reveals that Jagged2, but not Delta-like genes, is expressed in
Tuj1+ postmitotic differentiating neurons migrating to (arrowheads), and within the
ganglion cell layer (arrow) at E14.5: note that the Dll4+ cell near the ganglion cell layer in
D is not Tuj1+ (arrow). (E-G) Delta-like genes are expressed in retinal progenitor cells.
E14.5 embryos received a 2h pulse of BrdU in utero prior to sacrifice, and in situ
hybridization was used to detect Dll1 (E), Dll3 (F), and Dll4 (G) expression, followed by
immunolabeling to detect BrdU incorporation (green). Individual and merged channels are
shown, which reveal that Dll1 (E), Dll3 (F), and Dll4 (G) expressing cells at E14.5 can
incorporate BrdU (arrowheads).
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Figure 3. Delta-like gene expression and Notch signaling change during progenitor cell cycles
In situ hybridization was used to detect Dll1 (A, D), Dll3 (B, E), and Dll4 (C, F) gene
expression followed by phospho-histone H3 (PH3, E17.5, A-C, red) or proliferating cellular
nuclear antigen (PCNA, E18.5, D-F, red) immunolabeling. (A-C) The majority of PH3+
mitotic progenitors at the apical surface do not express Delta-like genes (A-C, arrowheads):
asterisks denote a few double-positive cells with weak Dll1, Dll4, and/or PH3 labeling. (D-
F) Delta-like gene expression is restricted to the neuroblast layer (nbl) defined by PCNA
immunolableing in contrast to the ganglion cell layer (gcl), and higher magnification views
reveal that Delta-like genes are expressed in PCNA+ progenitors (arrowheads): note that one
Dll3 cell is not labeled with PCNA (E, arrow). (G) Hes1 immunolabeling is also restricted to
the region of active Notch signaling in progenitors in the nbl and not in the gcl: note that
Hes1 protein is not detected in mitotic progenitors at the apical surface (arrowheads, Dapi
counterstain, blue), similar to the pattern observed for Delta-like genes (A-C) and active
Notch signaling (Nelson et al., 2006; Nelson et al., 2007a).
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Figure 4. Delta-like gene expression and Notch signaling are downregulated in Ascl1, but not
Neurog2, deficient retina
(A-C) QPCR analysis of Ascl1 and Neurog2 mutant retina. Individual retinas from postnatal
day 0 (P0) Ascl1 and Neurog2 mice were prepared for QPCR analysis (see methods), and
sample concentrations were normalized to Gapdh gene expression levels in sibling controls.
Graphs depict fold change in expression levels of the indicated genes between Ascl1−/−

(n=5) and littermate control Ascl1+/+,+/− (n=3) retinas (blue), and Neurog2−/− (n=5) and
littermate control Neurog2+/+ (n=4) retinas (orange, error bars represent standard deviation
of the mean, student's T-test was used to determine significant differences between sample
means, and changes with p≤0.05 were considered significant (asterisks). Changes in gene
expression levels of the Notch ligands Dll1, Dll4, Dll3, and Jagged2 (A); the Notch targets
Hes1, Id3, Hes5, and the proneural target Hes6 (B); and neurogenic versus gliogenic
progenitor markers Tis21 and Glast, respectively (C) due to loss of Ascl1 or Neurog2
function are depicted.
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Figure 5. Visualization of key downregulated genes in Ascl1 deficient retina
(A-D) In situ hybridization was used to visualize changes in Dll1, Dll3, Hes5, and Hes6
gene expression levels between Ascl1+/+ (A-D) and Ascl1−/− (A′-D′) in the sister P0 eyes
from the previous QPCR analysis. Dll1, Dll3, Hes5, and Hes6 gene expression levels are
decreased in the Ascl1−/− retina compared to normal expression levels observed in the
Ascl1+/+ retina.
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Figure 6. Delta-like and Notch pathway reporters are active in Ascl1 expressing retinal
progenitor cells
(A-C) Laser scanning confocal microscopy (LSCM) was used to image E17.5 retinal section
co-immunolabeled with antibodies to Sox2 (A, B red) and Sox9 (B, C green). Sox2 and
Sox9 co-expression identify the vast majority of the progenitor pool in the neuroblast layer
(nbl, arrowheads), although some postmitotic amacrine cells retain high expression of Sox2
(arrows): note that Sox9 is also expressed in the retinal pigmented epithelium (rpe, top),
both Sox2 and Sox9 are expressed in cells along the inner/vitreal surface (vs) outside of the
ganglion cell layer (gcl), and that Sox9 expression levels in retinal progenitors are observed
at low or high levels. (D-G) LSCM was used to image E17.5 wholemount mouse retinas
transfected with Delta-like and Notch pathway reporters, and co-immunolabeled with
antibodies to GFP or LacZ, and Sox9. LSCM was used to visualize transfected cells in their
intact environment, either in transverse orientation with apical and basal processes located at
the top and bottom, respectively (D, E, G), or enface (top-down, F). (D) Maximum intensity
projection (MIP) of neighboring Notch1GFP transfected cells (green) that are Sox9+ (red):
D′, high Sox9, D″ lower Sox9, arrowheads; single optical slices showing individual and
merged channels, respectively. (E) MIP of neighboring Hes5d2GFP transfected cells (green)
that are also Sox9+ (red): E′ high Sox9, E″, lower Sox9, arrowheads; single optical slices
showing individual and merged channels, respectively. (F) Enface view of a Dll1LacZ
transfected cell (green) that is Sox9+ (red, arrowhead): single optical slices showing
individual and merged channels, respectively. (G) Single optical slice of neighboring
Dll3d2CFP transfected cells (green) that are Sox9+ (red): G″ high Sox9, top arrowhead; low
Sox9, bottom arrowhead; single optical slices showing individual and merged channels,
respectively: note that some basal progenitors can make extensive contact with apical
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progenitors at the ventricular surface (G′ arrowheads and asterisk, respectively). (H-J)
LSCM was used to image E17.5 whole-mount mouse retinas co-immunolabeled with
antibodies to Sox9 (green) and Ascl1 (red). Enface view of single optical slice through the
neuroblast layer identifies many progenitors that co-express Sox9 and Ascl1 (arrowheads),
and subsets of progenitors that express higher-to-lower levels of either Sox9 or Ascl1,
respectively (arrows). (K-N) LSCM was used to image E17.5 whole-mount mouse retinas
transfected with Delta-like and Notch pathway reporters, and co-immunolabeled with
antibodies to GFP or LacZ, and Ascl1. LSCM was used to visualize transfected cells in their
intact environment, either in transverse orientation with apical and basal processes located at
the top and bottom, respectively (K, L, N), or enface (M). (K) MIP of neighboring
Notch1GFP transfected cells (green) that are Ascl1+ (red): K′, low Ascl1, K″ higher Ascl1,
arrowheads; single optical slices showing individual and merged channels, respectively. (L)
MIP of neighboring Hes5d2GFP transfected cells (green) that are also Ascl1+ (red): L′
higher Ascl1, L″, lower Ascl1, arrowheads; single optical slices showing individual and
merged channels, respectively. (M) Enface MIP view of a Dll1LacZ transfected cell (green)
that is Ascl1+ (red, arrowhead): M′ single optical slices showing individual and merged
channels, respectively. (N) MIP of a Dll3d2CFP transfected cell (green) that is Ascl1+ (red,
arrowhead): N″ single optical slices showing merged and individual (red) channels,
respectively; note that N′ depicts a Dll3d2CFP+ progenitor contacting a Sox9+ mitotic
progenitor at the ventricular surface.
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Figure 7. Ascl1 and Neuorg2 are upstream bHLH transcription factors
QPCR was used to measure changes in other bHLH transcription factor family members
expressed during retinal development due to loss of Ascl1 or Neurog2 (P0, see Figure 4, and
Methods). Ascl1 was not expressed in the Ascl1−/− retina, and was not changed with loss of
Neurog2 function. Likewise, Neurog2 was not expressed in the Neurog2−/− retina, however
Neurog2 expression was decreased in the Ascl1−/− retina. Olig2 expression was decreased
in both Ascl1 and Neurog2 knockout retina. NeuroD1 expression was not changed in either
Ascl1 or Neurog2 knockout retina. Atoh7 and NeuroD4 expression were decreased in the
Neurog2−/− retina, but not changed in the Ascl1−/− retina. Ptf1a expression was decreased
in both Ascl1−/− and Neurog2−/− retina. Bhlhb5 expression was increased in the Ascl1−/−
retina, but was not changed in the Neurog2−/− retina. These changes are consistent with the
roles of Ascl1 in particular, as well as Neurog2, as upstream bHLH transcription factors
expressed in progenitor cells that regulate a downstream proneural bHLH transcription
factor cascade underlying the transition to differentiating neurons (Nelson et al., 2007a).
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Figure 8. Summary of Ascl1 function in the conserved Delta-like/Notch/Hes molecular circuitry,
and comparison of retinal phenotypes due to loss of Notch versus Ascl1 activity
(A) Model of vertebrate retinal development under normal conditions (adapted from Reh
and Fischer, 2006). Ascl1 contributes to the regulation of Delta-like genes to activate Notch
signaling. Ascl1 also drives proneurogenic Hes6, which functions to inhibit Notch signaling,
creating a balance between neural differentiation and maintenance of progenitors. (B)
Inactivating Notch signal transduction in late progenitors (LP, broken circle) blocks Hes1/5
gene function, and increases Ascl1/Hes6 activity, shifting the balance to force differentiation
of later born neurons at the expense of Muller glia (Nelson et al., 2007a). (C) By contrast,
loss of Ascl1 decreases Delta-like gene expression and attenuates Notch activity in
progenitors. However, the balance of neurogenic versus gliogenic differentiation signals
shift in the LP (broken circle) towards gliogenesis due to downregulation of proneurogenic
Hes6 and other upstream proneural differentiation functions of Ascl1, while residual lower-
levels of Notch activity (Hes1) suffice to generate Muller glia. Hence Muller glia are
increased at the expense of later born neurons with loss of Ascl1 (Tomita et al., 1996).
Abbreviations: SC, stem cell; EP, early progenitor; LP, late progenitor; GC, ganglion cell;
C, cone; HC, horizontal cell; AM, amacrine; R, rod; BP, bipolar cell; MG, Muller glia.
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