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Abstract
Quantitative techniques based on ultrasound backscatter are promising tools for ultrasonic tissue
characterization. There is a need for fast and accurate processing strategies to obtain consistent
estimates. An improved parameter estimation algorithm for the homodyned K distribution was
developed based on SNR, skewness, and kurtosis of fractional-order moments. From the homodyned
K distribution, estimates of the number of scatterers per resolution cell (μ parameter) and estimates
of the ratio of coherent to incoherent backscatter signal energy (k parameter) were obtained.
Furthermore, angular compounding was used to reduce estimate variance while maintaining spatial
resolution of subsequent parameter images. Estimate bias and variance from Monte Carlo simulations
were used to quantify the improvement using the new estimation algorithm compared to existing
techniques. Improvements due to angular compounding were quantified by the decrease in estimate
variance in both simulations and measurements from tissue-mimicking phantoms and by the increase
in target contrast. Finally, the new algorithm was used to derive estimates from two kinds of mouse
mammary tumors for tissue characterization. The new estimation algorithm yielded estimates with
lower bias and variance than existing techniques. For a typical pair of parameters (μ=5 and k=1), the
bias and variance were reduced 67% and 16%, respectively, for the μ parameter estimates and 79%
and 37%, respectively, for the k parameter estimates. The use of angular compounding further
reduced the estimate variance, e.g., the variance of estimates for the μ parameter from measurements
was reduced by a factor of approximately 90 when using 120 angles of view. Finally, statistically
significant differences were observed in parameter estimates from two kinds of mouse mammary
tumors using the new algorithm. These improvements suggest estimating parameters from the
backscattered envelope can enhance the diagnostic capabilities of ultrasonic imaging.

Index Terms
Envelope statistics; homodyned K distribution; quantitative ultrasound; ultrasound backscatter

I. Introduction
The envelope of backscattered ultrasound can be modeled as the superposition of the scattered
signals from individual scatterers in the medium being interrogated. As such, the envelope
signal is statistical in nature. By applying a model to the amplitude distribution of the envelope,
information about the sub-resolution material properties such as the scatterer number density
and parameters describing the organizational structure can be estimated.

Statistical analysis of the envelope of backscattered ultrasound has been used to characterize
tissues and may be useful for improving the diagnostic capabilities of ultrasound. Shankar et
al. [1] demonstrated the potential efficacy of envelope-based statistics in distinguishing benign
and malignant breast masses. Hao et al. [2] used the homodyned K distribution to differentiate

NIH Public Access
Author Manuscript
IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2010 July
19.

Published in final edited form as:
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 November ; 56(11): 2471–2481. doi:10.1109/TUFFC.
2009.1334.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



normal and abnormal myocardium. Sommer et al. [3] observed statistically significant
differences in the mean and variance of the amplitude distribution of the envelope signal from
normal and cirrhotic livers.

A number of different models for the amplitude distribution of the envelope signal have been
proposed over the past few decades with applications to sea echo [4], medical ultrasound [5],
and laser speckle [6]. The homodyned K distribution is a particularly versatile but analytically
complex model. Because of this complexity, its use has been somewhat limited and other, more
analytically tractable models such as the Nakagami distribution [7], [8], Weibull distribution
[9], Rician inverse Gaussian distribution [10], and generalized gamma distribution [9] have
been used instead. However, by applying an improved parameter estimation algorithm,
estimates of parameters of the homodyned K distribution can be obtained in a relatively simple
way.

Most parameter estimation algorithms for the homodyned K distribution somehow involve the
use of moments of the envelope data; however, the choice of moment order has been
investigated with varied results. Due to the analytical convenience, Dutt [11] used even integer
moments to estimate parameters of the homodyned K distribution. However, it has been
reported [12], [13] that the use of fractional moment orders yields more robust estimates for
the simpler, but related, K distribution. Prager et al. [14] found moment order 1.8 to be optimal
for speckle discrimination using the homodyned K distribution; however, it has been reported
that this claim may not be justifiable and that a simple optimum moment order for parameter
estimation does not exist [15]. Based on the lack of consensus in the literature for what
constitutes the optimal moment orders, the framework for an improved estimation algorithm
should allow the use of arbitrary moment orders.

Until recently, parameter estimation based on fractional order moments was rarely used with
the homodyned K distribution but more often with the more tractable K distribution. Martín-
Fernández et al. [16] originally developed a mathematically tractable implementation of a
parameter estimation algorithm for the homodyned K distribution based on arbitrary fractional
order moments. The estimation algorithm presented here is an extension of this original idea.

Even with improved estimation algorithms, the utility of envelope statistics for improving
diagnostic ultrasound imaging depends on the variance of estimates. A large variance in
parameter estimates can reduce the ability to distinguish between tissues whose parameters
have values close to one another. To provide a more robust diagnostic capability, the variance
of parameter estimates must be minimized. When constructing parameter images from
estimates of the envelope statistics, the spatial resolution of these images depends on the size
of the regions-of-interest (ROIs) used to sample the envelope. A larger ROI results in improved
bias and variance of estimates. Therefore, a fundamental engineering tradeoff exists between
the spatial resolution of parameter images and the variance of estimates.

One mechanism to reduce the variance of parameter estimates based on the envelope of
backscattered ultrasound is through angular compounding. Angular compounding is typically
used to improve the SNR in B-mode images, although angular compounding has also been
applied to the estimation of scatterer size [17], [18]. To the authors’ knowledge, no other work
deals with the use of angular compounding to reduce the variance of estimates based on
envelope statistics. To perform angular compounding, data is acquired from different angles
of view. Parameter estimates from registered ROIs are then averaged together. Angular
compounding is particularly applicable to breast tissue characterization because data can be
readily acquired over a wide range of angles [19].

This remainder of this manuscript is organized as follows: Section II briefly reviews a few
envelope statistics models, Section III presents the homodyned K distribution parameter
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estimation algorithm, and Section IV deals with angular compounding to reduce estimate
variance. Section V discusses the results of analysis of animal tumor models using the
homodyned K distribution. The final section discusses some conclusions regarding the study.

II. Envelope Statistics Models
In this section, three models for the amplitude distribution of the envelope of backscattered
ultrasound are briefly reviewed.

A. Rayleigh Distribution
The Rayleigh distribution arises when a large number of randomly located scatterers contribute
to the echo signal [20]. The probability density function (pdf) is given by

(1)

where A (which is assumed to be positive) represents the envelope amplitude and σ2 is the
variance of the Gaussian distributed in-phase and quadrature components of the complex echo
envelope [21].

B. K Distribution
Jakeman and Pusey [4] introduced the use of the K distribution, a generalization of the Rayleigh
distribution, in the context of microwave sea echo to model situations where the number of
scatterers is not assumed to be large. The pdf is given by [20]

(2)

where Γ(·) is the Gamma function, Kn(·) is the modified Bessel function of the second kind,
n-th order, and μ is a measure of the effective number of scatterers per resolution cell. In
ultrasound, the resolution cell volume can be defined as the volume of the point spread function
of the imaging system [22], i.e., the volume of the insonifed medium that contributes to any
given point in the echo signal. In (2), the b parameter can be expressed as

(3)

where E[·] is the expectation operator. The K distribution is a more general model that
approaches the Rayleigh distribution in the limit μ→ ∞ [20].

C. Homodyned K Distribution
The homodyned K distribution was first introduced by Jakeman [23]. Besides incorporating
the capability of the K distribution to model situations with low effective scatterer number
densities, the homodyned K distribution can also model situations where a coherent signal
component exists due to periodically located scatterers [24]. This makes the homodyned K
distribution the most versatile of the three models discussed, but also the most complicated.
The pdf of the homodyned K distribution does not have a closed-form expression; however, it
can be expressed in terms of an improper integral as [20]
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(4)

where J0(·) is the zeroth order Bessel function of the first kind, s2 is the coherent signal energy,
σ2 is the diffuse signal energy, and μ is the same parameter as defined in the K distribution.
The derived parameter k = s/σ is the ratio of the coherent to diffuse signal and can be used to
describe the level of structure or periodicity in scatterer locations.

III. Parameter Estimation
Martín-Fernández et al. [16] observed that the SNR of arbitrary moments of the echo envelope
predicted by the homodyned K distribution was a function of only the two independent
parameters (the k and μ parameters). This allowed an estimator to be implemented based on
crossing level curves derived using different fractional-order moments in the Cartesian plane
of the parameters (k, μ). By first calculating theoretical values for the SNR for a range of
parameter values, an efficient estimator was developed. The SNR was calculated by estimating
the SNR of independent identically distributed (i.i.d.) samples of the homodyned K distribution
generated with the desired parameters.

This original idea has been extended to calculate the SNR algebraically. Furthermore, in a
previous study, the square of SNR was used to estimate the scatterer number density [25]. The
conclusions of that study indicated that the square of SNR was most sensitive to scattering
conditions with one or two scatterers per resolution cell. Therefore, skewness and kurtosis
functions have been included in the proposed algorithm to increase the sensitivity to larger
scatterer number densities (i.e., up to 10 scatterers per resolution cell). For completeness, the
revised algorithm is presented in detail.

A. Arbitrary Moments of the Homodyned K Distribution
Moments of arbitrary order ν of the homodyned K distribution can be expressed as [16]

(5)

where 1F1(a;b;x) is the confluent hypergeometric function of the first kind. By substituting k
= s/σ in the argument of the hypergeometric function, defining the improper integral as a
function of three variables,

(6)

and pulling constants out of the integral, (5) can be written as

(7)

Performing the integration in (6) and simplifying,
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(8)

where 1F2(a;b,c;x) is a hypergeometric function and, for convenience, the definition

(9)

is used. Thus, moments of the homodyned K distribution of arbitrary order can be evaluated
numerically in a relatively simple way using (6) and (7). Equation (8) is convergent except
when η is an integer. To evaluate (8) when η is an integer, linear interpolation can be applied,
i.e.,

(10)

B. SNR, Skewness, and Kurtosis
The SNR, skewness, and kurtosis of samples of the echo envelope raised to an arbitrary positive
power ν can be expressed as [14], [26]

(11)

(12)

(13)

Substituting (7) into (11) and simplifying yields

(14)

Following [16], the subscript ν indicates the dependence on the moment order ν. Note that (14)
is a function of only two model parameters: k and μ. It is straightforward to substitute (7) into
(12) and (13) to determine expressions for Sν and Kν that are also functions of only the two
independent model parameters. Parameter estimation is performed by equating estimates of
SNR, skewness, and kurtosis from the envelope signal with the theoretical values predicted by
the homodyned K distribution. By using these functions, parameter estimates can be obtained
by finding level curves in the two-dimensional parameter space as in [16].
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Parameter estimates are obtained by finding the point in (k, μ) space where the L2-norm of the
distances from the level curves is minimized. Fig. 1 shows two examples, each using three
level curves. In this example, moment order ν = 1 is used. The generally vertical orientation
in the curves derived from skewness and kurtosis suggests that the algorithm is more sensitive
to changes in the μ parameter than the algorithm based on SNR alone and will result in improved
variance of estimates over SNR curves alone. Note that the parameter space shown in Fig. 1
was deliberately chosen to extend beyond the reasonable range of parameter values expected.

Estimates that fall outside a reasonable parameter range for a particular situation can be
removed from the analysis if necessary.

C. Choice of Moment Order
Although true optimal moment orders may not exist [15], the choice of moment order may
affect the performance of the parameter estimation algorithm. Therefore, an effort was made
to select moments that were in some sense optimal.

The SNR, skewness, and kurtosis functions were sampled on a 501 × 501 point grid with k
uniformly spaced on the interval [0, 5] and log10(μ) uniformly spaced on the interval [-3, 2].
These functions were sampled for moments ν ∈ {0.02, 0.04, …, 1.00}.

The goal of the optimization was to select two moment orders such that the six intersecting
level curves (SNR, skewness, and kurtosis for each of the two moment orders) would represent
a system as well-conditioned as possible for the largest possible range of parameter values.
Geometrically, when level curves are nearly parallel at the point of intersection, the system is
ill-conditioned as the intersection point is sensitive to small perturbations in the input data.
Conversely, level curves that intersect perpendicularly correspond to a well-conditioned
system. Based on these observations, moment orders were selected to produce the best possible
conditioning.

The gradients of the SNR, skewness, and kurtosis functions were evaluated numerically at each
point where they were sampled. From the gradient, the angle of the level curve passing through
each point (k1, μ1) was determined as

(15)

where gμ and gk are the components of the gradient in the μ and k directions, respectively.
Considering two moments at a time, the sum of the angles between all pairs of level curves
was calculated for each point where the functions were sampled. An average value was obtained
over the entire (k, μ) space examined. The pair of moments that maximized this sum was
selected for estimation, i.e., the pair of moments that resulted in level curves less likely to be
parallel at their intersection over the range of μ and k parameters examined. A plot of the sum-
of-all-angles metric as a function of the two moments orders used is shown in Fig. 2.

The “optimal” pair of moments was found to be ν ∈ {0.72, 0.88}. These moments will be used
throughout the rest of this work.

D. Validation
1) Comparison with an Existing Algorithm—Following [16] and [27], the estimation
algorithm was tested through Monte Carlo simulations by generating sets of i.i.d. samples of
the homodyned K distribution with known parameters. Parameter estimation was then
performed on these sets of samples and compared with the intended values.

Hruska and Oelze Page 6

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2010 July 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The i.i.d. samples were calculated using the approach in [16]. For completeness, the algorithm
is briefly restated here. Each i.i.d. sample, ai, drawn from the homodyned K distribution with
parameters μ, s, and σ is obtained as

(16)

where X and Y are i.i.d. samples of the unit Gaussian distribution and z is a sample of the gamma
distribution with shape parameter μ and scale parameter unity.

Sets of samples were generated for k ∈ {0.0, 0.1,…, 1.0} and μ ∈ {1, 2,…, 10}. This area of
the parameter space was chosen to represent typical parameter values that would be expected
experimentally. For each combination of model parameters, 1000 independent sets, each of
1000 samples, were generated. The σ parameter was set to unity such that k = s.

Parameter estimation was performed on each set of samples using the SNR, skewness, and
kurtosis algorithm. For comparison, estimation was also performed on each set of samples by
solving the closed form equations for the even moments of the homodyned K distribution [2],
[20]

(17)

(18)

(19)

for the parameters μ and k = s/σ.

The quality of the estimates was quantified by calculating the relative bias and the normalized
standard deviation (SD) for each set of samples,

(20)

(21)

where y represents the true parameter value (either k or μ) used to generate the sets of i.i.d.
samples, ŷ represents the estimates from the 1000 independent sets, and Var[·] is the sample
variance. Because the estimates obtained using the SNR, skewness, and kurtosis approach are
limited to the range in (k, μ) space where the level curves are formed, any estimates obtained
using the even moments algorithm that fell outside that range were discarded to make the
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comparison of the two algorithms valid. The two performance metrics are plotted in Figs. 3
and 4 as functions of the parameter values.

Comparison of Figs. 3 and 4 suggests that, overall, the proposed algorithm is capable of
estimating parameters with lower bias and variance than an existing algorithm based on even
moments of the homodyned K distribution. The absolute values of each of the quantities plotted
in Figs. 3 and 4 were summed over the range of parameters examined to further compare the
two estimation algorithms. These sums are listed in Table I which shows that the SNR,
skewness, and kurtosis algorithm yielded estimates with overall lower bias and variance
compared to the even moments algorithm over the range of parameters examined.

2) Simulations with a Large Coherent Signal Component—Computer simulations
were performed to test the modeling and estimation of parameters from backscattered signals
with a large coherent signal component (manifested through the k parameter). Independent
validation of estimation of the μ parameter is presented in subsequent sections. That is, one
model (the homodyned K distribution) and estimation algorithm are used for different
scattering cases, demonstrating the generality of the model and estimation algorithm.

Each computational phantom was a volume of height 17.2 mm, length 20.7 mm, and width
1.72 mm containing point scatterers. The height was chosen to correspond to the approximate
-6 dB depth of focus of the transducer, the length was chosen to be 24 beamwidths, and the
width was chosen to be two beamwidths. The center of the volume was placed at the geometric
focus of the transducer.

RF data were simulated using the Field II ultrasound simulation program [28], [29]. RF data
were acquired from scan lines separated by 0.43 mm (i.e., half the -12-dB beamwidth).
Simulations were performed using a single-element focused (f/4) transducer with a center
frequency of 10 MHz. The ideal transducer had a geometrical focal length of 50.8 mm and was
excited with a Gaussian windowed sinusoidal pulse with a 50% fractional bandwidth at -6 dB.
The echo signals received from the phantom were sampled at 200 MHz. No noise was added
in the simulations. A constant speed of sound of 1540 m/s was assumed.

Coherent scattering was created by using periodically spaced scatterers. The periodically
located scatterers were created by first dividing the extent of the phantom along the axial
direction into 100 bands of height 73.5 μm that were spaced 99.0 μm apart. Scatterers were
then placed in these bands. Scatterers were also placed in the phantoms in random spatial
locations. Eleven sets of phantoms were created by varying the ratio of periodically and
randomly located scatterers. For each of the 11 ratios examined, 10 independent phantoms
were created to establish statistics (mean and standard deviation) of the estimates.

The analysis of the image was divided into regions of interest (ROIs) sized approximately 2
mm × 2 mm and overlapped by 75% both laterally and axially. Envelope statistics model
parameters were estimated for each ROI using the SNR, skewness, and kurtosis algorithm. For
ROIs for which the estimates of the SNR, skewness, and kurtosis did not map to regions in
(k, μ) space, the ROI was discarded and not considered in the analysis. For each simulated
image, the estimates from all ROIs for which estimates were successfully obtained were
averaged together to produce a single k parameter estimate. The mean and SD of these average
values were calculated from the 10 independent phantoms for each of the 11 ratios of randomly
located and periodically located scatterers. The k parameter estimates are plotted in Fig 5.

It should be noted that the size of the ROIs affects the bias and variance of the resulting
estimates. Previous work [30] has found that estimates of SNR, skewness, and kurtosis are
biased for insufficiently large ROIs. These biased estimates in turn affect the final estimates
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of the envelope statistics parameters. Finding the optimal tradeoff between bias, variance, and
ROI size is a subject for future study.

IV. Angular Compounding
A. Introduction

Simulations and experiments were performed to evaluate the feasibility of using angular
compounding to reduce the variance of estimates derived from envelope statistics.
Furthermore, the improvement in target visibility was assessed.

B. Simulations
A computational phantom was constructed to evaluate the effects of angular compounding on
estimate bias and variance and the contrast between regions with different scattering properties.
The phantom was shaped as a cylinder with a diameter of 17.2 mm and height of 1.72 mm.
The diameter was chosen to correspond to the approximate -6-dB depth of focus of the
transducer used in the simulations. The height was chosen as twice the -12-dB beamwidth of
the transducer.

Point scatterers were spatially distributed at random throughout the volume of the phantom
with an average scatterer number density of two scatterers per resolution cell, except for a
circular target region in the phantom with a diameter of 8.6 mm which contained an average
of four scatterers per resolution cell. A diagram of the phantom is shown in Fig 6. The resolution
cell volume was estimated by scanning a single point scatterer located at the focus of the
transducer. Following Dutt and Greenleaf [20], the resolution cell was defined by the -20-dB
contour of the envelope. Due to the circular symmetry of the beam pattern, the three-
dimensional resolution cell was determined by the volume of revolution of the two-dimensional
resolution cell about the axis of the transducer. The resolution cell volume was calculated to
be 0.184 mm3.

The phantom was scanned from 128 different angles uniformly distributed around the phantom
on the interval [0°, 180°). Data were not acquired using a full 360° range of view because , in
the simulations , signals acquired from diametrically opposed positions were time reversed but
otherwise identical because the imaging pulse was symmetric. A diagram of the simulated
setup is shown in Fig. 7.

From the homodyned K distribution model, parameters were estimated using small overlapping
ROIs in each of the 128 images. The use of the homodyned K distribution over simpler
distributions (such as the K distribution) is justified for these simulations because, even though
the scatterers are randomly distributed, the number of scatterers is finite. Therefore, some
coherent signal component will be present and modeled by the homodyned K distribution
[20]. The ROIs were circles with a radius of approximately 1.2 mm. Estimates from ROIs
corresponding to the same location in each phantom were averaged together to produce
compounded parametric quantitative ultrasound (QUS) images. Fig. 8 shows parametric
images using the μ parameter. Note that the k parameter reflects the coherent signal energy
present in the backscattered signals which may be due to anisotropy in the scatterer locations.
Therefore, it is not appropriate to apply angular compounding to this parameter because the
estimates could be validly different from different angles of view.

Examination of the images indicates that the estimate variance decreased with compounding,
improving the contrast between the background and the target. Quantitatively, a simple contrast
metric was used [31]: C = ∣Starget − Sbackground∣ where Starget and Sbackground are the mean
estimates of the μ parameter in the target and the background, respectively. For a single angle
of view, C = 1.11 while C = 2.31 when 128 images were averaged together.
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For a single angle of view, the standard deviation of the μ parameter estimates was 0.68 for
the background region and 1.5 for the target region. By averaging together estimates from 128
angles of view, the standard deviation was reduced to 0.35 for the background and 0.65 for the
target region. Previous studies [17], [18] have suggested that the standard deviation of
parameter estimates should decrease with the square root of the number of independent images
averaged together. The reduction in the standard deviation falls short of this ideal, suggesting
that all 128 angles of view were not statistically independent.

Some variation in the parameter estimates is expected due to the underlying inhomogeneities
of the scatterer locations in the phantom. Also, a blurring effect is expected on the region
between the target and the background. To further quantify these effects and demonstrate the
robustness provided by angular compounding in estimating the scatterer number density, a
parametric QUS image corresponding to the μ parameter was obtained independently by
counting the number of scatterers in each ROI. Because the volume of the resolution cell and
the volume of each ROI were known, this allowed a predicted μ parameter value to be obtained
for each ROI. These predictions were compared to the estimates as shown in Fig. 9.

While there is a bias in the estimates of the effective scatterer number density, the theoretical
predictions and the estimates are highly correlated. Indeed, a correlation coefficient of 0.905
was observed.

C. Experiment
A homogenous phantom containing glass bead scatterers of mean radius 90 μm was constructed
to experimentally demonstrate the reduction in estimate variance of the μ parameter with
angular compounding. The phantom was constructed with a 15% (by mass) concentration of
gelatin in distilled water. A scatterer concentration of 8.92 beads per cubic millimeter was used.
The glass beads were assumed to be uniformly distributed throughout the phantom with random
spatial locations.

The phantom was scanned with a focused (f/3) transducer with a center frequency of 5 MHz.
A wire target technique [32] was used to estimate the resolution cell volume. As in the
simulations, the -20-dB contour was used to determine the resolution cell volume which was
estimated to be 0.505 mm3. Based on the resolution cell volume and the scatterer concentration,
a scatterer number density of 4.50 scatterers per resolution cell was predicted. Data were
acquired from 120 angles uniformly distributed around the phantom on the interval [0°, 360°).
In contrast with the simulations, full 360° data were useful in the experiment because the pulse
was not symmetric. Therefore, data acquired from diametrically opposed positions should yield
partially decorrelated signals.

Because the axis of rotation of the phantom was not perfectly concentric with the center of the
phantom, the images obtained from different angles of view were not registered. B-mode
images obtained from different angles of view were displayed and the coordinates of the center
of the phantom were manually estimated. The equation of a circle describing the relative
position of the center of the phantom as a function of the angle of rotation was derived as the
best fit to the estimates of the center of the phantom. Each image was registered by translating
it by the opposite of the amount of translation predicted by the equation for the circle.

The reduction in the standard deviation of the μ parameter estimates was greater than that
obtained in the simulation study. For a single angle of view, the standard deviation of the μ
parameter estimates was 2.1. By averaging together estimates from 120 angles of view, the
standard deviation was reduced to 0.22. Based on the averaging of estimates from 120 angles
of view, reduction in the standard deviation of the estimates by a factor of about 11 were
expected. Compared to the simulations, the reduction in estimate variance was greater for the
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experimental data. This could be partially attributed to the imperfect registration of the images
acquired from different angles of view for the experimental scans. QUS images illustrating the
reductions in estimate variances are shown in Fig. 10.

The standard deviation versus the number of compounded images (i.e., the number of angles
of view) of the μ parameter estimates for both the simulation and the experiment are plotted in
Fig. 11.

The standard deviation curves in Fig. 11 do not follow the predicted slope exactly. When a
small number (i.e., less than about 10) of images are compounded, the angular separations of
the images are large enough that the QUS parameter estimates from each angle of view are
statistically independent. As more angles of view are considered, the angular separation
decreases. Once the point is reached where images are no longer statistically independent, little
improvement in estimate variance is expected. This effect was further quantified by examining
the correlation between parameter estimates. Figure 12 shows the average correlation
coefficient between parameter estimates versus the angular separation. This was determined
by calculating the correlation coefficient between estimates for corresponding ROIs for all
pairs of images separated by a given angular separation. The average was taken over all pairs.
The correlation coefficient increased dramatically for an angular separation of less than about
9°.

V. Animal Model Results
The experimental protocol was approved by the Institutional Animal Care and Use Committee
of the University of Illinois and satisfied all campus and National Institutes of Health rules for
the humane use of laboratory animals.

A previous study [33] examined the use of the parameters from the normalized backscattered
power spectrum, i.e., effective scatterer diameter and effective acoustic concentration, to
characterize two rodent models of breast cancer (a mouse mammary carcinoma and a mouse
mammary sarcoma). Small but statistically significant differences were observed between the
carcinomas and sarcomas based on estimates of the effective scatterer diameter and effective
acoustic concentration values. The tumors were scanned using a single-element weakly-
focused (f/3) 20-MHz transducer. Scanning procedures and animal preparation are outlined in
detail in the previous study [33]. The same RF data used in the previous study were also used
to examine the envelope statistics by means of the homodyned K distribution.

Ten of each kind of tumor were analyzed by estimating the k and μ parameters for ROIs sized
approximately 1 mm × 1 mm in each tumor image. A single pair of parameter values (k, μ)
was obtained for each of the 20 tumors by averaging together the estimates from all the ROIs
i n each tumor. Examples of parametric QUS images of each of the two kinds of tumors are
shown in Fig. 13. Fig. 14 shows a feature analysis plot for the tumors. The ability to classify
the tumors can be assessed qualitatively by noting that it is possible to draw a line that separates
the two kinds of tumors in the feature analysis plot.

For the sarcomas and carcinomas, the k parameter estimates were 0.604 ± 0.051 and 0.533 ±
0.081, respectively while the μ parameter estimates were 4.69 ± 0.69 and 5.34 ± 2.4,
respectively. Based on one-way ANOVA analysis, a statistically significant difference was
observed between the k parameter estimates (p < 0.05) of the carcinomas and sarcomas, but
not in the μ parameter estimates (p = 0.42).

While the μ parameter estimates are not statistically significant by themselves, a linear
combination of the two model parameter estimates yields a smaller p-value than the k parameter
alone. This derived parameter was 0.447±0.032 for the sarcomas and 0.354±0.041 for the
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carcinomas (p < 0.0001). The derived parameter was determined from the line separating the
two kinds of tumors. Denoting the equation of the line as k=mμ+b, the derived parameter values
were defined as the linear combination ki-mμi for i=1…10 where (μi , ki) is the coordinate of
the i-th tumor. The parameters of the line were m=0.0335 and b=0.409.

VI. Conclusions
Angular compounding and an improved estimation algorithm based on SNR, skewness, and
kurtosis of fractional-order moments were used to reduce the variance of envelope-based
parameter estimates. The improved algorithm was observed to more accurately estimate
parameters of the homodyned K distribution than an existing algorithm based on the even
moments of the distribution. Computer simulations demonstrated that it was possible to create
images of the scatterer number density through angular compounding with reduced estimate
variance and, therefore, better image quality. This capability is important for being able to
detect small differences in tissue microstructure and may result in an improved diagnostic
capability.

The new estimation algorithm was applied to ultrasound backscatter measurements from rodent
tumor models and statistically significant differences in estimates of the k parameter were
observed. A previous study examining these rodent tumors used parameters based on the
normalized backscattered power spectrum (i.e., the effective scatterer diameter and the
effective acoustic concentration) to successfully classify the tumors [33]. The addition of two
parameters based on the envelope statistics will double the feature space for QUS
characterization of tissues and may lead to improved classification.

This is one of the few works dealing with the application of angular compounding to QUS
techniques. The improved algorithm presented for parameter estimation is both fast and
accurate and outperforms existing methods. While statistically significant differences using
the envelope parameters were observed between the two kinds of tumors, angular compounding
could improve the capability in distinguishing different kinds of tumors. A logical extension
of this work would be the implementation of envelope-based analysis on a tomographic breast
scanner with access to full 360° views [19].

Acknowledgments
The authors would like to thank William D. O’Brien Jr., for his helpful insights and Roberto Lavarello for his assistance
in constructing the phantom used in this work.

This work was supported in part by the National Institutes of Health Grants CA111289 and EB008992.

References
1. Shankar PM, Dumane VA, George T, Piccoli CW, Reid JM, Forsberg F, Goldberg BB. Classification

of breast masses in ultrasonic B scans using Nakagami and K distributions. Physics in Medicine and
Biology 2003;48:2229–2240. [PubMed: 12894981]

2. Hao X, Bruce CJ, Pislaru C, Greenleaf JF. Characterization of reperfused infarcted myocardium from
high-frequency intracardiac ultrasound imaging using homodyned K distribution. IEEE Transactions
on Ultrasonics, Ferroelectrics, and Frequency Control 2002;49:1530–1542.

3. Sommer FG, Joynt LF, Carroll BA, Macovski A. Ultrasonic characterization of abdominal tissues via
digital analysis of backscattered waveforms. Radiology 1981;141:811–817. [PubMed: 7302239]

4. Jakeman E, Pusey PN. A model for non-Rayleigh sea echo. IEEE Transactions on Antennas and
Propagation 1976;24:806–814.

5. Wagner RF, Smith SW, Sandrik JM, Lopez H. Statistics of speckle in ultrasound B-scans. IEEE
Transactions on Sonics and Ultrasonics 1983;30:156–163.

Hruska and Oelze Page 12

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2010 July 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



6. Barakat R. First-order statistics of combined random sinusoidal waves with applications to laser speckle
patterns. Optica Acta 1974;21:903–921.

7. Shankar PM. A general statistical model for ultrasonic backscattering from tissues. IEEE Transactions
on Ultrasonics, Ferroelectrics, and Frequency Control 2000;47:727–736.

8. Tsui PH, Chang CC. Imaging local scatterer concentrations by the Nakagami statistical model.
Ultrasound in Medicine & Biology 2007;33:608–619. [PubMed: 17343979]

9. Raju BI, Srinivasan MA. Statistics of envelope of high-frequency ultrasonic backscatter from human
skin in vivo. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 2002;49:871–
882.

10. Eltoft T. The Rician inverse Gaussian distribution: A new model for non-Rayleigh signal amplitude
statistics. IEEE Transactions on Image Processing 2005;14:1722–1735. [PubMed: 16279173]

11. Dutt, V. Ph D dissertation. Mayo Graduate School; Rochester, MN: 1995. Statistical analysis of
ultrasound echo envelope.

12. Dutt V, Greenleaf JF. Speckle analysis using signal to noise ratios based on fractional order moments.
Ultrasonic Imaging 1995;17:251–268. [PubMed: 8677561]

13. Ossant F, Patat F, Lebertre M, Teriierooiterai M-L, Pourcelot L. Effective density estimators based
on the K distribution: Interest of low and fractional order moments. Ultrasonic Imaging 1998;20:243–
259. [PubMed: 10197346]

14. Prager RW, Gee AH, Treece GM, Berman LH. Analysis of speckle in ultrasound images using
fractional order statistics and the homodyned k distribution. Ultrasonics 2002;40:133–137. [PubMed:
12159920]

15. Martín-Fernández M, Alberola-López C. On low order moments of the homodyned-k distribution.
Ultrasonics 2005;43:283–290. [PubMed: 15567206]

16. Martín-Fernández M, Cárdenes R, Alberola-López C. Parameter estimation of the homodyned K
distribution based on signal to noise ratio. Proceedings of the IEEE Ultrasonics Symposium
2007:158–161.

17. Gerig AL, Varghese T, Zagzebski JA. Improved parametric imaging of scatterer size estimates using
angular compounding. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
2004;51:708–715.

18. Lavarello R, Sanchez JR, Oelze ML. Improving the quality of QUS imaging using full angular spatial
compounding. Proceedings of the IEEE International Ultrasonics Symposium 2008:32–35.

19. Johnson SA, Abbott T, Bell R, Berggren M, Borup D, Robinson D, Wiskin J, Olsen S, Hanover B.
Non-invasive breast tissue characterization using ultrasound speed and attenuation. Acoustical
Imaging 2007;28:147–154.

20. Dutt V, Greenleaf JF. Ultrasound echo envelope analysis using a homodyned K distribution signal
model. Ultrasonic Imaging 1994;16:265–287. [PubMed: 7785128]

21. Eltoft T. Modeling the amplitude statistics of ultrasonic images. IEEE Transactions on Medical
Imaging 2006;25:229–240. [PubMed: 16468457]

22. Sleefe GE, Lele PP. Tissue characterization based on scatterer number density estimation. IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 1988;35:749–757.

23. Jakeman E. On the statistics of K distributed noise. Journal of Physics A: Mathematical and General
1980;13:31–48.

24. Smolíková, R. Ph D dissertation. University of Louisville; Louisville, KY: 2002. Neural and statistical
modeling of ultrasound backscatter.

25. Wear KA, Wagner RF, Brown DG, Insana MF. Statistical properties of estimates of signal-to-noise
ratio and number of scatterers per resolution cell. Journal of the Acoustical Society of America
1997;102:635–641. [PubMed: 9228823]

26. Bulmer, MG. Principles of Statistics. Cambridge, MA: The M.I.T Press; 1965.
27. Abdi A, Kaveh M. Performance comparison of three different estimators for the Nakagami m

parameter using Monte Carlo simulation. IEEE Communications Letters 2000;4:119–121.
28. Jensen JA. Field: A program for simulating ultrasound systems. Medical & Biological Engineering

& Computing 1996;34(supplement 1, part 1):351–353. [PubMed: 8945858]

Hruska and Oelze Page 13

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2010 July 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



29. Jensen JA, Svendsen NB. Calculation of pressure fields from arbitrarily shaped, apodized, and excited
ultrasound transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
1992;39:262–267.

30. Wear KA, Popp RL. Methods for estimation of statistical properties of envelopes of ultrasonic echoes
from myocardium. IEEE Transactions on Medical Imaging 1987;MI-6:281–291. [PubMed:
18244035]

31. Webb, A. Introduction to Biomedical Imaging. John Wiley & Sons, Inc; Hoboken, New Jersey: 2003.
32. Raum K, O’Brien WD Jr. Pulse-echo field distribution measurement technique for high-frequency

ultrasound sources. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
1997;44:810–815.

33. Oelze ML, Zachary JF. Examination of cancer in mouse models using high-frequency quantitative
ultrasound. Ultrasound in Medicine and Biology 2006;32:1639–1648. [PubMed: 17112950]

Hruska and Oelze Page 14

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2010 July 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Level curves based on moment order ν = 1. Intended parameters: k = 3, log10(μ) = 1 (left panel)
and k = 1, log10(μ) = −1 (right panel).
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Fig. 2.
The sum of all angles between level curves (averaged over the space of parameters (k, μ))
versus two moment orders ν.
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Fig. 3.
Relative bias and normalized standard deviation (SD) of model parameter estimates versus the
model parameters (even moments algorithm).

Hruska and Oelze Page 17

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2010 July 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Relative bias and normalized standard deviation (SD) of model parameter estimates versus the
model parameters (algorithm using the SNR, skewness, and kurtosis).
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Fig. 5.
Estimated parameter versus the approximate fraction of periodically located scatterers for
simulated phantoms. The error bars are two standard deviations long.
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Fig. 6.
Diagram depicting the average number of scatterers per resolution cell for different regions in
the simulated phantom.
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Fig. 7.
Placement of the transducer and phantom containing point scatterers for scanning at 0° (left)
and 90° (right).
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Fig. 8.
Parametric QUS images illustrating the effects of compounding on parameter estimates. Left
panel: one angle of view; right panel: 128 angles of view.
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Fig. 9.
Comparison of the scatterer number density obtained by counting the number of scatterers in
each ROI (left) and through estimates based on the envelope statistics model (middle). The
scatter plot (right) shows a comparison of the μ parameter values on an ROI-by-ROI basis.
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Fig. 10.
Parametric QUS images illustrating the effects of compounding on parameter estimates. Left
panel: one angle of view; right panel: 120 angles of view.
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Fig. 11.
Standard deviation (SD) of μ parameter estimates versus the number of compounded images
for simulated data and experimental data. The hypotenuses of the triangle has a slope which
corresponds to a decrease in the standard deviation of parameter estimates as the square root
of the number of compounded images.
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Fig. 12.
Average correlation coefficient for μ parameter estimates versus the angular separation for
simulated and experimental data.
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Fig. 13.
Parametric QUS images of carcinoma (left panels) and sarcoma (right panels) tumors.
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Fig. 14.
Feature analysis plot of average envelope-statistics parameter estimates for carcinoma and
sarcoma tumors.
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TABLE I

Improvements in Estimate Bias and Variance

Even moments algorithm SNR, skewness, and kurtosis algorithm

Total absolute bias: μ 42 25

Total absolute bias: k 92 61

Total standard deviation: μ 95 86

Total standard deviation: k 69 62
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