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Cell migration contributes to cancer metastasis and involves cell adhesion to the extracellular matrix (ECM), force generation
through the cell’s cytoskeletal, and finally cell detachment. Both adhesive cues from the ECM and soluble cues from neighbouring
cells and tissue trigger intracellular signalling pathways that are essential for cell migration. While the machinery of many signalling
pathways is relatively well understood, how hierarchies of different and conflicting signals are established is a new area of cellular
cancer research. We examine the recent advances in microfabrication, microfluidics, and nanotechnology that can be utilized to
engineer micro- and nanoscaled cellular environments. Controlling both adhesive and soluble cues for migration may allow us
to decipher how cells become motile, choose the direction for migration, and how oncogenic transformations influences these

decision-making processes.

1. Introduction

Cell migration is an essential element in development, tissue
repair and immune surveillance but can become aberrant
in cancer leading to malignant invasion of local tissues and
metastasis in distant organs. Cell migration is a complex
process that integrates numerous extracellular stimuli but
also provides feedback to the microenvironment, which
can modulate the structure and chemical signature of the
extracellular matrix (ECM). Extracellular stimuli can be
chemical cues released from cells of the same or different
cell type; adhesive cues in the form of cellular ligands that
are part of or attached to the ECM or neighbouring cells
as well as mechanical forces and structural features within
tissue and the ECM. All these parameters contribute to the
initiation of migration from a quiescent state, direction and
speed of migration and interactions with bystander cells and
ECM components.

One can distinguish between different modes of cell
migration with mesenchymal and amoeboid cell migra-
tions being two modes of single cell migration. Mesenchy-
mal cell migration, as seen in fibroblast, is characterized

by an elongated morphology and firm adhesion to the
microenvironment. Amoeboid cell migration such as that
of lymphocytes, has dynamic focal complexes and high
degree of deformability [1]. Collective cell migration has a
similar mode of migration to mesenchymal cell migration
but retains cell-cell contacts with neighbouring cells. Such
collective cell migration can be seen in bulk cancer cell
migration and migrating epithelial cells during wound
healing [1, 2]. Switching between collective and single cell
migration is an important regulator of cancer metastasis and
is often associated with altered gene expression.

There are general similarities in single cell migration
across cell types, although different cell types have unique
features and characteristics. Here, we briefly summarize
the general stages of migration since they are frequently
used to describe and classify migratory behaviour in cell
studies with engineered environments. Cell migration can be
divided into four phases: polarisation, protrusion, traction,
and disassembly (Figure 1).

In response to extracellular cues, the cell polarises where
specific proteins and lipids accumulate asymmetrically in the
anterior and posterior of the cell. During the polarization
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FiGure 1: Cell migration. Responding to extracellular cues such as
chemoattractant gradients or adherent cues (a), the migrating cell
changes its morphology and intracellular organization. Polarised
cells have a fan-shaped protrusion at the leading edge and traction
at the rear. Chemoattractant receptors (b) and integrins (c),
forming focal adhesions, localise to the leading edge of the cell. The
microtubule organising centre (MTOC) (d) and the Golgi locate to
the side of the nucleus that faces the leading edge.

phase, proteins, lipids and organelles are rearranged in the
opposite poles in the cell in order to perform their specific
functions in cell migration. Often recruited by ligand-
receptor interaction, markers for the leading edge in mes-
enchymal migration are phosphoinositide 3-kinases (PI3K)
[3], the gangliosides GM1 and GM3 [4], phospholipase D [5]
while tensin homolog deleted on chromosome 10 (PTEN) is
located at the rear [6]. In amoeboid migration, GM3 is also
located at the leading edge but GM1 locates to the rear [4].
Rearrangement of organelles also contributes to persistent
polarisation. The microtubule organising centre (MTOC)
and the Golgi are typically located on the side of the nucleus
that faces the leading part of migrating cells [7].

Most polarised cells have a ruffled, fan-shaped protrusion
at the leading edge and traction at the rear. At this stage,
the cell establishes firm connection with the surrounding
matrix or substratum in the form of a nascent adhesion spot,
called focal complex and mature adhesion sites called focal
adhesion. Attachment of actin stress fibres to focal adhesions,
in conjunction with molecular motors, generates forces that
move the cell body forward. Finally, a new adhesion forms
at the leading edge and old focal adhesions at the rear are
disassembled allowing the cell to advance.

2. Soluble Cues and Directed Cell Migration

Cell signalling molecules such as growth factors, hormones,
chemokines, and microbial epitopes can trigger cell migra-
tion. These ligands can activate transmembrane receptors
such as receptor tyrosine kinases, cytokine receptors and G
protein coupled receptors. Triggering of these cell surface
receptors recruits signalling proteins to the activation site
and consequently intracellular signalling cascades. If the
ligands for these receptors are spatially encoded, these
processes initiate cell polarization and define the direction
of migration towards higher ligand densities.
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FIGURE 2: Directed migration through microchannels engineered
with soft lithography techniques. Cancerous cells (red) show differ-
ent morphology and migratory behaviour than non-cancerous cells
(blue) when cocultured in a microchannels of a particular geometry
resulted in directed migration [15]. Soft lithography can be used to
engineer the microchannels in rigid or soft materials.

The classic chamber to measure directed cell migration,
or chemotaxis, is the transwell Boyden chamber. With the
transwell Boyden chamber cells are plated on a porous
membrane and the chemoattractant is placed in a chamber
beneath the membrane. Hence, cells are attracted to migrate
through the porous membrane. Unfortunately, these cham-
bers do not allow the visual inspection of the locomotion
and are typically used to quantify the percentage of migrat-
ing cells. Various microscope setups [8] for directed cell
migration have been designed; for example, micropipettes
can be used as a point source for chemoattractants or an
agarose gel in the so called “under-agarose” assay, in which
cells and chemoattractant in solution, are placed inside wells
cast into an agarose layer [9]. In all of these designs, the
chemoattractant can freely diffuse in solution, which makes
it difficult to accurately delivery a known concentration to
the migrating cell.

Recently, microfluidic applications and soft lithography
technique have been employed to delivery soluble cues
to migrating cells [10, 11]. In microfluidics, the fluid
flow is controlled by viscous force (laminar flow) and in
some cases, cells or proteins placement is controlled by
electrical stimulation [12, 13]. Microfluidics channels are
traditionally made of silicon, glass and other rigid materials
but more recently elastomeric polymers such as poly(dim-
ethylsiloxane) (PDMS) have begun to be extensively used. To
engineer the microfluidics channels (Figure 2) microcontact
printing, which is part of the suite of soft lithography
methods but no longer requires soft stamps, is particularly
useful because it transfers patterns by stamping and is
therefore a nonphotolithographic technique [14].

Because microfluidic channels can be designed in various
sized, this approach is suitable for study of single cell
migration [15] and cell motility in bulk [11]. Various types
of fluidic and fluid-driven mechanical stimuli can be applied
for creating gradients, in the microfluidic channel, of growth
factors [16], chemoattractants and chemorepellents [10, 17],
or drugs [18]. In addition, modifications of microfluidics
design can be used to study the effect of channel topography,
surface pattern, and surface dimensions on cell migration.
For instance, the biased migration response of two different
cell types was recently reported using microratchet channels.
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Interestingly, cancerous cells showed different morphology
during migration than noncancerous cells expanding their
protrusion pass the boundary of trapezium opening while
non-cancerous fibroblast lamellipodia do not broaden its
lamellipodia to the trapezium border but anchor to the
nearby spike on the trapezium opening [15] (Figure 2).

Other variables can be controlled using microfluidics
devices such as adhesive cues [19], shear stress [20], and
oxygen level [21]. Microchannels were recently used to test
how migration speed is determined by the deformability of
cancer cells [22]. This study also highlighted the different
motions of cells in confined 3D environment compared to
migration over flat surfaces [22].

3. Cell Adhesion and Integrins

Focal adhesions are the sites of cell connection to ECM
where the cell’s actin cytoskeleton is tethered to the ECM’s
nanofibres. The physical link between the outside and inside
of the cell is achieved by transmembrane proteins, mainly
integrins. Integrins are members of an «/f heterodimeric
receptor family [23] (Figure 3). In mammals, there are 18
identified « subunits and 8f subunits that can combine to
give 24 distinct heterodimers. Many integrins are expressed
in a low-affinity binding state. However, cells can change
integrin conformation and hence affinity in response to
cellular stimulation, a process termed integrin activation.
The signals leading to integrin activation are referred to as
“Inside-out signalling”. Integrin activation results in renewed
probing of the cell’s environment and, when activated inte-
grins become engaged to their ligands, focal adhesion for-
mation. Thus, focal adhesions contain a high concentration
of activated and engaged integrins. In response to growth
factors, many cells alter both the repertoire and affinity of
integrins.

In addition to the inside-out signalling, focal adhesions
control a range of cell activation responses, such as cell
polarization and migration, membrane trafficking, cell cycle
progression, gene expression, and oncogenic transformation
[24, 25]. Focal adhesions are large protein complexes, which
initiate “outside-in signalling” involving the phosphoryla-
tion of focal adhesion kinase (FAK), p130 Cas, Src and
other tyrosine kinases, phosphorylation of the structural
membrane protein caveolin-1 (Cavl), phosphoinositide (PI)
3-kinases, the kinases Erk, JNK, and p38 MAP Kkinases,
as well as small GTPases [26, 27] (Figure 3). In addition,
actin-regulating proteins such as vinculin, paxillin and
talin link integrin complexes to actin stress fibres. Focal
adhesions are also connected to growth factors signalling.
For example, vascular endothelial growth factor (VEGF)
stimulation of endothelial cells results in the transloca-
tion of its type 2 receptors (VEGFR2, KDR/Flk-1) from
caveolae to focal adhesions. Dimerization of the recep-
tors initiates autophosphorylation but it is at FA where
VEGEF receptors induce signalling cascades [28]. In return,
VEFGR?2 also activates integrins avf33, a581, and a2f51 [29],
and the Rho GTPase Racl bridging signalling activities
with focal adhesion organization and actin restructuring
[30-32].

Curiously, integrins have no intrinsic enzymatic activity
yet in many cases, integrins enable growth factor signals—
that is, growth factor signalling does not occur unless
integrins are occupied. Continuing with the example of
endothelial cells, avf33 antagonists can inhibit angiogenesis
[33], indicating the importance of these integrins in angio-
genesis [34]. However, integrins can also suppress growth
factor signalling. Genetic deletion of av integrins has only
modest effects on angiogenesis [35] while genetically deleting
integrins 3 and 5 enhances normal and pathological
angiogenesis [36]. Transdominant integrin inhibition, a
form of integrin crosstalk, may account for some of the effect
of avf33 ligands and antagonists on angiogenesis. There is
now considerable evidence that physical and topographical
characteristics of integrin ligands regulate integrin function
(reviewed recently in [37]).

4. Model Substrata to Study
Cell Attachment and Migration

Because of the crucial role of focal adhesions in both cell
adhesion and signal transduction, extensive research has
been undertaken to understand the molecular architecture
of adhesion sites. Fluorescence microscopy studies are the
methods of choice because they enable insights into intact,
live cells.

To identify the molecular architecture of focal adhesions,
one needs to create surfaces on which the interactions with
integrins can be precisely controlled and which mimic the
arrangement of adhesive sites in the ECM. Coating glass
or plastic surfaces with ECM proteins was the starting
point used to identify integrin specificities but because
neither the amount nor the location of the ECM protein
can be controlled, molecular mechanisms are difficult to
identify with this approach. A characteristic feature of the
ECM is the periodic nature of integrin ligands. Native
collagen, for example, has a fibril structure with each fibril
displaying a periodicity of ~67 nm [38]. This periodicity
can increase to 250 nm fibrous collagen [39]. Similarly to
collagen, fibronectin is organized into nanoscale patterns,
exhibiting paired fibrils with characteristic spacings of 156,
233, 304, and 373 nm [40] while integrin binding sites with
fibronection fibre, the tripeptide arginine-glycine-aspartic
acid or RGD, have a periodicity below 70 nm. Hence, it is
desirable to engineer surfaces on which integrin ligands have
precise intermolecular distances of <5 nm to >500 nm.

Adsorbing matrix proteins and modifying polymers
provide insufficient control over ligand presentation while
microcontact printing and dip-pen lithography achieve at
best patterns of 100 nm separation. The first attempt to
control the presentation of RGD ligands at the surface was
to covalently graft RGD peptides onto a polymer substrate
[41, 42]. Using these surfaces it was found that cell-substrate
interactions depended on RGD density. However, in this
approach, RGD peptides were attached to the heterogeneous
environment of the polymer gel. As a consequence, the
number of RGD peptides accessible by cells differed from
the total of RGD within the gel, making it impossible to
precisely determine the effective density. Later, this strategy
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F1GuURE 3: Integrin and VEGF-receptor signalling. Focal adhesions (FAs) are large complexes, which consist of integrins and VEGF-receptors
(VEGFR). The a- and B-subunit of integrins bind to the tripeptide arginine-glycine-aspartic acid (RGD) in fibronectin and other proteins
of the extracellular matrix (ECM). This induces a signalling cascade that ultimately leads to restructuring of the actin skeleton and cell
migration. Activation of integrins induces phosphorylation of focal adhesion kinase (FAK) by the receptor tyrosine kinase Src. Paxillin is a
focaladhesion associated adaptor protein. It interacts with several other focal adhesion proteins such as talin, tensin and vinculin. P130Cas is
an adaptor protein that induces signalling cascades involving ERK. VEGER translocates to focal adhesions after stimulation with VEGF and
initiates a signalling cascade, which contributes to focal adhesion organization and actin restructuring.

was refined to probe for the optimal RGD spacing for cell
adhesion and spreading using glass substrates modified with
a polyethylene oxide (PEO) polymer to which RGD peptides
were grafted [43] and star-shaped PEO molecules controlling
the number of RGD peptides per macromolecule [44]. These
studies revealed RGD spacing of 440 nm was sufficient for
fibroblast spreading but focal adhesion formation required
higher RGD densities [43] or a clustered ligand arrangement
(44].

Microcontact printing [45], combined with self-
assembled monolayer chemistry [46], and block copolymer
nanolithography [47, 48] can space integrin ligands closer
than 200nm apart. When spacing integrin ligands that
preciously, one has to ensure that the surface between the
ligands is sufficiently passivated so that cells specifically
interact with the presented ligands and not with the
underlying surface. Oligo(ethylene oxide) been shown to
be effective in preventing protein absorption [49] and cell
adhesion [50] and gold surfaces modified with poly(ethylene
glycol)-terminated alkanethiol monolayers [49] ensure
specific interactions between the integrins and RGD ligands.
Such surface modification strategies demonstrated the
importance of density [43, 44, 51], affinity [52], and spatial
organization [44, 53] of RGD ligands on cell adhesion
and spreading. However, because gold surfaces quench
fluorescence, these studies were limited to morphological
descriptions.

Spatz and coworkers used block copolymer nanolithog-
raphy (BCN) to position gold nanodots with high precision
at 28, 58, 73, 85, and 108 nm spacing with each nanodot
engaging only a single integrin [54, 55]. The analysis of focal

adhesion dynamics on homogeneously spaced [47], disor-
dered [56] or gradients [48] of cyclic RGD peptide revealed
that RGD-to-RGD spacing that exceed >70 nm result in less
cell spreading, higher focal adhesion turnover and more
erratic cycles of membrane protrusion and retraction in
fibroblasts. This detailed analysis of focal adhesion proteins
and turnover suggested that there is an optimal RGD density
for integrin engagement. Importantly, the 10-200 nm scale of
ligand spacing is physiologically relevant as nanoscaled and
periodic spacing of integrin ligands below 100 nm is found in
fibronectin and collagen fibers [57, 58]. In conclusion, cells
have the remarkable ability to sense variation in spacing of
integrin ligands on the nanometre scale [37].

In contrast to 2D surfaces, our understanding of the
effect of surface topography on cell adhesion and migration
is limited although substrate topography could affect the
ability of cells to orient and migrate as well as influencing
the organization of their cytoskeleton [59]. It was found
that on striated substrates, endothelial cells, smooth muscle
cells, and fibroblasts align and migrate along grooves and
that cell orientation is increased with smaller lateral spacing
and increasing depth of the grooves present at the surface
[60]. The choice of substrate and the chemical patterns on
surfaces [61] may also be important. This issue has mainly
been addressed by varying the chemical composition of the
substrate itself using different metal alloys [62] or polymers
[63] but these substrata were devoid of integrin ligands. In
contrast, coating titanium with RGD proved to stimulate
bone cell adhesion, but the interfaces lacked control over
peptide surface density [64]. Particularly for cancer research,
model substrata with controllable flexibility, topography,
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chemical modifications, and nano-scaled patterning would
provide a better understanding of the impact of the cell’s
microenvironment on cell migration.

5. Conclusion

Recent advances in microfluidics, nanopatterning and sur-
face chemistry have afforded unique insights into how
cells sense and respond to their local environment [37].
Microfabrication enabled the engineering of microfluidic
channels of various topography and shown that the direction
of migration is determined by protrusion morphology [15].
Cell adhesion onto 2-dimensional surfaces revealed that
cells adhere and spread differently if the density [47],
patterning [48], or degree of ordering [56] of the integrin
ligands is altered on the nanometre to micrometer scale
[65] influencing the distribution of focal adhesion proteins
[47] and structuring of the actin cytoskeleton [66]. Only
by integrating these advance to, for example, examine
cell migration over previously engineered 2D surface in
microfluidics devices, or modifying the surface chemistry
of microfluidics channels can we understand how cells
integrate soluble and adhesive cues in their decision making
processes. The fundamental insights into cell adhesion and
migration will add the engineering of appropriate cellular
environments in medical implants [65], biosensors [67], and
tissue materials [68].
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