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Abstract
The monitoring of thermal ablation procedures would benefit from an acceleration in the rate at
which MRI temperature maps are acquired. Constrained reconstruction techniques have been
shown to be capable of generating high quality images using only a fraction of the k-space data.
Here we present a temporally constrained reconstruction (TCR) algorithm applied to proton
resonance frequency shift (PRF) data. The algorithm generates images from undersampled data by
iteratively minimizing a cost. The unique challenges of using an iterative constrained
reconstruction technique to generate real time images were addressed. For a set of eight heating
experiments on ex vivo porcine tissue, a maximum reduction factor of 4 was achieved while
keeping the root mean square error (RMSE) of the temperature below 0.5°C. For a set of three
heating experiments on in vivo canine muscle tissue, the maximum reduction factor achieved was
3 while keeping the temperature RMSE below 1.0°C. At these reduction factors, the TCR
algorithm under-predicted the thermal dose by an average of 6% for the ex vivo data and 28% for
the in vivo data. Compared to sliding window and low resolution reconstructions, the RMSE of the
TCR algorithm was significantly lower (p < 0.05 in all cases).
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Introduction
Minimally-invasive thermal therapies are being developed in which radiofrequency currents,
microwaves, lasers or high intensity focused ultrasound (HIFU) are used to preferentially
kill tumor cells (1,2). In order to improve the safety and efficacy of these treatments, better
techniques to monitor the process must be developed. Temperature changes in the tumor and
the surrounding tissue must be tracked in real time in order to detect the instant attainment
of end-point temperatures or to calculate the accumulated thermal dose in these regions.
Magnetic resonance imaging is capable of detecting changes in tissue due to heating and is
also able to measure temperature distributions in a variety of tissue types. Most investigators
employ the proton resonance frequency (PRF) shift technique to monitor heating and
thermal dose accumulation during thermal treatments (3,4). PRF is currently the most
accurate method for creating temperature maps and can provide adequate spatial resolution
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within a single 2D image (5). However, the temporal resolution of PRF scans must be
improved to provide adequate resolution over a 3D volume with sufficient temporal
resolution to meet the needs of increasingly sophisticated tumor ablation procedures that
incorporate higher energy depositions, real-time feedback control, and offline trajectory
optimization.

Thermal therapies focus the applied energy on a small volume, causing rapid heating and,
potentially, rapid dose accumulation. The thermal dose, which provides a measure of
equivalent tissue damage, is given as the cumulative effect of temperature over time, as:

(1)

Where D43 is the equivalent thermal dose at 43°C, R = 0.5 is used for T > 43°C, and R =
0.25 is used for T < 43°C (6). Tissue is considered to be fully necrosed when thermal dose
has reached 240 cumulative equivalent minutes (CEM) (7). Because thermal dose rate is a
non-linear exponential function of temperature, high spatial and temporal resolution in
temperature measurements is especially important in the area where the temperature is
increasing most rapidly and to the highest values. HIFU treatments have been proposed in
which large amounts of ultrasound power are deposited quickly to the region of interest,
temperature information from the MR scan is sent to a controlling computer, and the
ultrasound power deposition is adjusted according to safety and efficacy concerns (8,9). In
treatments such as these the ultrasound can induce temperature changes in tissue of up to
20°C in under 30 seconds. If tissue temperature is at 57°C (20°C above baseline), it will
accumulate dose at a rate of 273 CEM per second. In this environment, to effectively
monitor dose and use a feedback loop to control the power deposition appropriately, entire
volumes need to be scanned in seconds.

The PRF method for creating temperature maps acquires data using a fast gradient echo
pulse sequence. It has been shown that the optimal signal to noise ratio (SNR) for the
temperature data occurs when the echo time equals the T2* of the tissue (5). However,
selecting the echo time to be on the order of T2* would make the scan unacceptably long
and therefore shorter echo times, generally between 5 and 15msec, are used in practice. As
an example, consider a 2D, multi-slice interleaved gradient echo sequence used at 3T. For an
echo time of 10msec, a 110msec TR could accommodate 8 slices and an imaging matrix of
128×128 could be acquired in 14 seconds. The SNR and in plane spatial resolution of such a
scan would be adequate, but the volume coverage would need to be increased and the scan
time is far too long for high temperature (>50°C) MR-guided thermal therapy applications.

A number of strategies exist for reducing the scan times of a PRF sequence and each comes
with a trade off. Echo-shifted gradient echo imaging has been proposed as a way to lengthen
TE times while keeping TR times short (10). Using this method, scan times of 3.6 seconds
per volume have been achieved (11), but the short TR causes substantially reduced signal in
tissues with typically long (~1s) T1 values. Parallel imaging with multiple receiver coils and
SENSE (12) or SMASH (13) reconstruction is another option. For n coils, one can achieve a
speed up factor, R, up to n, but SNR will also decrease by at least a factor of . A variety
of reduced data reconstruction techniques have been proposed to decrease the scan time of
dynamic imaging, including UNFOLD (14), k-t BLAST (15), keyhole (16), RIGR (17), and
sliding window, but each have limitations in SNR, resolution or require a priori knowledge
about the location of the changing temperature.
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Here we propose Temporally Constrained Reconstruction (TCR), another reduced data
scheme in which the reconstruction is dealt with via an inverse problem approach with
certain application specific constraints. The technique has already been applied as a way of
improving the temporal resolution of dynamic contrast enhanced cardiac imaging (18), and
is analogous to recent techniques sometimes termed compressed sensing (19). Reduction
factors of five were achieved with Cartesian undersampling, but the reconstruction was done
retrospectively on the entire data set. In contrast, the current work shows that TCR can be
applied to PRF temperature data to produce images in near real time and achieve data
reduction factors of up to 4 (R=4) without sacrificing SNR or the accuracy of the
temperature measurements. The decrease in data acquisition can be parlayed into shorter
scan times, greater volume coverage, or better spatial resolution.

Methods
TCR Theory

When obtaining a set of images over time, the standard reconstruction method is to acquire
every line of k-space for each time frame (all of k-t space) and apply the inverse 2D Fourier
Transform to each time frame. If k-space is undersampled for any time frame then aliasing
appears in the reconstructed image of that frame. The TCR technique undersamples k-t
space but then uses an appropriate temporal (TCR) and/or spatial model (STCR) (20) as a
constraint to remove the aliasing artifact through an iterative minimization process.
Undersampling is done in such a way that each phase encode line is acquired at some point
in k-t space. For example, if phase encode lines 1, 5, 9, 13, … are sampled in the first time
frame, then lines 2, 6, 10, 14, … are sampled in the second time frame, and so on.

Consider a fully sampled k-space data set, d, and an undersampled k-space data set, d'. For
standard reconstruction, the complex image data, m, would be obtained using the discrete
inverse Fourier Transform:

[1]

where F−1 is the 2D inverse Fourier Transform. Applying the 2D inverse Fourier Transform
to undersampled k-space data, d', would create an image data set, m', with aliasing. To
resolve this problem and obtain a non-aliased solution, m*, a cost function is created and
minimized. The terms of the cost function consist of a data fidelity term, which ensures
faithfulness to the originally acquired sparse data, and a constraint term consisting of a
model that is appropriate for the application and is satisfied by the full data. The data fidelity
term is:

[2]

Where F is the 2D Fourier Transform, W is a binary sparsifying function that represents
which phase encoding lines have been acquired,  is the image estimate, and ∥○∥2 represents
the L2 norm. The constraint term is:

[3]

Here Ψ is any application appropriate operator acting on the image estimate, , weighted by
α. Thus the cost function that produces m* when minimized becomes:
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[4]

In this work the minimization of the cost function is done using an iterative gradient descent
method (18).

TCR applied to PRF temperature data
Applying this technique to PRF temperature data, where the ultimate goal is real time
monitoring of tissue heating, imposes some unique challenges. The most important is the
choice of Ψ, the operator that defines the constraint model. In this work, two choices were
considered. The first is a maximum smoothness in time function given by

[5]

Here the sum is over the N pixels in a time frame, ▽t is the temporal gradient operator, and
 is the ith pixel of the image estimate over time. This model assumes that no motion is

present and that both the real and imaginary parts of the image data vary smoothly in time.
The use of this constraint in the cost function will penalize solutions that have sharply
varying time curves. The second constraint considered is based on a total variation in time
model and is given by

In this equation, β is a small positive constant and ∥○∥1 represents the L1 norm. This
constraint also imposes a penalty on abrupt changes to the data in time, however the penalty
is not as harsh as the maximum smoothness penalty. This constraint will still resolve the
aliasing due to undersampling, but will accommodate actual rapid changes in time in the real
and imaginary image data.

A variable density sampling scheme was chosen for the undersampling. The central eight
lines of k-space were acquired for all times frames. A second region of phase encode lines,
further out in k-space on either side, were sampled not quite as densely and a final region of
k-space, furthest from the center, was sampled more sparsely. In the second and third
regions, the phase encode lines sampled were interleaved in time. For example, if one time
frame sampled lines 1, 5, 9, …., then the next time frame would sample lines 2, 6, 10,…. In
this way, all phase encode lines would be acquired at some point in k-t space.

When this algorithm is applied for reconstructing dynamic contrast enhanced cardiac
imaging, data can be acquired for all time frames and the reconstruction done jointly using
the entire time curve for each pixel. This is not the case when the application is temperature
mapping as the images need to be produced and available in real time. If the images are to
be created immediately, then only the present and past time frames can be used in the
reconstruction algorithm. However, the use of one “future” time frame in the reconstruction
algorithm may significantly improve the image quality and temperature accuracy. Adding a
“future” time frame will effectively delay the availability of the images by one acquisition
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cycle, which may be acceptable depending on the application and the extent to which such
an addition improves the temperature accuracy.

We have chosen to use sliding window k-space data for the algorithm initialization. When
using the TCR algorithm to calculate the final image space data, m*, the initial sliding
window k-space data set, d', is comprised of the present k-space data and the minimum
amount of k-space data from previous time frames that is needed to create a full k-space. For
example, if time frame 16 is being reconstructed, the k-space data may only contain phase
encode lines 4, 8, 12, …. In a sliding window initialization, the data from time frames 15
(which contains phase encode lines 3, 7, 11, …), 14 (lines 2, 6, 10, …), and 13 (lines 1, 5, 9,
…) would be added to the data from time frame 16. In this way, a full k-space data set is
created.

MRI Acquisition and heating set up
All scans were performed on a Siemens TIM Trio 3T scanner (Siemens Medical Solutions,
Erlangen, Germany). A fast spoiled gradient echo sequence was used with the following
parameters: TR = 65msec, TE = 8msec, 5 slices (3mm thickness, 1mm spacing), flip angle
of 20°, and 6/8 partial phase Fourier. The imaging matrix size and field of view varied
amongst scans, but were always chosen to give a resolution of approximately 2×2×4mm3.
For a typical parameter set the 5 slices could be acquired in 6.2 seconds. All phase encode
lines were acquired at each time frame and zeroed out retrospectively to create the
undersampled data sets.

Temperature maps were created from all sets of complex image data by computing the phase
angle between pixels at adjacent time points and then converting the phase difference, Δϕ, to
temperature difference, ΔT, using the relation (21)

[6]

Here TE is the echo time, γ is the gyromagnetic ratio, B0 is the main field strength, and for
all calculations the value of the chemical shift coefficient, α, was assumed to be −0.01 ppm/
°C (22).

Multiple HIFU heating experiments were performed on ex vivo porcine tissue samples and
on in vivo canine muscle, for which IACUC approval was obtained. A 256-element MRI
compatible phased-array ultrasound transducer (IGT, Bordeaux, France) was housed in a
bath of deionized and degassed water with the tissue situated above it. An in-house
fabricated two-channel surface coil was positioned just above the sample for better image
SNR. The whole unit fit inside the bore of the magnet and heating could be performed
simultaneously with MR imaging with no apparent artifacts. The ultrasound power could be
controlled externally via a controller computer.

Eleven heating experiments were performed and are grouped into two categories. The first
category consists of eight experiments that were performed on ex vivo porcine tissue
samples. Ultrasound heating was delivered using a constant power level, either in one
approximately 30 second shot, or in multiple shots with long cooling times in between.
Images were acquired over the heating phase(s) and the cooling phase(s). This category of
heating experiment is the most basic situation as the sample is relatively homogenous and
the heating is smooth in time. For the second category, three heating experiments were
performed on in vivo canine muscle. These experiments were more similar to a realistic
ablation experiment in which the goal was to produce a visible lesion in the thigh muscle of
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an anesthetized canine. To achieve this outcome, high ultrasound powers were used in a
pulsed fashion to induce rapid and large temperature changes. The more rapid switching of
the ultrasound power on and off and the higher powers used created temperature time curves
that changed more abruptly than those in the porcine tissue experiments. Additionally, the
coil placement was further from the focal zone, resulting in a lower signal to noise ratio.

Analysis
In optimizing the TCR algorithm, four parameters were considered: the weighting factor, α;
the number of iterations; the type of constraint; and whether or not to use one additional
“future” time frame in the algorithm. Optimization was done separately for the two different
heating experiment categories.

The first step in the optimization process was to determine the optimal α/iteration
combination using a training/validation approach. For the ex vivo porcine tissue group, two
data sets were used as training and the remaining six were used for validation. For the in
vivo canine group, one data set was used for training and two for validation. For each
experiment group, 4 α/iteration combinations had to be chosen as there are two constraint
types and a decision whether or not to use one “future” time frame. The TCR algorithm was
run for each training set with numerous α/iteration combinations (α from 0.01 to 0.25 for
maximum smoothness constraint and from 0.0025 to 0.025 for the total variation constraint,
each with 50, 100, 200, and 400 iterations) and a temperature root mean square error
(RMSE) was calculated after each run. The region of interest (ROI) used for the RMSE
calculation covered an area over the heated region of approximately 12mm × 20mm and
included all time frames. Temperatures calculated from the full data were used as truth. The
lowest RMSE determined the choice of α and number of iterations. If the two training data
sets from the ex vivo porcine tissue group did not agree on the optimal α/iteration
combination, compromise values would be chosen. Additionally, because computation time
is a concern, an α/iteration combination with fewer iterations would be chosen if the RMSE
was not degraded by more than 5%.

The next step in the optimization process was to compare the four permutations of the
algorithm implementation to determine which parameter set performed the best. The α/
iteration values chosen by the training data sets were used in the TCR algorithm to
reconstruct all validation data sets with all parameter permutations. The voxels within the
ROIs from all data sets were pooled and a single temperature RMSE was calculated for each
implementation of the algorithm. The Fisher F-test was used to determine if the TCR
algorithm with one parameter set was significantly better than another.

After the algorithm was fully optimized, it was applied to the validation data sets at
increasing reduction factors to determine the maximum reduction factor achievable while
keeping the temperature RMSE over an ROI below a predetermined level: 0.5°C for the ex
vivo porcine tissue group and 1.0°C for the noisier in vivo canine group. The temperatures
reconstructed by the TCR algorithm at the maximum reduction factor were analyzed for
significant features that the total RMSE may have masked. For example, how the algorithm
performed when the temperature was changing the fastest, or how well it predicted the peak
temperatures.

Finally, the performance of the TCR algorithm was tested against two other more basic
reduced data reconstruction methods, sliding window and low resolution. The same
experimental data was used for the comparisons, only the respective k-spaces were
constructed differently. The sliding window k-space was created as described above. For the
low resolution reconstructions, the reduction factor determined how many phase encode
lines about the center of k-space would be used and the rest of k-space was zero filled. For
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both the sliding window and low resolution reconstructions, a standard Inverse Fourier
Transform was used to create images from k-space. The comparison across methods again
used only the validation data sets and the Fisher F-test on the temperature RMSEs.

Results
Optimization

The TCR algorithm was optimized by first determining the α/iteration combination for all
four parameter permutations in both heating experiment categories. Consider the case of the
first training data set from the ex vivo porcine group at a reduction factor of four, using the
maximum smoothness constraint and one “future” time frame. The behavior of the
temperature RMSE of time frame 20 is plotted against number of iterations in Figure 1a for
α=0.05. Beyond 200 iterations, little improvement is seen in the temperature RMSE. The
RMSE values of this data set (now over all 60 time frames) for all α's at 50, 100, 200 and
400 iterations are shown in Figure 1B. The α/iteration combination that gave the lowest
RMSE value was 0.025/400 (RMSE = 0.1322). The trend in the RMSE values for the
second ex vivo porcine training data set was similar, although the minimum RMSE value
was shifted out towards a higher alpha value: 0.20/400 (RMSE = 0.3169). For the two
training data sets, using the optimal α at 100 iterations only degraded the temperature RMSE
by 1.0% and 4.0%, respectively. Therefore, the number of iterations was set to 100 and a
compromise value of α = 0.04 was chosen. The α/iteration combinations for the remaining
permutations of algorithm parameters and the in vivo canine group were chosen in a similar
fashion. The results are summarized in Table 1.

Using the α/iteration combinations determined by the training data sets, the TCR algorithm
was run to reconstruct the validation data sets in each experiment category for all parameter
permutations (constraint type and whether or not to use one “future” time frame).
Temperature RMSEs were calculated from the pooled voxels of all validation data sets for
each category. The results are shown in Table 1. Two sets of results are shown for the in
vivo canine experiments. In the top row, the α and iteration values were determined from the
in vivo training data set. In the bottom row, the α and iteration values are those that were
determined by the ex vivo training data sets. The top row RMSE results were used when
comparing the different algorithm implementations for significant differences. For both
experiment categories, the use of one “future” time frame in the reconstruction with a given
constraint type led to significantly improved RMSE values (p < 0.05 for each). The total
variation constraint performed significantly better than the maximum smoothness constraint
in the ex vivo porcine tissue experiment category, but not in the in vivo canine category. The
total variation constraint with one “future” time frame was chosen as the optimal parameter
set because it required fewer iterations to converge. It should be noted that if using one
“future” time frame in the reconstruction is not acceptable for a particular application, then
the total variation constraint outperforms the maximum smoothness constraint significantly
in the case the of ex vivo porcine tissue experiments (p <0.05) but not in the case of the in
vivo canine experiments.

Maximum Reduction Factor
Using the optimized parameters of α = 0.0075, 50 iterations, the total variation constraint
and the one “future” time frame in the TCR algorithm, the largest reduction factor achieved
while keeping the temperature RMSE below 0.5°C was R=4 for the ex vivo porcine tissue
experiment data sets. Magnitude images and temperature maps from time frame 16 of a
validation data set are shown in Figure 2. Figure 2A shows a portion of the magnitude image
reconstructed from the full data using the standard inverse Fourier Transform, while the
image shown in Figure 2B was reconstructed using the TCR algorithm with R=4. The
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difference image is shown in Figure 2C, with a windowing that is 10 times narrower than the
windowing used in A and B. There is no visible structure to the noise in the magnitude
difference image. The corresponding temperature maps are shown in Figure 2D – E, with
the temperature difference map scaled to show temperature differences from −2°C to 2°C.
No structure can be seen in the temperature difference map around the region of the focal
zone.

Because the constraint term in the TCR algorithm penalizes sharp changes in time, it was
hypothesized that the largest errors would occur when the temperature was changing the
most rapidly. To test this hypothesis, finite difference derivatives were calculated for the
temperature-time curves of each voxel. A large ROI about the heated area was chosen and
the absolute value of the temperature error of every voxel was plotted against the absolute
value of its time derivative. This scatter plot, containing data from all six ex vivo porcine
tissue validation data sets, is shown in Figure 3A. Contrary to the hypothesis, larger errors
and faster changing temperatures are not correlated. Also of interest is the behavior of the
algorithm as a function of temperature. A second scatter plot, shown in Figure 3B, shows the
absolute value of the error plotted against temperature over the same ROI. The algorithms
performance seems to be independent of temperature.

Four representative temperature versus time curves are shown in Figure 4. Each plot is of
the voxel within the ultrasound focal zone that had the largest temperature change. The
curve in Figure 4A is from the first training data set and the curves in Figures 4B – D are
from validation data sets. The black lines show the temperatures calculated from the full
data while the red lines show the temperatures calculated using TCR with R=4. In each case,
the TCR temperatures do not deviate significantly from the full data temperatures. Even at
times when the ultrasound power is turned on or off and the temperatures change abruptly,
the TCR algorithm can handle these sharp changes. Although, the TCR temperatures plotted
in Figure 4D do lag behind the full data temperatures slightly during heating and cooling.
Also important to note is the ability of the TCR algorithm to accurately predict peak
temperatures.

ROIs of approximately 5×10 voxels about the heated areas were chosen to obtain a more
global sense of the algorithms performance. From these ROIs a mean and standard deviation
of the error were calculated at each time frame. The results for all eight ex vivo porcine
tissue data sets are displayed in Figure 5. The horizontal black bars below the error bars
indicate the time frames during which heating was occurring. The plots in Figure 5A–F are
the validation data sets and the remaining 2 plots are the training data sets. It can be seen
that the mean error is zero for most time frames in most data sets and that the standard
deviation of the error rarely rises above 0.5°C. On the occasions that the mean error deviates
from zero, it does not differ by more than +/− 0.25°C. The one somewhat anomalous data
set is the one shown in Figure 5D, as it exhibits peculiar periodic behavior. An artifact from
the pulse sequence must have been present as the magnitude signal of this data set showed
periodic fluctuations on the order of 5% in the non-heated region of the porcine tissue.

The largest reduction factor achieved with temperature RMSE less than 1.0°C for the canine
data sets was R=3. Figure 6 shows the temperature maps of the canine training data set
reconstructed with the full data and standard inverse Fourier Transform (A), with the TCR
algorithm at R=3 (B), and the difference between the two scaled to +/− 2°C (C). Due to
lower image signal to noise ratio (SNR) compared to the ex vivo porcine tissue experiments,
the temperature maps for the canine experiments are relatively more noisy.

Temperature versus time curves from the three different experiments are shown in Figure
7A–C. Voxels from within the focal zone were chosen and the temperatures reconstructed
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from the full data (black lines) are compared against temperatures reconstructed from the
TCR algorithm with R=3 (red lines). The plot shown in Figure 7A is the training data set.
Despite the more noisy data, the TCR temperatures follow the full data temperatures fairly
well. They are able to follow the abrupt rises in temperature at times when the ultrasound
power is turned on. On a few occasions the TCR algorithm slightly under-predicts the peak
temperatures, as in the last peaks in Figure 7B and C.

The mean and standard deviation of the error from with an ROI about the region of heating
is shown in Figure 7D–F for all three in vivo canine data sets. As with the ex vivo porcine
tissue data sets, the mean error is very nearly zero for all time frames, deviating only
occasionally to +/− 0.5°C. For these canine data sets, the standard deviation of the error is
slightly higher than the porcine tissue data sets. In the first two sets it falls between +/−
0.5°C and +/− 1.0°C, while in the third set it regularly rises higher than +/−1.0°C.

Comparison to Sliding Window and Low Resolution Reconstructions
The TCR algorithm out performed the sliding window and low resolution reconstruction
methods. The temperature RMSE values for the ex vivo porcine tissue data and in vivo
canine data are shown in Table 2. A Fishers F-test confirmed that the TCR RMSE values
from both experiment categories were significantly lower than the RMSE values from the
sliding window reconstruction and low resolution reconstruction (p < 0.05 in all cases).

Figure 8 shows the mean and standard deviation of the temperature error over a small ROI
about the focal zone for the three different reconstruction methods. The data is from an ex
vivo porcine tissue validation data set and the time frames during which heating was
occurring is shown by black horizontal lines. The TCR errors are shown in Figure 8A,
sliding window errors in Figure 8B and low resolution errors in Figure 8C. The mean error
of the sliding window reconstruction is greater than zero during all time frames when
heating is on, indicating that this method systematically under-predicts temperature changes
during heating. This effect is due to the fact that the sliding window method uses k-space
data from previous time frames in the reconstruction and therefore the temperature
measurements lag behind the actual temperatures. The low resolution reconstruction has a
much larger standard deviation on the error and under-predicts the temperature through out
the heating and cooling phases. While the TCR method shows slightly elevated mean errors
during heating, they are not nearly to the extent of the sliding window errors. Additionally,
the standard deviations of the TCR errors are smaller than the standard deviations of the
errors of the other two techniques.

Discussion
A temporally constrained reconstruction technique applied to undersampled PRF
temperature data has been presented. The TCR method is an iterative technique that takes
advantage of physically appropriate assumptions about the data in order to resolve the
artifacts that normally occur when reconstructing undersampled data. In the work presented
here, the assumption is that temperature changes are relatively smooth in time. For the ex
vivo porcine tissue heating experiments, it has been shown that the TCR technique is capable
of reconstructing PRF images using only 25% of the full data (R=4) without introducing
significant error into the temperature information. For the in vivo canine experiments, where
the pulsed heating at high ultrasound powers induced abrupt temperature changes and the
SNR was significantly lower, the TCR technique reconstructed images with accurate
temperature information using only 33% of the full data (R=3). At these reduction factors,
the TCR reconstruction outperformed sliding window reconstruction and low resolution
reconstruction in both heating experiment categories.
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The TCR technique was tested with a number of variations to the algorithm. The method for
choosing the optimal α and iteration values relied on the availability of the full data
temperatures to be used as truth. In a real application this will not be the case, and L-curve
analysis (18) would have to be used to determine α and some stopping criteria would have to
be used to terminate the iteration process. However it should be noted that the performance
of the algorithm is fairly stable over a range of α and iteration values. In Figure 1 it can be
seen that at 200 iterations the RMSE does not change more than 5% over a range of α's from
0.01 to 0.2. For the case of the TCR algorithm that used the maximum smoothness
constraint and no “future” time frames, where the optimal ex vivo and in vivo α values are
quite different, the temperature RMSE of the two ex vivo training data sets only vary by 13%
and 12% over a range of α's from 0.01 to 0.2. Also, a single α/iteration can be used across
multiple data sets with similar results. The validation data sets that used α/iteration
combinations chosen by the training data sets did not have significantly larger errors and the
α/iteration values determined using the ex vivo porcine tissue group were very similar to
those determined independently by the in vivo canine group.

An additional indication of the algorithm's robustness with respect to the α and iteration
combination can be seen in the results presented in Table 1. When the in vivo canine
validation data sets were reconstructed with the α and iteration values determined from the
ex vivo porcine tissue data sets, the four RMSE values were different from the original
RMSE values by 0.0%, 1.1%, 0.0%, and 3.2%, respectively. These small changes in the
RMSE values indicate that the TCR algorithm is robust enough that the α and iteration
parameters can be determined from ex vivo experiments and then used for in vivo
applications. For a final test of robustness, the reconstruction of the in vivo canine validation
data sets was done with the ex vivo porcine tissue α values and with the number of iterations
fixed at 400. The RMSE values and percent changes were: 0.82 (0.0%), 0.95 (1.1%), 0.87
(3.6%), 0.97 (3.2%). Again, the small changes in RMSE values suggest that if computation
time is not a concern, the number of iterations can be fixed at a single, relatively large
number.

The TCR technique does not use any coil sensitivity information and could be used in
conjunction with parallel imaging methods for even larger reduction factors. The data
presented here was taken from one channel of a two-channel receive coil (the channel with
the higher SNR was chosen). While parallel imaging methods produce images with reduced
SNR, the TCR technique was found to not degrade the SNR of its reconstructed image. This
is largely due to the fact that the algorithm smoothes the data in time and thus signal
fluctuations in temporally-adjacent images are reduced.

MR images can be used to monitor thermal therapies in a number of different ways.
Modifications to the heating deposition can be made by a clinician or a controlling computer
and such modifications can be based on either an end point temperature or an accumulated
dose. It has been shown that the TCR algorithm predicts peak temperature quite well. The
calculation of dose is extremely sensitive to temperature error at high temperatures due to
the exponential relationship between the two. Figure 9 shows a comparison of dose
calculations made with the full data and the TCR algorithm. Figure 9A shows the dose
versus time curve for the voxel with the largest dose accumulation from the first ex vivo
porcine tissue training data set. Figures 9B and C are similar plots from a validation ex vivo
porcine tissue data set and a validation in vivo canine data set. The TCR algorithm under-
predicts dose accumulation in all three instances. In addition to the voxels shown here, all
voxels that received 240CEM of dose or greater were analyzed (if 240CEM was not
achieved in a particular data set then the voxel with the largest dose was considered). It was
found that the TCR algorithm consistently, although not always, under-predicted the thermal
dose. Over all of these voxels, the average dose error was −6.3% for the ex vivo porcine
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tissue data sets and −28% for the in vivo canine data sets. The reason for these
underestimations is that the constraint term in the TCR algorithm penalizes abrupt changes
in time, causing the reconstructed temperatures to sometimes fall short at sharp peaks. This
subtle smoothing of the temperature curves can be seen in the last peak of the temperature
plot in Figure 7B. To put these errors into perspective, dashed black lines are shown on the
plots in Figure 9 that represent the dose accumulation that would be calculated from the full
data temperatures if there were a systematic temperature offset of +1°C or −1°C. This type
of offset could occur, for example, if the subject body temperature was actually 38°C when
it was assumed to be 37°C. Seen in this light, the TCR errors in calculating dose are
reasonable.

In its current form, the computation time for the TCR algorithm is still too long for real time
image acquisition. In a Matlab (The Mathworks, Natick, MA, USA) implementation on a
desktop PC, it takes approximately 5.7 seconds to reconstruct one slice using the total
variation constraint and 50 iterations. Considering that 5 to 10 slices will have to be
reconstructed in 1 or 2 seconds, the computation time will have to be improved by a factor
of between 15 and 115. Several ideas will enable the reduction of the computation time to
reach real-time. When passing the k-space data into the algorithm, one need only use a small
number of data points in the readout direction, keeping only the central portion of the image
where the heating is being monitored. This will not accelerate scan time at all, but it will
reduce the size of the data matrix that goes into the reconstruction algorithm and lessen the
computation burden. For all data sets, a quarter of the read out data was sufficient to still
visualize the entire heated area. There will be no reduction in image resolution and since the
entire readout data will have been acquired, it can be reconstructed retrospectively if
necessary. Cutting the data matrix by a factor of four in the readout direction led to a four
fold acceleration in the TCR algorithm. If some temperature accuracy can be sacrificed, then
it would be possible to use the algorithm with a constraint weighting term that has been
optimized for fewer iterations. Finally, an efficient C++ implementation on a more powerful
computer that uses a conjugate gradient method to minimize the cost function, instead of the
currently used gradient descent technique, will provide additional improvement in
computation time. Recently published papers have shown that computationally intensive
medical imaging tasks can be processed on a graphics processing unit (GPU) to increase
computation speed by factors of 85 to 100 (23,24). On such a computer or other parallel
computing platforms, real time implementation would be feasible.

Even greater reduction factors should be attainable with more sophisticated constraint terms.
A number of investigators have shown reconstruction is possible using total variation in
space as a constraint (25). These could be used in addition to the temporal constraint that is
already implemented. We believe that information about tissue heating could also be
incorporated into the constraint term. Heating start and stop times as well as ultrasound
power will be known during any thermal treatment and the temperature evolution within the
tissue will follow the Pennes bioheat equation. Using this a priori information to predict
how the temperature, and thus the image phase, will behave could prove to be very useful in
the reconstruction algorithm.
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Fig 1.
Determining optimal values for α and number of iterations. A) The temperature RMSE of a
single time frame from the first the ex vivo porcine training data set as a function of number
of iterations. Convergence is almost complete after 100 iterations. B) The temperature
RMSE for a number of different α/iteration combinations from the same data set.
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Fig 2.
Magnitude images and the corresponding temperature maps of time frame 16 of one ex vivo
porcine tissue validation data set are shown. The full data are shown on top (A and D), TCR
at R=4 is shown in the middle (B and E) and the difference images are shown on the bottom
(C and F). The temperature difference map is scaled from −2°C to 2°C.
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Fig 3.
A) Absolute value of temperature error plotted against the absolute value of dT/dt for all
voxels in the heated region. Larger errors and faster changing temperatures are not
correlated. B) Absolute value of temperature error plotted against temperature for all voxels
in the heated region. Larger errors are higher temperatures are not correlated.
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Fig 4.
Temperature versus time curves from the hottest voxels of four different ex vivo porcine
tissue data sets. The TCR temperatures at R=4 agree quite well with the full data
temperatures.
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Fig 5.
The mean and standard deviation of temperature error for an ROI over the heated region
shown at all time frames. A) through F) are ex vivo porcine tissue validation data sets and G)
and H) are the training data sets. The horizontal bars represent times when the heating is on.
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Fig 6.
A) Temperature map from in vivo canine data reconstructed with the full data. B) Same
temperature map reconstructed with the TCR algorithm at R=3. C) Temperature difference
map scaled from −2°C to 2°C.
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Fig 7.
A) through C): Temperature versus time curves for a voxel in the focal zone from the three
in vivo canine data sets. The TCR temperatures at R=3 agree quite well with the full data
temperatures. D) through F): The mean and standard deviation of temperature error for an
ROI over the heated region from the same three data sets. D) is the training data set, E) and
F) are the validation data sets. The horizontal bars represent times when the heating is on.
The nosier canine data had a larger standard deviation than the ex vivo porcine tissue data
sets, even at R=3.
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Fig 8.
Mean and standard deviation of temperature error over an ROI for an ex vivo porcine tissue
validation data set. The TCR algorithm at R=4 is shown in A); the sliding window
reconstruction in shown in B); and the low resolution reconstruction is shown in C).
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Fig 9.
Dose versus time plots, comparing the TCR algorithm to the full data. The plots in A) and
B) are from ex vivo porcine tissue data sets and the plot in C) is from an in vivo canine data
set. The dashed black lines represent the dose that would be calculated from the full data if
the temperatures were systematically shifted by +/− 1°C.

Todd et al. Page 22

Magn Reson Med. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Todd et al. Page 23

Ta
bl

e 
1

α 
va

lu
es

, n
um

be
r o

f i
te

ra
tio

ns
, a

nd
 te

m
pe

ra
tu

re
 R

M
SE

 fo
r a

ll 
pa

ra
m

et
er

 se
ts

. F
or

 th
e 

ex
 v

iv
o 

po
rc

in
e 

tis
su

e 
ca

se
, t

he
 e

x 
vi

vo
 tr

ai
ni

ng
 d

at
a 

se
ts

 w
er

e 
us

ed
to

 d
et

er
m

in
e 

th
e 
α 

va
lu

e 
an

d 
nu

m
be

r o
f i

te
ra

tio
ns

. F
or

 th
e 

in
 v

iv
o 

ca
ni

ne
 c

as
e,

 2
 se

ts
 o

f r
ec

on
st

ru
ct

io
ns

 w
er

e 
pe

rf
or

m
ed

: o
ne

 in
 w

hi
ch

 th
e 

in
 v

iv
o 

tra
in

in
g

da
ta

 w
as

 u
se

d 
to

 d
et

er
m

in
e 

th
e 
α 

an
d 

ite
ra

tio
n 

va
lu

es
 (t

op
 ro

w
s)

 a
nd

 o
ne

 w
he

re
 th

e 
α 

an
d 

ite
ra

tio
n 

va
lu

es
 w

er
e 

ta
ke

n 
fr

om
 th

e 
ex

 v
iv

o 
ca

se
 (b

ot
to

m
 ro

w
s)

.
O

nl
y 

th
e 

va
lid

at
io

n 
da

ta
 se

ts
 w

er
e 

us
ed

 to
 d

et
er

m
in

e 
th

e 
te

m
pe

ra
tu

re
 R

M
SE

.

Ex
 v

iv
o 

po
rc

in
e 

tis
su

e
In

 v
iv

o 
ca

ni
ne

α
ite

r
R

M
SE

α
ite

r
R

M
SE

M
ax

im
um

 sm
oo

th
ne

ss
, o

ne
 “

fu
tu

re
” 

fr
am

e
0.

04
10

0
0.

26
0.

05
20

0
0.

82

0.
04

10
0

0.
82

M
ax

im
um

 sm
oo

th
ne

ss
, n

o 
“f

ut
ur

e”
 fr

am
es

0.
15

40
0

0.
82

0.
01

10
0

0.
94

0.
15

40
0

0.
95

To
ta

l v
ar

ia
tio

n,
 o

ne
 “

fu
tu

re
” 

fr
am

e
0.

00
75

50
0.

21
0.

01
50

0.
84

0.
00

75
50

0.
84

To
ta

l v
ar

ia
tio

n,
 n

o 
“f

ut
ur

e”
 fr

am
es

0.
00

35
40

0
0.

27
0.

00
5

10
0

0.
94

0.
00

35
40

0
0.

97

Magn Reson Med. Author manuscript; available in PMC 2010 August 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Todd et al. Page 24

Table 2

Temperature RMSE values for TCR algorithm, sliding window reconstruction and low resolution
reconstruction.

TCR Sliding Window Low Resolution

RMSE, Ex vivo porcine tissue 0.21 0.31 0.45

RMSE, In vivo canine 0.84 0.94 1.42
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