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Because mouse models play a crucial role in biomedical research
related to the human nervous system, understanding the similari-
ties and differences between mouse and human brain is of
fundamental importance. Studies comparing transcription in hu-
man and mouse have come to varied conclusions, in part because of
their relatively small sample sizes or underpowered methodologies.
To better characterize gene expression differences between mouse
and human, we took a systems-biology approach by using weighted
gene coexpression network analysis on more than 1,000 micro-
arrays from brain. We find that global network properties of the
brain transcriptome are highly preserved between species. Further-
more, all modules of highly coexpressed genes identified in mouse
were identified in human, with those related to conserved cellular
functions showing the strongest between-species preservation.
Modules corresponding to glial and neuronal cells were sufficiently
preserved between mouse and human to permit identification of
cross species cell-class marker genes. We also identify several robust
human-specific modules, including one strongly correlated with
measures of Alzheimer disease progression across multiple data sets,
whose hubs are poorly-characterized genes likely involved in Alz-
heimer disease. We present multiple lines of evidence suggesting
links between neurodegenerative disease and glial cell types in hu-
man, including human-specific correlation of presenilin-1 with oligo-
dendrocyte markers, and significant enrichment for known neuro-
degenerative disease genes in microglial modules. Together, this
work identifies convergent and divergent pathways in mouse and
human, and provides a systematic framework that will be useful for
understanding the applicability of mouse models for human brain
disorders.

neurodegenerative disease | systems biology | evolution | metaanalysis |
gene expression

Ithough certain disease mutations cause comparable pheno-

types in mouse and human, the effects in mouse of any given
disease-causing mutation can diverge wildly from human, especially
in the case of neurological disorders. For example, whereas mouse
knock-in models of Huntington disease (HD) display many of the
same behavioral and pathological features seen in human HD (1),
none of the three highly penetrant, dominantly transmitted causes
of Alzheimer disease (AD), alone, produce AD-like pathology
consisting of both plaques and tangles in mouse brain (2). Given the
multifactorial, complex genetic nature of most human neurological
and psychiatric diseases, such species differences are unlikely to be
caused by one single pathway or gene. Therefore, understanding the
molecular basis of phenotypic differences between mouse and hu-
man caused by even a single mutation is likely to require using
a systems biology approach and a genome-wide view.

Previously, we demonstrated that the human brain transcriptome
has a reproducible, higher-order organization, and that knowing
this structure permits significant functional insights (3). So, to sys-
tematically appreciate potential species similarities and differences,
we created and compared separate transcriptional networks from
mouse and human brain tissue. Such a characterization in mouse
brain could orient future brain-related studies, by providing
a priori knowledge regarding the similarity of specific gene ex-
pression patterns between human and mouse. We created net-
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works by merging data from many microarray studies, and then
applying weighted gene coexpression network analysis (WGCNA)
(4-7). WGCNA elucidates the higher-order relationships between
genes based on their coexpression relationships, delineating modules
of biologically related genes and permitting a robust view of
transcriptome organization (3, 5, 8, 9). Within groups of highly
coexpressed genes (“modules”) that comprise the core functional
units of the transcriptional network, WGCNA also identifies
the most highly connected, or most central genes within each
module, referred to as “hubs.” We find that both gene expression
and connectivity—the summation of coexpression relationships
for each gene with all other genes—tend to be preserved between
species. Furthermore, we find that many modules in human show
preserved expression patterns in mouse. This includes, for ex-
ample, all modules associated with core cellular processes, such
as ribosomal and mitochondrial function, consistent with pre-
vious results (10, 11).

We also find many between-species differences that provide
insight into human disease. First, we identify a human-specific
module that was originally associated with AD progression in an
earlier study of aging and AD (7), as well as another related
human-specific module containing GSK3f and tau, both of
which are implicated in AD and other dementias (12). Next,
we find that significant changes in network position between
the species may reflect a gene’s relationship to human-specific
disease phenotypes. For example, the AD-associated gene pre-
senilin 1 (PSEN1) exhibits poor between-species network pres-
ervation, showing strong transcriptional coexpression with
oligodendrocyte markers in human alone, suggesting that its
role in adult human brain has significantly diverged from its role
in mouse. We also find evidence for clustering of neurodegener-
ative disease related genes within microglial modules, highlighting
the potential role of this glial cell type in human neurodegene-
ration. To the best of our knowledge this is the first metaanalysis
to focus solely on brain-specific data, and can therefore provide
unique insight into similarities and differences in transcriptional
patterns between the human and mouse brain.

Results

Constructing the Mouse and Human Networks. We reasoned that
comparison of coexpression networks between mouse and hu-
man could provide valuable insight into human brain disorders.
We sought to compile inclusive coexpression networks repre-
senting a general survey of brain transcription in both species
(Fig. 14 shows a schematic of network creation, and the SI Text
includes a glossary of network related terms). After careful data
filtering and preprocessing to eliminate outliers (3) (Materials and
Methods and SI Text), our analysis included 1,066 samples from 18
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human and 20 mouse data sets, representing various diseases,
brain regions, study designs, and Affymetrix platforms (Table S1).
For each species, we created a network from these data, first by
calculating weighted Pearson correlation matrices corresponding
to gene expression, then by following the standard procedure of
WGCNA to create the two networks. Briefly, weighted correla-
tion matrices were transformed into matrices of connection
strengths using a power function (5). These connection strengths
were then used to calculate topological overlap (TO), a robust
and biologically meaningful measurement that encapsulates the
similarity of two genes’ coexpression relationships with all other
genes in the network (5, 13). Hierarchical clustering based on TO
was used to group genes with highly similar coexpression rela-
tionships into modules. In all, we found 15 modules in the human
network (Fig. 1B) and nine modules in the mouse network (Fig.
1C), which were used to guide our final module characterizations
(Materials and Methods).

Global Similarities Between Mouse and Human Brain Transcription.
We first compared general network properties to ensure that our
networks were reasonably matched. Both gene expression and
connectivity between networks were, 51gn1ﬁcantly preserved be-
tween the species (R = 0.60, P < 107" for expression; R = 0.27,
P < 107" for connectivity; Fig. S1). Expression levels were more
preserved than connectivity, consistent with our previous results,
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Fig. 1. Creation of mouse and human networks. (A) Flowchart for network
creation. Data sets were collected from GEO (1) and preprocessed separately
(2) creating similarly scaled expression files with the best probe set (P.S.)
chosen for each gene and the outlier samples removed (3) (S/ Text). After
calculating Pearson correlation matrices separately for each data set (4), these
matrices were combined to form a single weighted correlation (corr.) matrix
for each species (5). Networks were created from the weighted correlation
matrices using WGCNA, by first calculating adjacency matrices (6), then cal-
culating TO (7) and using these values to hierarchically cluster genes into
coexpression modules (8) (Materials and Methods). Final module assignments
were made based on MM (9). (B and C) (Upper) Cluster dendrograms in the
human (B) and mouse (C) metaanalyses group genes into distinct modules
(step 8). The y-axes correspond to distance (1 — TO). (Lower) Dynamic tree
cutting was used to determine modules, generally by dividing the dendro-
gram at significant branch points. Modules with significant overlap were
assigned the same labels.
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indicating that connectivity is a more sensitive measure of evo-
lutionary divergence than differential expression (4). We also
found greater between-species expression correlations than pre-
vious microarray studies of mouse and human brain (14) as well
as liver, testes, and muscle (15) (R of approximately 0.45 for all
studies). These results suggest that our large data sets allow us to
recognize interspecies transcriptional similarities as well as, or
better than, previous methods. As a further validation of pre-
dicted network interactions on a global level, we compared gene—
gene connectivity based on TO to known protein—protein inter-
actions (PPIs), demonstrating a linear relationship between TO
and PPIs in both human and mouse (Fig S2 and SI Text). Genes
with high TO were much more likely to interact, consistent with
previous results from multiple species (3, 16).

Many Mouse and Human Network Modules Are Highly Similar. To
assess gene coexpression preservation between the species on
a module-by-module basis, we first calculated the module mem-
bership (MM)—a measure of how well each gene correlates with
the first principal component of gene expression within a module,
termed the module eigengene (ME; Materials and Methods) (3, 17).
We then imposed a threshold based on MM values (R > 0.2, P <
107"%) to make final module assignments (Materials and Methods)
Using this method, each module contained an exact number of
assigned genes, and many genes were assigned to multiple mod-
ules, albeit with different strengths. We observed a high degree of
between-species module preservation (Fig. 2 and Materials and
Methods). In fact, all mouse modules showed significant overlap,
in terms of gene members, with at least one human module,
whereas there were multiple human-specific modules (Table 1 and
Fig. 1 B and C). Gene-by-eigengene tables containing MM and
initial module characterizations for all genes in both networks
are available at our website (www.genetics.ucla.edu/labs/horvath/
CoexpressionNetwork/MouseHumanBrain).

Modules identified here in mouse and human were both vali-
dated and annotated by comparison with a previous analysis of
the human brain transcriptome in cortex (3). This analysis showed
not only that all modules in our human network overlapped sig-
nificantly with those identified previously, but also that these
modules consist of biologically meaningful gene groups (Table 1,
SI Text, and Materials and Methods). Annotations using Gene
Ontology (GO) and Ingenuity pathway analysis (IPA) also showed
high concordance between matched human and mouse modules
(Table S2). Furthermore, modules associated with basic cellular
components showed the most significant between-species preser-
vation, as measured both by the number of overlapping genes and
by a summary measure of module preservation between networks
(Table 1 and SI Text) (18). Finally, markers for at least one neu-
ronal module (M11h) showed higher between-species preserva-
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Fig. 2. There is high module overlap both within and between-species. Fur-
thermore, modules with significant overlap tend also to have similar func-
tional characterizations (also see Table 1 and Table S2). Dots correspond to
modules from the mouse (light) and human (dark) networks. Line widths are
scaled based on the significance of overlap between corresponding modules.
Position of the dots and length of the lines are arbitrary to aid visualization.
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Table 1. Characterization and preservation of mouse and human network modules

P value
Human Mouse Overlap Overlap Top CTX Top CTX module Preservation
module module number* P value module characterization Human Mouse Z-score
M1h — — — M17 PvalB+ interneurons 8.1E-148 — 2.86
M2h — — — M9 Oligodendrocytes <1E-300 — 5.79
M3h — — — M15 Astrocytes 8.1E-300 — 0.86
M4h M4m 163 (34) 2.6E-80 M7 Mitochondria 1.5E-243 1.9E-41 17.21
M5h M5m 137 (43) 5.5E-41 M7 Mitochondria 1.2E-255 2.5E-57 6.72
Meéh Mém 58 (16) 4.8E-18 M10 Glutamatergic synapse 2.9E-102 3.7E-62 4.19
M7h — — — M11 Unknown 4.0E-91 — 0.32
M8h M8m 26 (7) 2.8E-08 M5 Microglia 1.1E-169 1.6E-06* 2.80
MSh — — — M19 Unknown 1.6E-19 — 0.42
M10h M10m 6 (1) 9.9E-04 M4 Microglia 8.6E-120 N/S 4.15
M11h — — — M16 Neuron 3.5E-278 — 11.73
M12h M12m 38 (7) 5.7E-18 M2 Ribosome 5.1E-68 4.7E-09 12.84
M13h M13m 92 (29) 1.6E-25 M16 Neuron 1.1E-160 2.2E-33 2.10
M14h M14m 200 (61) 2.1E-65 M18 Nucleus® 1.0E-233 1.0E-107 8.90
M15h M15m 15 (6) 4.2E-02 M19 Unknown 6.1E-151 1.96-11* 1.23

Columns 5-7 represent the module from the CTX network in ref. 3 showing the highest overlap with each module in the human network, along with
associated characterization. Significance of overlap with the corresponding mouse module is presented in column 8. Column 9 measures module preservation
(bolded Z-scores indicate significant preservation). P values are corrected for multiple comparisons.

*The expected number of overlapping genes is presented in parentheses.
"Module characterization was inferred using other means.

*Overlap with a network other than CTX in ref. 3 (M8m = CN network, M15m = CTX95 network).

tion than markers for astrocytes or microglia, consistent with cur-
rent knowledge of glial divergence between the species, in that
astroglia in human are more numerous and of higher complexity
than in other mammals (19).

Interspecies Convergence (Marker Genes) and Divergence for Cell
Types. Previous work from our group has found that coexpression
is a viable method for determining cell type markers (3). To es-
tablish interspecies markers in this analysis, in essence providing
additional confirmation of human-mouse preservation at the cel-
lular level, we first chose one module for each major cell type based
on annotation (Fig. 2, Table 1, and Table S2). We then identified
the top ranked genes based on the significance of MM in both
human and mouse networks (SI Text). The top 12 marker genes for
oligodendrocyte (M2h), neuron (M13h), astrocyte (M3h), and
microglia (M10h) were chosen as a starting point for comparison
(Table S3; a more extensive table is presented as Table S4). These
markers were compared with published mouse (20-22) and human
(3, 23) marker genes for each cell type, and validated by show-
ing highly significant overlap (P < 107 for each cell type). To
provide further validation we also ran the converse assessment,
measuring to what extent our networks correctly identified well-
established marker genes, again finding generally positive results
(81 Text and Table S5). Finally, we provide supplementary tables to
allow readers to further screen for interspecies marker genes
(Table S4) or identify genes with significant between-species di-
vergence (Table S6).

Differences in Mouse and Human Modules Provide Insight into AD.
There is great precedent for the importance of studying the mo-
lecular evolutionary basis of phenotypic differences between
humans and other mammalian species on the transcriptional level
(24, 25). We reasoned that differences in network organization
could provide a basis for better understanding diseases enriched in
human populations, such as AD. With this in mind, we identified
one highly human-specific module, M%h, showing significant
overlap with a module recently identified to correlate highly with
AD progression in another human data set (P < 107'%; compare
Fig. 34 vs. figure 3D in ref. 7). Both of these modules had four
matching hub genes (FBXW12, LOC152719/ZNF721, FLJ12151,
and ZNF160). Data from the Celsius database, a unique resource
encompassing many Affymetrix microarrays, confirms high coex-
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pression of probe sets representing these four hubs (Fig. 3B) (26).
Although three of these hubs are of unknown function, ZNF160
is a known transcriptional repressor of TLR4, which contributes
to amyloid peptide-induced microglial toxicity (27), suggesting
a possible known molecular link between M9h and AD.

We performed two confirmatory analyses to ensure that the
correlation of this module with AD progression was not an artifact
of the specific samples or microarray platforms chosen: (i) an
analysis of human aging in the hippocampus, entorhinal cortex,
superior frontal gyrus, and postcentral gyrus using data from
Affymetrix microarrays (28); and (ii) an analysis of human AD in
the temporal cortex using Illumina arrays (29) (SI Text). We found
that, not only were modules corresponding to M9h present in both
analyses (Fig. S3), but that they also showed significant positive
correlation with both age and AD progression (Fig. 3 C and D).
Further, we found that CXXC1 is a common hub to both M9h and
the corresponding module in Webster et al. (Fig S34) (29). CXXC1
isa DNA binding protein that binds the polyglutamine protein TBP
(30), which is known to accumulate in neurofibrillary tangles in AD
(31). By using independent data sets run on different brain regions,
on different platforms, and in different labs, these results confirm
the likely role of this module and its reproduced hubs in
human disease. A list of the top genes across M%h and its related
modules is presented in Table S7.

Interestingly, two other genes related to AD and frontotemporal
dementia (FTD) in humans, GSK3p and tau (12), were also rela-
tively central genes in another human specific module, M7h (Fig.
3E). Not only does M7h correspond to a module from Oldham et al.
(3) based on number of overlapping genes (Table 1), but GSK3B
was also found to be a hub gene in both modules (see figure S4K in
ref. 3), further implicating both this hub and this module in disease
processes. Thus, although both M7h and MOh fail to show signifi-
cant functional annotation (Table 1 and Table S2) and contain
many genes whose functions are unknown in the nervous system,
these two human-specific modules provide key targets for fur-
thering our understanding of neurodegenerative dementias.

Next, we assessed how transcriptional differences between
mouse and human brain networks can provide insight into disease
at the level of individual genes. Orthologous genes showing dis-
cordant expression patterns may indicate divergent regulation or
novel functions between species (32), and may be important reg-
ulators of brain function (14). We identified 67 validated, human-
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specific marker genes for cell type (S Text and Table S6), of which
PSEN1—one of three known genes whose mutation causes fa-
milial AD (2)—is centrally positioned in the human, but not the
mouse, oligodendrocyte module (Fig. 44). To quantify this ob-
servation, we measured the correlation between PSEN1 and my-
elin oligodendrocyte glycoprotein (MOG; the top interspecies
marker for oligodendrocytes and a known myelin sheath surface
protein) in each data set and compared the results between species
(Fig. 4B). PSEN1 and MOG showed consistent positive correla-
tion only in human, providing strong evidence for species-specific
function and regulation of PSEN1. Expression patterns of other
prominent AD-related genes are presented in SI Text.

Systematic Evaluation of Neurodegenerative Disease and AD Genes.
To assess the distribution of disease genes (DGs) in both networks
more systematically, we accessed a public curated list (Jackson
Labs) (33) of approximately 5,000 known DGs (more precisely,
genes known to cause disease phenotypes in humans and/or mouse
when mutated). From this list, we found the subset of DGs related
to neurodegeneration or dementia (dementia DGs; SI Text). We
then compared the module assignments of these dementia DGs
between species. In human, we found that most modules associ-
ated with cell types or basic cellular processes showed significant
over-representation of dementia DGs (Fig. 4C). While most cor-
responding mouse modules showed similar enrichments, both
microglial mouse modules (M8m, M10m) contained very few such
genes. We confirmed this result for AD by measuring the overlap
between each module and a published list of AD genes (34). Only
the two human microglial modules showed significant enrichment
for AD genes (M8h, P = 0.002; M10h, P = 0.02), providing evi-
dence of another important species difference in glial cells. This
result is particularly striking given increasing evidence of a causal
role for neuroinflammation in AD pathogenesis, and considering
that the microglia is the resident innate neural immune cell (35).
These collective results reaffirm the idea that neuronal cell death is
only one small part of the overall biological changes occurring with
the progression of AD, and likely other dementias.

Observed Network Differences Are Not Due to Confounding Factors.
Because the initial human samples involved several brain regions
and diseases not represented in the mouse samples, it was possible
that the human-specific modules were inadvertently related to
these disease samples. To control for this possibility, we con-
structed additional mouse and human networks using only the
subset of “control” (nondisease) microarrays from cortex of both
species, finding similarly preserved modules and the same be-
tween-species differences identified in the larger network analysis
(SI Text). Another potential confounder was agonal state, which
differs between mice and humans. To control for this factor,
we assessed the modules identified here for enrichment in genes
previously associated with agonal state in humans (SI Text) (36).
Agonal state genes were not concentrated in the human-specific
modules; rather, highly preserved modules between mouse and
human (including the mitochondrial modules) showed the most
significant enrichment for agonal state genes, indicating that ag-
onal state is not a significant source of the observed between-
species differences (SI Text).

Discussion

Implications for AD and Neurodegenerative Disease Research. We
have used a systems biology approach to find a number of
between-species transcriptional differences relevant to neuro-
degenerative disease research, especially dementia (Results and SI
Text). This includes a human specific module related to AD pro-
gression, which implicates many genes of previously unknown
nervous system function in dementia. These genes include at least
three hub genes with zinc finger motifs (ZNF160, CXXC1, and
LOC152719/ZNF721) that are likely involved in transcriptional
regulation—in some cases with disease-related genes—providing
a new window of investigation into AD pathophysiology.

Miller et al.
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Fig. 3. Human-specific modules provide insight into AD mechanisms. (A)
Network depiction of M9h shows that M9h shares four hubs in common
with the red module from ref. 7, which contained genes whose expression
increased with AD progression; and one hub in common with a corre-
sponding module in a second study of AD (29) (Fig. S3A). Dots correspond
to genes and lines to connections, with the top 250 connections in M9h
shown. Larger genes correspond to hubs, which have at least 15 con-
nections. (B) These hubs show extremely high coexpression in both studies
and in the large Celsius database. Error bars represent SD of between-hub
correlation values. (C) The corresponding module from ref. 29 shows signifi-
cantly higher expression in AD than in control (CT). Bars represent mean ME
values over all CT/AD data sets and error bars represent SE. ***P < 107",
(D) M9h is also reproduced in a study of aging (28), in which the corre-
sponding module (Fig. S3B) shows positive correlation with age. Points rep-
resent ME expression for individual samples plotted against age. The gray
line indicates the line of best fit of the data. P < 107°, R = 0.37. (E) Network
depiction of M7h, which is poorly characterized but contains both MAPT
and GSK3B (a prominent tau kinase). Labeling is as in A.

At the level of genes with known function, we highlight PSEN1
as an example, as (i) mutations in human PSENI cause a domi-
nant, highly penetrant form of AD, but only limited pathology is
seen in mouse mutants; and (i) in the present study, PSEN1
shows high correlation with oligodendrocyte markers only in
human (Fig. 4 A and B). Recent studies suggest myelin dysfunc-
tion contributes to a wide range of psychiatric disorders, such as
schizophrenia and depression, and may be involved in normal
cognitive function, learning, and 1Q (reviewed in ref. 37). In AD,
there is growing genetic evidence that myelin integrity may play
an early role, both in humans and in animal models (reviewed in
ref. 38)—evidence that is supported by recent imaging data (39).
In particular, oligodendrocytes located in brain regions most
vulnerable to AD pathology myelinate many axonal segments,
and are thought to be susceptible to AD risk factors, such as head
injury and high cholesterol (38). Dysfunction of these cells could
then lead to a progressive disruption of cell communication fol-
lowed by neurodegeneration in a predictable sequence. The cur-
rent results are consistent with this theory, suggesting that one of

PNAS | July 13,2010 | vol. 107 | no.28 | 12701

NEUROSCIENCE


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.200914257SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.200914257SI.pdf?targetid=nameddest=ST6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.200914257SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.200914257SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.200914257SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.200914257SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.200914257SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.200914257SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.200914257SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.200914257SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.200914257SI.pdf?targetid=nameddest=SF3

!
o

yd
A

A

J < J
HRASLS3_ CRYAB. () COL4AS
P2

9 J
. ) NPC1 RASGRP3 }A‘!aB

J
LAJ
CLDND1 < CAl4
o A ABCAS D . caz aLJTP U%F
UGTB ) QDPR J RASSF2 59

CLDN11 J HSPAZ
v -

Q/ PP GPR37  ning2
NDRG1 .

En'é)sa sleaAz g J PSMAL

-] <9
J Cpo  EFHDI
PIP4K2A J PSENL. ASPA pppcy

9 9
PCSKE PPAP2C  KIF13B

9 >

olicz W) oresE D R
ENPP2 i sYN2

TF J FEZL 2 J 2
CAPN3 0 Cup MAL JFoLHL Y @ MaNzal & pogga
MOG RNASEL PhP2z | CDH19 s
9 J
colAz - 3 pon ) RAkKG MaRCks(y |TMEM1as g CERL S}
ELOVL1 J PLLP J 9 MOBP

=~
SEMARE J CNTNZ ) CREBS § ypa Q) RNF130
C110RF9  soxio MAG  TBCID12  EDG2

B

@]

200

100|»
0

X_ XX
588

% of expected genes

M6 s
M12

M13

M14 s

M15 o &

X
o
=

M8 |

X
~
=

M10
M11 e

<+ w
= =

Correlation with MOG (r)

Human
Mouse

Fig. 4. Multiple glial cell types show disease-relevant, human-specific pro-
perties. (A) PSEN1 has high connectivity in M2h (the human oligodendrocyte
module). Labeling is as in Fig 3A. (B) PSEN1 and MOG show strong positive
correlation in all human data sets, but minimal correlation in any mouse data
set. Error bars represent SD of correlation values in each network. (C) Most
modules contain excess dementia-related genes, with microglial modules
showing the greatest between-species differences. The x axis corresponds to
mouse and human module labels (“X" indicates no mouse module). The y axis
corresponds to the percent of observed dementia DGs relative to the number
expected by chance (100%). *P < 0.05; **P < 0.001.

the likely many distinctions between AD in mouse models and
humans is related to evolutionary changes in expression patterns
of PSENT1 in the context of neuron—oligodendrocyte interactions.

Combining WGCNA and Coexpression Metaanalysis in Brain. Several
studies comparing human and mouse transcription have been
published (10, 15, 40-43), coming to different conclusions about
divergence of the transcriptome. One reason for this may be that
changes in gene expression levels are not as sensitive as network
position (connectivity) to evolutionary divergence (3, 4). This
comprehensive network-based metaanalysis thus has a number of
advantages over traditional transcriptional analyses, leading to
more reliable results than in previous studies. First, we limit our
data only to arrays run on brain tissue. Many genes are expressed in
more than one tissue (43, 44); therefore, such filtering emphasizes
transcriptional correlations based on brain-specific gene func-
tions. Second, we include data from multiple studies across array
platforms, resulting in more functionally relevant coexpression
relationships (26, 45). Our unbiased preprocessing steps lead to
much higher comparability than previous studies, as measured by
correlation of ranked expression between species (Fig. S1). Third,
we compare data across species. Between-species coexpression
preservation has been shown to prioritize DG selection under
genetic disease loci (40) and to categorize the function of poorly-
characterized genes better than coexpression in a single species
(11). Finally, our data are combined at the level of correlation
matrices (rather than gene expression levels), which minimizes
issues arising from between-study comparisons (46) and highlights
coexpression relationships (47). Following this approach, we con-
structed networks using WGCNA, a method proven to produce
functionally relevant modules in a wide variety of situations (3-8).
Together, these strategies result in highly reproducible networks,
lending credence to the claim that our results are biologically
relevant and may provide important insights into disease.

Limitations and Future Work. Because this study represents a rela-

tively new approach, it is important to discuss potential limitations.
First, we were able to include only the 4,527 genes in common
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between networks, whereas nearly 80% of all gene transcripts are
thought to be expressed in mouse and human brain (20). With
improvements in sequencing technology, future data sets should
allow for a more complete comparative analysis. Second, differ-
ences between human and mouse networks may be a result of
anumber of factors. The majority of network differences are likely
to be genuinely biological, rather than caused by confounders
such as agonal state or unbalanced sample selection. We have
addressed these issues by creating smaller networks using only
control microarrays from cortex, and have also shown that dif-
ferences in agonal state do not account for the between-
species differences (Results and SI Text).

Our results suggest that, alongside behavioral and physiological
profiling, gene expression analysis could be a useful tool for eval-
uating mouse models of human neurodegenerative and neuro-
psychiatric disease. First, we identify several similarities between
the mouse and human transcriptomes, providing useful resources
for the study of mouse model systems. We also find multiple hu-
man-specific modules associated with dementia, including one
that may play a role in AD progression and another containing the
tau gene, which is mutated in the related condition, FTD (48).
More generally, our methods can determine coexpression patterns
and extensive between-species comparisons for any gene in which
expression data are available. For example, Creutzfeld—Jakob
disease is caused by mutations in the prion protein (PrP), which,
when inoculated into mice, recapitulate human neurodegenera-
tive phenotypes with more fidelity than single AD mutations,
consistent with the strong interspecies module preservation ob-
served here for PrP (PRNP—the gene for PrP—is in M14 in both
networks). Conversely, several genes involved in autism (49) show
significant between-species differences [i.e., CNTNAP?2 is in the
human-specific module M7h (Fig. 3E) and CYFIP1 is a human-
specific hub in the microglia module (Table S6)], whereas others
appear well preserved across species (i.e., FMR1 is an interspecies
hub in M14; Table S4). Similar analyses for genes involved in other
disorders could be conducted (Tables S4 and S6). Overall, our
results suggest that information is present in transcriptional data
that should be used to aid in the understanding of neurodegen-
erative and neuropsychiatric disorders, and the corresponding
mouse models developed to study these diseases.

Materials and Methods

Data Set Acquisition and Network Formation. Mouse and human microarray
data sets were downloaded from the Gene Expression Omnibus (GEO) (50). As
our goal was to compile an extensive set of comparable data, we collected as
many relevant data sets as we could find, and then subjected these data to
a stringent but unbiased filtering process (S/ Text); we included only brain
samples from experiments run on Affymetrix platforms in our analysis, then
removed data sets with disproportionately low average within-species ex-
pression or connectivity correlation. These studies represent various diseases,
brain regions, study designs, Affymetrix platforms, and sample sizes, and
therefore represent a general survey of brain transcription (Table S1). From
these expression data we followed the protocols of WGCNA (3, 5) to create
within-species consensus networks for human and mouse (as described in
Results and S/ Text; modified from ref. 47). This left a total of 9,778 genes in
the human analysis and 6,368 genes in the mouse analysis. Fig. 1A summa-
rizes this entire methodology.

Module Formation and Characterization. For the initial module characteriza-
tion, all but the top 5,000 connected genes in the human network (3,000 in
mouse) were excluded to decrease noise, leaving the most informative genes
for network formation (S/ Text). Genes were hierarchically clustered and
modules were determined by using a dynamic tree-cutting algorithm (Fig. 1 B
and Q) (51). Module identifiers in the mouse network were then changed to
match the most similar module in the human network based on gene overlap (3).
For both networks, MM was calculated, then a threshold (R > 0.2; P < 10~"%) was
used to establish final module assignments as described in Results. These
specific values were chosen such that on average each module contains ap-
proximately 5% of the genes present in our networks. This thresholding
procedure allowed us to measure module overlap with any other lists using the
hypergeometric distribution. Modules were graphically depicted using the
program VisANT (52) as previously described (4, 7). These network depictions
show the 250 strongest reciprocal within-module gene-gene interactions (i.e.,
connections) as measured by TO. A gene was considered a hub if it had at least

Miller et al.


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.200914257SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.200914257SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.200914257SI.pdf?targetid=nameddest=ST6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.200914257SI.pdf?targetid=nameddest=ST4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.200914257SI.pdf?targetid=nameddest=ST4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.200914257SI.pdf?targetid=nameddest=ST6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.200914257SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.200914257SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.200914257SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.200914257SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.0914257107

15 depicted connections. It is important to note that with the module defi-
nitions based on MM, some genes can be members of multiple modules.

Network Comparisons. For all between-species network comparisons, human
orthologs of the mouse gene were used as proxy, and only the 4,527 genes
common to both networks were included. Nearly all of our comparative
analyses involving cross-tabulations were done using a hypergeometric dis-
tribution, whereby we tested if the number of overlapping genes between
one category and a given module was significantly large. For example, this
strategy was used to assess module overlap (Fig. 2 and Table 1), to confirm
interspecies markers for cell type (Table S3), and to compare modules
against a list of known dementia DGs (Fig. 4C and S/ Text) (33). In the case of
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