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Abstract
While insights into the molecular processes that specify adoption of the αβ and γδ fates are
beginning to emerge, the basis for control of specification remains highly controversial. This
review highlights the current models attempting to explain T lineage commitment. Recent
observations support the hypothesis that the T cell receptor (TCR) provides instructive cues
through differences in TCR signaling intensity and/or longevity. Accordingly, we review evidence
addressing the importance of differences in signal strength/longevity, how signals differing in
intensity/longevity may be generated, and finally how such signals modulate the activity of
downstream effectors to promote the opposing developmental fates.
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1. Distinctions between αβ and γδ lineage T cells
T lymphocytes comprise two distinct lineages that express either αβ or γδ TCR complexes
and perform non-overlapping roles in immune responses. αβ T cells localize primarily in
secondary lymphoid organs, recognize peptide ligands presented by class I and II major
histocompatibility complex (MHC) antigens, and respond to infection by facilitating the
production of antibodies reactive with the pathogen or by lysing infected target cells. γδ T
cells comprise a small percentage of lymphoid cells in the thymus and secondary lymphoid
tissues; however, they are quite abundant at epithelial surfaces lining the inside and outside
of the body [1,2]. γδ T cells recognize a much wider variety of antigens, including non-
classical MHC molecules, heat shock proteins, and lipids [3]. Although the precise role of γδ
T cells in immune responses remains unclear at present, these cells are thought to lie at the
interface between the innate and adaptive immune systems and to perform functions that are
at least partially distinct from those of αβ T cells. Indeed, certain bacterial infections (e.g.,
Nocardia asteroides) that are normally cleared in wild type mice are rapidly fatal in mice
lacking γδ T cells [4]. γδ T cells have also been implicated in preservation of epithelial
barriers and in eradication of cutaneous malignancies [5–7]. Despite the important, distinct

Corresponding author: David L. Wiest, Fox Chase Cancer Center, R364, 333 Cottman Avenue, Philadelphia, PA 19111, Tel:
215-728-2966, Fax: 215-728-2412, david.wiest@FCCC.edu.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Semin Immunol. Author manuscript; available in PMC 2011 August 1.

Published in final edited form as:
Semin Immunol. 2010 August ; 22(4): 237–246. doi:10.1016/j.smim.2010.04.008.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



functions of these two T lineages, our understanding of the developmental cues responsible
for promoting immature T cell progenitors to adopt either the αβ or γδ fate remains limited.

2. Development of αβ and γδ lineage T cells in the thymus
Developmental milestones achieved by T cell precursors are marked by prescribed changes
in expression of the differentiation antigens CD4, CD8, CD25, and CD44, which can be
used to divide thymocytes into distinct subsets schematized in ascending order of maturity in
Figure 1 [8]. CD44+CD25− (DN1) cells upregulate CD25 expression (CD44+CD25+, DN2)
coincident with their commitment to the T lineage and begin to rearrange their TCRγ, δ, and
β genes [9–11]. Those precursors that productively rearrange their TCRγ and δ genes are
eligible to become γδ T cells, which usually remain DN and exit the thymus to populate
peripheral lymphoid organs or epithelial surfaces [1]. Generation of γδ T cells in the mouse
is more pronounced during fetal life and occurs in waves of cells expressing particular sets
of Vγ and Vδ genes [12–14]. The developmental stage at which γδ lineage T cells diverge
from αβ T cells has not been precisely defined but recent evidence suggests it is complete
upon arrival at the CD44− CD25+ (DN3) stage when β-selection occurs [15–19]. β-selection
stipulates that only thymocytes that maintain the translational reading frame of TCRβ will
survive and differentiate; those failing to do so die by apoptosis [18,20,21]. Expression of
TCRβ protein promotes development through assembly with pre-Tα and the CD3 signaling
subunits (CD3γ, δ,ε,ζ) to form the pre-T cell receptor (pre-TCR) complex [22,23]. Pre-TCR
assembly initiates signaling through a poorly-understood ligand-independent process
[24,25]. Pre-TCR signals, which are required for traversal of the β-selection checkpoint,
rescue DN3 thymocytes from apoptosis and induce massive proliferative expansion as αβ
lineage cells differentiate to the CD4+CD8+ (DP) stage, a differentiation step that
committed, γδ lineage thymocytes do not undergo [20,26–28]. Therefore, development of γδ
lineage T cells requires productive rearrangement of the TCRγ and δ loci and signaling
through the γδ TCR, whereas commitment to the αβ lineage requires productive
rearrangement of the TCRβ locus and pre-TCR signaling.

3. Markers of αβ and γδ lineage commitment in early precursors
Analysis of the molecular control of αβ/γδ T lineage commitment continues to be hampered
by the lack of definitive lineage markers of the early stages of commitment in DN
thymocytes. Through Serial Analysis of Gene Expression (SAGE) performed by the Hayday
lab, a γδ biased gene signature was established; however, this profile was more closely
linked to function than to lineage commitment [29,30]. The TCR complexes (i.e., pre-TCR
expression for αβ lineage and γδTCR for γδ lineage) have also been employed as lineage
markers, but the TCR isotype alone is no longer sufficient to assign lineage fate to
developing DN thymocytes because both the pre-TCR and γδTCR are able to support αβ
lineage commitment and development to the DP stage [31]. Accordingly, CD4 and CD8
expression must also be taken into consideration in assigning lineage, such that γδTCR
expressing cells that remain DN are assigned to the γδ lineage, while those developing to the
DP stage in response to TCR signals from any receptor isotype are assigned to the αβ
lineage [28]. We and others have utilized downregulation of CD24 (HSA) among DNs as an
additional marker of γδ commitment [28,32–34], but this too has been questioned as many
of the γδTCR+ cells exiting the thymus are CD24+ [35–37]. Indeed, γδ cells newly exported
from the thymus (recent thymic emigrants; RTE) represent a mixture of CD24− and CD24+

cells; however, while the CD24− population is long-lived, a high proportion of CD24+ RTEs
seem to die off soon after reaching the periphery, suggesting they make a minimal
contribution to the long-lived peripheral ©™ pool [35–37]. More recent efforts identified the
transcription factor Sox13 as being highly enriched in γδ T cells. Nevertheless, it is not clear
whether this factor reliably marks all γδ lineage cells [38]. Accordingly, while efforts to gain
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insight into the molecular control of αβ/γδ lineage commitment would benefit from
definitive molecular markers distinguishing DN thymocytes committing to the αβ lineage
from those committing to the γδ lineage, such markers remain elusive.

4. Models of αβ/γδ lineage commitment
There is widespread agreement that αβ and γδ T cells arise from a common progenitor, but
the respective roles of the pre-TCR and γδ TCR complexes in selection of the αβ and γδ
lineages remain controversial [15,17,19]. A central question is whether the TCR complexes
function to specify fate (instruction model) or alternatively serve to rescue the viability of
cells whose fate was pre-determined without input from the TCR complex (stochastic
model) [39,40]. For many years, only these two models were advanced to explain the role of
TCR complexes in lineage commitment: however, these models were not adequate to
explain the status of TCR gene rearrangements in αβ and γδ lineage cells, nor did they
appropriately explain the lineage infidelity observed in TCR transgenic and gene-targeted
mice. The stochastic model predicts that the frequency of in-frame rearrangements of the
“irrelevant” TCR loci (e.g., the TCRβ locus in γδ cells) should not exhibit signs of selection
against in-frame rearrangements whereas the instructional model predicts that in-frame
rearrangements of these loci should be depleted [41]. Interestingly, αβ lineage cells were
found to be depleted of in-frame TCRγ rearrangements while γδ T cells exhibited no
obvious selection against in-frame TCRβ rearrangements [9,19,42–47]. These observations
are inconsistent with the predictions of both instructional and stochastic models. Analysis of
TCR transgenic and gene-targeted mice produced observations that similarly defied
explanation [48–51]. One particular example is the finding that the γδ TCR complex was
capable of promoting development of αβ lineage DP thymocytes [31]. This observation
violates predictions made by strict interpretation of both instructional and stochastic models
suggesting that pre-TCR and γδTCR complexes should always give rise to αβ and γδ lineage
cells, respectively. However, there are two observations supporting the stochastic model.
The first is that CD127hi and CD127lo DN2 cells were reported to exhibit differences in αβ/
γδ lineage potential, inferring that commitment occurred prior to TCR gene rearrangement
[52]. One caveat tempering interpretation is that because CD127 is the IL-7 receptor (IL-7R)
α chain and IL-7R signaling can influence TCRγ rearrangement, the bias in lineage potential
might be secondary to alterations in TCRγ rearrangement [53–55]. Another observation
supportive of stochastic lineage assignment is that the γδ T cell restricted transcription factor
Sox13 is induced in DN2 thymocytes and is required for efficient generation of γδ T cells.
However, the blockade of development in Sox-13 deficient mice was incomplete and it was
not clear whether Sox13 expression occurred prior to or subsequent to TCR expression [38].
Further, some have raised the possibility that Sox13 may not mark all γδ lineage cells
[28,34].

While there is no question that pre-TCR signaling and γδTCR signaling are most often
responsible for development of αβ and γδ lineage cells, respectively, the notable exceptions
described above provided clues as to the nature of the differences in TCR signaling involved
in these alternate fate choices. In an attempt to reconcile the discrepant observations
described above, a signal strength model for αβ/γδ lineage commitment was proposed [56].
This model contends that weak signals promote commitment to the αβ lineage while
comparatively strong signals promote commitment to the γδ lineage, irrespective of the TCR
complex from which they originate. In support of this model, we demonstrated that the same
transgenic γδTCR could both promote development of γδ lineage cells in response to
engagement by selecting ligand, T10d, and also divert cells to the αβ fate when signaling
was attenuated either by removal of ligand or by ablation of the gene encoding the Src
kinase p56lck [33]. Paul Love’s lab reported similar findings using a different γδTCR Tg
model [57]. The differences in signal strength regulating fate selection were found to be
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critically dependent upon the amplitude of activation of the ERK-Early growth response
(Egr)-Id3 pathway [33]. These observations cannot be accommodated by strict stochastic or
instructional models in which the TCR isotype determines fate with fidelity. Nevertheless,
since the aforementioned analysis was performed on bulk populations, it remained unclear
whether the differences in signal strength were acting instructionally to dictate fate or
stochastically to rescue viability of pre-committed precursors. The Zúñiga-Pflücker lab
sought to resolve this issue, first employing a single-cell progenitor assay to demonstrate
that fate selection is complete by the DN3 stage, and then ectopically expressing either pre-
TCR or γδTCR complexes in TCR-deficient DN3 and demonstrating that the TCR
complexes dictated the expected fate [17]. These data provide strong support for the notion
that TCR signals act instructively to dictate fate. This topic will be addressed more
extensively in two other reviews in this issue (See Narayan et al., and Wong et al).

5. Factors enabling the γδTCR to signal more robustly than the pre-TCR
Receptor characteristics

The association of TCR signals of greater intensity/longevity with γδ lineage commitment
engenders questions regarding the molecular basis by which γδTCRs transduce such signals.
A number of attributes that differ between the pre-TCR and γδTCR may contribute. Perhaps
the most important difference is their surface density. The pre-TCR is expressed at levels
(~400 per cell) about 100-fold lower than the αβTCR on mature T cells or the γδTCR on
thymocytes [58]. Further, the γδTCR also appears to be a more potent signaling complex
than the αβTCR following antibody-stimulation, which may result from the differing
complement of CD3 signaling subunits, as the γδTCR complex lacks CD3δ, instead
possessing two CD3δε dimers [59]. Finally, it was recently reported that some TCRγδ pairs
may be able to signal in a ligand-independent fashion, as was previously shown for the pre-
TCR [25,60]. Nevertheless, when the ligand-independent signaling of a single γδTCR Tg of
known antigenic specificity was tested in vivo, it promoted development to the DP stage and
αβ lineage commitment, suggesting that ligand-independent signaling by γδTCR complexes
may be similar in intensity/duration to pre-TCR signals [33].

Ligand
In contrast to the pre-TCR for which ligands have not been identified, there is clear evidence
that at least some γδTCRs recognize endogenous ligands. For these γδTCRs, the intensity/
duration of γδTCR signaling may be significantly modulated by intrathymic ligands and
there is compelling evidence in support of ligand-involvement in their development.
Dendritic epidermal γδ T cells (DETC) are a skin resident subset with a nearly invariant
Vγ3Vδ1 γδTCR and development of this subset bears the hallmarks of ligand-selection
[61,62]. Skint1 protein has been proposed as a potential ligand for the DETC γδTCR.
Nevertheless, while Skint1 is essential for DETC development, its function as a bona fide
ligand has not been formally demonstrated [63]. The most extensive analysis of ligand
involvement in γδ development has focused on γδ cells with TCR complexes reactive with
T10/T22. T10 and T22 are non-classical MHC class I molecules that require β2M for
surface expression. Early analysis in β2M-deficient mice suggested that the development of
T10/T22 reactive γδ cells in two TCR transgenic (Tg) models (G8 and KN6) was dependent
upon ligand [32,64]. A subsequent report using the G8 transgenic model reported that ligand
caused deletion rather than promoting development [65]. The basis for this discrepancy has
never been resolved but has been suggested to result from differences in the background
strains of the mice utilized [65]. More recently, the role of ligand in development of T10/22
reactive γδ cells was monitored using T10 tetramer-binding, which showed that tetramer-
binding cells developed and exited the thymus even in the absence of their presumptive
ligand [60]. However, interpretation of this result is complicated by the fact that T10
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tetramers bind to TCRs employing the Dδ2 element with widely varying affinity (differing
by at least 15-fold) [66]. Accordingly, it is possible that tetramer binding lacks the precision
to identify precursors with the appropriate affinity for positive selection on T10. Consistent
with this notion, neither ERK phosphorylation nor CD5 induction among T10 tetramer
staining γδTCR+ thymocytes was detectably altered by the presence of the presumptive
high-affinity T10b ligand (Meyers et al., this issue); however, both TCR signaling (ERK
phosphorylation and CD5 induction) and fate selection were altered by ligand in thymocytes
transgenic for the T10d-selected KN6 γδTCR [33]. These data raise the possibility that a
substantial fraction of γδTCRs that utilize Dδ2 (and are thus bound by T10 tetramer) are
reactive with and perhaps selected upon other intrathymic ligands. Irrespective of these
findings, we have demonstrated that commitment of KN6 γδTCR transgenic thymocytes to
the γδ lineage is dependent upon β2M (required for surface expression of T10/T22), as KN6
Tg thymocytes are diverted to the αβ fate in its absence [33,34]. Likewise, we have recently
shown that specific targeting of T10/T22 ligand in OP9-DL1 cultures using shRNA-
mediated knockdown prevents KN6 γδTCR expressing thymocytes from maturing along the
γδ-lineage and instead diverts them to the DP stage of αβ-lineage differentiation [34]. This
represents the first example where a specific, defined γδ ligand has been shown to be
required for γδ lineage commitment and development. Nevertheless, use of the KN6 γδTCR
has been suggested to produce artifactual results because of abnormally early expression;
however, we maintain that these concerns are unfounded as the KN6 TCR is expressed
under the control of endogenous elements which are not activated until the DN2 stage,
coincident with rearrangement of the endogenous TCRγ and δ loci. Whether ligand-
involvement in KN6 Tg γδ cell development represents the exception or represents a more
common phenomenon awaits the identification and evaluation of additional γδTCR ligands.
The controversial role of ligand in γδ development will be addressed in two other articles in
this issue (Meyer et al., and Kreslavsky et al).

6. How do signals that control the alternate lineage choices differ?
While support for TCR signal strength/duration as an important determinant of αβ/γδ fate
choice is accumulating, our understanding of the key signaling effectors that are
differentially regulated during fate choice remains rudimentary. Evidence from gene-
targeting approaches suggests that the signaling cascades upon which γδ and αβ lineage
development depends are genetically-separable (reviewed in [40,67]). For example, TCR
stimulation induces phosphorylation of the adaptor molecule LAT on multiple tyrosines,
each of which exhibits some specialization in the SH2-domain-containing proteins it recruits
(reviewed in [68]). Importantly, LAT-deficiency causes a severe blockade of both the αβ
and γδ lineages [69]; however, mice expressing LAT molecules selectively defective in
PLCγ recruitment exhibit a preferential block in development of αβ lineage cells [70–72].
Gene-targeting experiments have also identified numerous other molecular effectors that are
selectively required for either the αβ or γδ lineage development (e.g., our identification of
the ribosomal protein Rpl22; [73]), but this information has not yet been integrated into
well-defined molecular pathways tied to development of either αβ of γδ cells (reviewed by
Hayes et al., in this issue). Nevertheless, our data suggest that differences in activation of the
ERK-Egr-Id3 axis are an important manifestation of the differences in signal strength/
duration that influence αβ/γδ fate choice [33,34].

ERK signaling
TCR signaling leads to ERK/MAP kinase (MAPK) activation and is required for normal
thymocyte development [74]. We, and others, have shown that ERK is more highly
phosphorylated in developing γδ than in αβ lineage cells [33,57]. ERKs are the terminal
enzymes in a cascade of three protein kinases, MAP kinase kinase kinase (MAP3K; Raf),
MAP kinase kinase (MAP2K; MEK) and MAPK (ERK), which sequentially activate their

Lee et al. Page 5

Semin Immunol. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



downstream targets by phosphorylation at specific amino acid residues. Upon activation,
ERK not only phosphorylates regulatory targets in the cytosol, but is also capable of
translocating to the nucleus, where it regulates gene expression by activating transcription
factors such as Elk-1, c-Fos, or c-Myc [75,76]. The greater ERK activation associated with
adoption of the γδ fate appears to be functionally important as γδ commitment can be
impaired in vitro using pharmacologic inhibitors of ERK signaling (S.-Y. Lee, unpublished
observation); however, the requirement for ERK in γδ lineage commitment and development
has not been rigorously tested genetically.

Egr proteins
ERK/MAPK induces the expression of immediate early gene, zinc-finger transcription
factors of the Egr family [77], which we and others have shown to be critical for normal
thymocyte development [78–80]. The Egr family of transcription factors contains four
members: Egr1, Egr2, Egr3, and Egr4. The zinc-finger DNA-binding domains of the Egr
family members are highly homologous, but their N-terminal activation domains are more
divergent and are thought to scaffold interactions with distinct transcriptional regulators that
influence the target specificity of particular Egr family members [81]. Egr proteins are
induced in response to various mitogenic stimuli and regulate genetic programs controlling
growth and differentiation of diverse cell types [81]. Importantly, induction of Egr proteins
has been demonstrated to be proportional to signal strength [82,83]. Accordingly, we found
that Egr induction correlates with signal strength during αβ/γδ lineage commitment in that
γδ lineage choice was associated with greater induction of Egr proteins than was adoption of
the αβ fate [33]. Differential induction of Egr proteins appears to play an important role in
fate choice as elevating Egr levels through ectopic expression augmented development of γδ
lineage cells while causing a commensurate decrease in αβ lineage cells [33,34]. While these
data clearly indicate that the extent of Egr induction is an important component of the
signals that promote commitment to the γδ lineage, loss of function analysis has been
complicated by functional redundancy among the 4 family members expressed in the
thymus and constraints imposed on generation of compound-deficient mice by impaired
reproduction and survival of some of the strains.

Id proteins and their targets
An important target of TCR-induced Egr proteins is the helix-loop-helix (HLH) factor, Id3
[84–86]. Like ERK and Egr proteins, Id3 is induced in proportion to signal strength and is
more highly expressed in γδ lineage progenitors than in those adopting the αβ fate
[33,34,87]. Id3 function has also been causally-linked to control of αβ/γδ fate using both
gain- and loss-of-function analysis. Enforced expression of Id3 in thymic progenitors blocks
development of αβ lineage cells while enabling γδ development to continue unimpaired [88].
Id3 is also epistatic to Egr1 induction, as Id3-deficiency impairs the ability of Egr1 to
promote development of γδ lineage cells in fetal thymic organ cultures [33] [34]. Several
groups have reported that Id3-deficient mice exhibit perturbations in γδ cell development in
that Id3-deficiency results in the selective expansion of innate type Vγ1.1Vδ6.3 γδ cells,
although the reports differ in interpretation of this result [34,89–91]. Our analysis revealed
that other γδ subsets were diminished by Id3-deficiency (e.g., Vγ2 and DETC), and we
postulate that the relative sensitivity of different γδ subsets reflects differences in TCR
signal strength, perhaps resulting from intrathymic ligands of differing affinity [34]. In
support of this view, we have shown that Id3-deficiency reduces the number of mature γδ
lineage KN6 γδTCR Tg thymocytes generated by positive selection in the presence of
moderate affinity T-10d ligand [34]. In contrast, in the presence of T-10b ligand (10-fold
higher affinity), Id3-deficiency markedly increased the number of mature γδ lineage, KN6
thymocytes, suggesting that Id3-deficiency enabled them to escape the deletion normally
resulting from engagement by high affinity ligand [32,34]. Altogether, these findings
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support a dichotomy of Id3 function, with Id3 promoting commitment and development of
γδ cells in the context of the stronger signals that typically accompany this process, while
inducing deletion (or restraining the expansion) of other sublineages (some of which are
PLZF-dependent) when signal strength exceeds a particular threshold. Therefore, we suggest
that an important factor contributing to the expansion of Vγ1.1Vδ6.3 cells in Id3-deficient
mice is their escape from Id3-mediated restraint, perhaps following encounter with a high
affinity ligand.

These results raise the question of how the extent of Id3 induction influences αβ/γδ lineage
choice. One possibility is that differences in Id3 induction produce distinct developmental
outcomes through graded suppression of E proteins. E proteins are basic helix-loop-helix
(bHLH) transcription factors that bind DNA at E-box motifs (CANNTG) either as
homodimers, or heterodimers with other bHLH proteins [92]. Of the 4 family members
found in mammals, two are expressed in developing T cells, E2A and HEB, and their DNA-
binding activity is antagonized by pairing with Id family members like Id3. Consequently,
the magnitude of E protein inhibition is likely to be an important manifestation of signal
intensity, with very strong signals nearly extinguishing E protein activity during γδ
commitment and mimicking the effect of E protein gene-ablation. Consistent with this view,
deficiencies in the E proteins, E2A and HEB, appear to differentially affect development of
αβ and γδ T cells. E2A deficiency perturbs development of αβ T cells and at least certain
subsets of γδ T cells, while HEB deletion selectively impairs αβ T cell development, leaving
development of γδ T cells unaffected [93,94]. Impairment of γδ development is less severe
in mice lacking both E2A and HEB than in mice lacking E2A alone, suggesting that HEB
expression in the absence of E2A may be responsible for the defect [95,96]. E proteins play
a pivotal role in preventing thymocytes from developing beyond the β-selection checkpoint,
as evidenced by the ability of pre-TCR deficient thymocytes to traverse the β-selection
checkpoint and differentiate to the DP stage in the absence of E2A [95,97]. Paradoxically, E
protein deficiency blocks development beyond the β-selection checkpoint of pre-TCR
expressing cells, suggesting that the induction of αβ-lineage development by pre-TCR
signals is dependent upon partial or temporally-restricted suppression of E protein activity
[84,86]. Conversely, the mild impairment of γδ development by E protein deficiency is
consistent with the effect of strong TCR signals inducing greater Id3 expression and more
profound or sustained reductions of E protein activity. Altogether, these data suggest a
model whereby graded reductions in E protein activity mediated by differences in TCR
signal strength play an important role in fate adoption and development (Fig. 2).

Signal strength and Notch-dependence
The extent or mode of E protein suppression following TCR signaling also appears to
influence the relative dependence of αβ and γδ precursors on Notch [34]. Notch molecules
are surface receptors involved in cell fate decisions in a wide variety of organisms but the
participation of Notch in αβ/γδ lineage choice has been controversial until recently [98–
102]. The Zúñiga-Pflücker lab recently clarified this issue. They demonstrated that γδ
lineage thymocytes become Notch-independent only upon expression of the γδTCR
complex, while αβ lineage precursors are dependent upon Notch signaling throughout the
entirety of their differentiation to the DP stage, although the molecular basis for this
differential dependence was unclear [17]. Recent evidence from the Murre lab (as well as
genetic analysis from Drosophila) suggests interplay between E proteins and the Notch
pathway may underlie the differential Notch-dependence of αβ and γδ lineage progenitors
[103,104]. Indeed, we recently determined that the Notch-independence of γδ lineage cells
requires Id3-mediated suppression of E protein activity, whereas in αβ lineage precursors, E
protein activity is also suppressed by Notch signaling [34]. Altogether, these observations
suggest that Notch-dependence is determined by graded reductions in E protein activity
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mediated by differences in TCR signal strength. Specifically this model suggests that pre-
TCR signals partially suppress E protein activity by induction of Id3 but require Notch-
ligand interactions to further suppress E protein activity to reach the threshold required for
αβ-lineage development (Fig. 2). Notch signaling has been reported to suppress E protein
function both by promoting ERK-dependent E protein degradation and through induction of
Id3 [105–107]. Conversely, the strong signals that confer Notch-independent differentiation
upon γδ-lineage cells are dependent upon Id3 induction alone and are sufficient to suppress
E protein activity below the threshold required for γδ-lineage development without
assistance from Notch.

7. How do differences in ERK activation influence fate selection?
ERK activation plays a critical role in the interpretation of cellular stimuli that regulate
proliferation, differentiation, and survival, with the outcome presumably determined by the
extent of ERK activation and the constellation of cellular targets that are phosphorylated
[108]. Differential ERK signaling has been shown to be involved in many cell fate decisions
in lower organisms as well as in the mammalian immune system (e.g., positive vs. negative
selection) [109–113]. In most cases within the context of fate decisions in the immune
system, it remains to be demonstrated whether these differences in ERK activation reflect
differences in intensity, duration, or both. Indeed, while both the Haks and Hayes studies
demonstrated that γδ lineage cells exhibit greater ERK activation, it remains unclear whether
this reflects differences in the magnitude of ERK induction, the duration, or both [33,57].
Nevertheless, there is increasing evidence that signal duration plays an important role in
other aspects of T cell development. The kinetic signaling model of CD4/8 lineage
commitment incorporates this thinking by hypothesizing that sustained signals support CD4
lineage commitment, whereas CD8 commitment is associated with transient signals [114].
This model received strong support from studies by Sarafova et al., demonstrating that
CD4/8 lineage commitment could be altered by manipulating the duration of TCR-
coreceptor signals [115]. Regarding the longevity of ERK signaling in particular, the Palmer
and Hogquist labs have reported that negative selection is associated with strong but
transient ERK activation while positive selection involves weaker but more sustained
activation [113,116].

There are two well characterized models in which the duration of ERK activation has been
critically linked to distinct biological outcomes: rat PC12 pheochromocytoma cells and
Swiss 3T3 fibroblasts [117]. Stimulation of PC12 cells with epithermal growth factor (EGF)
induces transient ERK activation, which results in proliferation, while nerve growth factor
(NGF) stimulation produces sustained ERK activation that leads to differentiation into cells
resembling sympathetic neurons [118,119]. Prolonging ERK activation following EGF
stimulation transforms the proliferative signal into one inducing differentiation to the neural
fate [120]. Conversely, truncating ERK activation following NGF stimulation induces
proliferation rather than differentiation [121]. Likewise, treatment of Swiss 3T3 fibrobasts
with fibroblast growth factor (FGF) results in transient ERK signaling and quiescence while
the prolonged activation of ERK following EGF stimulation induces proliferation [122].
These observations clearly attest to the importance of the duration of ERK signals in
determining the biological outcome of an inductive stimulus. However, neither the
molecular basis whereby differences in the intensity/duration of ERK activation are
regulated nor the way such differences might be interpreted by the cell are fully understood
[123]

Regulators of ERK signaling
A recent proteomic analysis provided insights into the complex regulatory networks
involved in controlling ERK activation, identifying 143 proteins whose association with
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ERK differed in transient versus sustained signals [124]. The data suggest that the control of
ERK signaling is not focused on a single, particularly important step in the cascade, but is
instead distributed at multiple steps along the pathway. Examples affecting several distinct
control points will be illustrated in this section. Differences in the extent or kinetics of ERK
activation have been shown to result from modulation of the G proteins sitting atop the
MAPK cascade. For example, Ras activation is differentially controlled by nucleotide
exchange factors like Ras-GRP1, which produce modest but prolonged ERK signaling
following Ras activation at the Golgi complex, but produce intense yet brief ERK signals
following Ras activation (along with SOS) at the plasma membrane during negative
selection [116]. Immediately downstream of the G proteins, lie the MAP3Ks, which can
produce signals of differing duration depending upon the particular G protein-MAP3K pair
employed [108]. In PC12 cells, Ras/Raf causes transient activation of ERK, while Rap1/B-
Raf leads to sustained ERK signals [125]. The duration of MAP3K activation can in turn be
controlled by a series of negative regulators, including members of the Sprouty family as
well as Raf kinase inhibitory protein (RKIP) [126] [127,128]. Sprouty 1 has been reported to
inhibit ERK activation following TCR signaling in Th1 CD4 T cells [129]. Immediately
downstream of the MAP3Ks, are the MAP2Ks, Mek1 and 2, whose ability to support signals
differing in duration results from distinct susceptibility to negative regulation [130]. The
function of the final effector kinase in the signaling cascade, MAPK/ERK, is also modulated
by a host of proteins with which ERK proteins directly interact. These molecules function
either to modulate the magnitude or duration of ERK activity or to modulate access to
substrates. Examples of the former are dual specificity MAPK phosphatases (MKPs or
DUSPs) that dephosphorylate and inactivate ERK or the Ras-GTPase activating protein,
Neurofibromin 1 (NF1), which decreases the duration of ERK activity by turning off Ras.
Both of these effectors have been implicated in controlling TCR-dependent developmental
steps in the thymus [131–133]. An example of the latter class is PEA-15, which blocks
ERK-dependent transcription and proliferation by preventing ERK translocation into the
nucleus [134]. Sustained ERK activation is accompanied by dissociation of ERK from
PEA-15 [124]. Many of the molecular effectors listed above have been shown to regulate the
duration of ERK activation in other contexts; however, their involvement in regulating TCR
signal strength or duration in the context of αβ/γδ lineage commitment has not been
explored.

Cellular responses to differences in ERK intensity/duration
Another fundamental question is how differences in the intensity or duration of ERK
activation induce alternate fate choices at a molecular level. It has been proposed that
prolonged activation of ERK might result in translocation to different subcellular locations,
which could produce alternative developmental outcomes through phosphorylation of
distinct substrate pools resident at that site. Two interrelated mechanisms have been
proposed to control ERK compartmentalization, scaffold targeting and dimerization.
Scaffold proteins assemble together all of the components of a particular MAPK signaling
cascade (e.g., Raf, Mek, ERK assembled with KSR1), which both facilitates efficient
activation of the MAPK pathway and integrates incoming signals in a localized
microenvironment [108]. A number of binding proteins that may serve as scaffolds for the
ERK pathway have been identified; KSR, MEK partner-1 (MP1), β-arrestins, similar
expression to FGF (Sef) and IQGAP [135]. Many of these scaffolds can target the signaling
machinery to distinct subcellular locations (e.g., KSR1 to cholesterol rich domains in the
plasma membrane, MP1 to endosomes, and Sef to the Golgi complex) [136–138]. KSR is
expressed in T cells and has been implicated in controlling the intensity and duration of
ERK signaling in thymocytes [139]. KSR1 is targeted to the Golgi complex in thymocytes
receiving positive selection signals, but to the plasma membrane in cells undergoing
negative selection, and these changes in location are associated with differences in both the
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intensity and duration of ERK signaling [113,116]. The basis for these differences in
targeting is not understood. Scaffolds are also able to control the subcellular location of
ERK by facilitating ERK dimer formation. Interaction of ERK with a number of different
scaffolds promotes dimer formation, which is required for retention in the cytosol,
interaction with cognate cytosolic substrates, and the induction of proliferation as well as
transformation. Conversely, dimer formation does not appear to be necessary for activation
of nuclear substrates [140]. It is, therefore, tempting to speculate that ERK dimer-formation
might predominate during αβ commitment and the massive proliferative burst that
accompanies differentiation to the DP stage. Conversely, γδ commitment may primarily
involve ERK monomer signals, as γδ development is believed to involve less extensive
proliferation, although this point remains controversial [87,141].

The Blenis lab has provided additional insights into the molecular basis by which
differences in the duration of ERK activation might produce distinct biological outcomes
[117]. Using the Swiss 3T3 cell model, it was demonstrated that FGF stimulation resulted in
transient ERK signaling and quiescence while the prolonged activation of ERK following
EGF stimulation induced proliferation. Using this experimental model system, the Blenis lab
has produced evidence in support of the immediate early gene (IEG) sensor model. This
model proposes that prolonged ERK activity produces altered biological outcomes by
regulating the stability of IEG protein products [122]. The idea is that when ERK activation
is transient, it decays prior to synthesis of IEG protein products, which remain unstable and
are rapidly degraded (Fig 3A). In contrast, if ERK activation is sustained until IEG protein
products are expressed, ERK physically docks with IEG proteins through motifs termed
DEF domains (docking site for ERK; FXFP) and stabilizes them, thereby leading to the
accumulation of IEG protein products. Accordingly, cells “perceive” a sustained ERK signal
as one that results in the accumulation of IEG protein products. Since many of the IEG are
in fact transcription factors, their accumulation is able to lead to a second wave of
transcriptional activation resulting in induction of “intermediate early genes” such as Fra-1
and Fra-2 [122,142]. The implication is that this second wave of transcriptional activation is
absent or blunted in cells receiving transient signals and this likely plays an important role in
dictating the ultimate biological outcome. While the involvement of differential
accumulation of IEG in αβ/γδ lineage commitment has not been formally tested, our
findings regarding the importance of the IEG, Egr1, and its target Id3 are consistent with this
model [33,34]. However, these finding could be explained by either differences in the
amplitude or longevity of ERK induction. The IEG sensor model suggests that the longevity
of ERK activation controls the extent of IEG protein accumulation per unit of encoding
mRNA and predicts that ERK signals of increased duration should lead to more IEG protein
per unit mRNA than transient ERK signals. To test this prediction, we compared the amount
of Egr1 protein per unit mRNA in cells adopting the γδ fate to that in cells adopting the αβ
fate in our KN6 Tg model. Interestingly, we found that cells committing to the γδ lineage
accumulate more Egr1 protein product per unit mRNA than cells committing to the αβ
lineage, as predicted if longer ERK signals were stabilizing IEG proteins in γδ lineage cells
(Fig. 3B,C). While these findings are consistent with αβ/γδ fate specification being
associated with differences in the duration of ERK signaling, this conclusion remains to be
rigorously tested.

8. Concluding remarks
When first proposed, the TCR signal strength model of αβ/γδ lineage commitment provided
plausible explanations for the status of TCR gene rearrangements in αβ and γδ lineage cells
and the lineage infidelity observed in TCR transgenic and gene-targeted mice. However,
many important and controversial questions remain to be addressed, some of which are
represented in this issue. Evidence is support of the signal strength model continues to

Lee et al. Page 10

Semin Immunol. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



accumulate, and while we think most evidence is consistent with the hypothesis that TCR
signals of differing strength are acting instructionally, the possibility that they may be acting
stochastically has not been formally eliminated. The basis by which γδTCR complexes are
able to transduce signals that are more robust than those of the pre-TCR also remains in
question, particularly whether the γδTCR is intrinsically able to transduce stronger signals or
requires ligand-engagement to do so. There are notable examples of particular γδTCR
specificities requiring ligand, but the determination of whether these examples represent the
exception or the rule must wait for identification of more ligands. Our data has implicated
the skeletal framework of the ERK-Egr-Id3 pathway as being critical in lineage
commitment. Nevertheless, other important pathways remain not only to be identified but
also to be integrated in order to provide a comprehensive understanding of how these
diverse signaling pathways cooperate to produce differing fates. Signal duration has been
shown to be important in fate-determination in a number of other developmental contexts
and our early evidence suggests it will be in αβ/γδ lineage commitment as well.
Distinguishing these possibilities will require construction of model systems in which the
longevity of TCR signaling in general or perhaps ERK in particular can be manipulated and
measured at the single cell level in vivo.
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Figure 1. αβ/γδ lineage commitment during thymocyte development
TCR γ, δ, and β gene rearrangement begins in DN2 thymocytes. αβ/γδ lineage commitment
is thought to occur between the onset of gene rearrangement and arrival at the DN3 stage.
Precursors that have committed to the γδ lineage express the γδ TCR complex, but usually
not CD4 or CD8. In contrast, commitment to the αβ lineage usually occurs in response to
pre-TCR signaling and is characterized by development of thymocytes to the DP stage.
While commitment to the αβ and γδ lineage is most often directed by signals from the pre-
TCR and γδ TCR complexes, respectively, these decisions are not irrevocably tied to the
receptor isotype. Rather, they are determined by the nature of the TCR signal, with weaker
signals favoring adoption of the αβ fate and stronger signals promoting adoption of the γδ
fate.
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Figure 2. Model by which strong TCR signals render γδ lineage cells Notch independent
Development beyond the β-selection checkpoint requires suppression of E protein function.
We hypothesize that T lineage fate and developmental characteristics are determined by the
extent to which E protein activity is repressed in a model encompassing graded suppression
of E protein function by TCR signals of differing strength. Pre-TCR signals are too weak by
themselves to suppress E proteins beyond the threshold required for the αβ lineage
differentiation program. They require assistance from Notch to do so, providing an
explanation for the Notch-dependence of αβ lineage differentiation to the DP stage. γδ
lineage commitment, in contrast, is dictated by strong TCR signals capable of suppressing E
protein function beyond the threshold required for γδ lineage commitment, and do so
without assistance from Notch. Notch is able to contribute to E protein suppression both
through Id3 induction and by ERK-dependent degradation of E proteins; however, our data
suggest Notch represses E proteins primarily by inducing their degradation. Lightning bolt
size denotes signals of differing strength.

Lee et al. Page 20

Semin Immunol. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Signal duration and lineage commitment
A. ERK signals can differ in amplitude or duration. Transient ERK activation decays prior
to synthesis of the protein encoded by immediate early genes (IEG), resulting in their rapid
degradation and failure to accumulate. In contrast, during prolonged signals ERK signals
persist until IEG protein products are expressed, enabling them to physically dock with
ERK. Physical interaction enables ERK to phosphorylate and stabilize the IEG protein so
that it accumulates, leading to protein levels disproportionate to the encoding mRNA. B. γδ
commitment is associated with disproportionate increases in the IEG protein Egr1. The
mRNA and protein levels of Egr1 were measured in thymocytes committing to the γδ
lineage (KN6+Lig+) and the αβ lineage (KN6+Lig−) and normalized to control (KN6−). Egr1
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protein levels were disproportionately high in cells committing to the γδ lineage, consistent
with the notion that γδ lineage commitment involves signals of increased duration. C. γδ
lineage commitment is accompanied by ERK signals lasting longer than those occurring in
cells committing to the αβ lineage.
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