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The coupling of electric fields and charges with membrane-water interfacial fluctuations affects
membrane electroporation, ionic conductance, and voltage gating. A modified continuum model is
introduced to study charge interaction with membrane-water interfacial fluctuations in
multidielectric environments. By surrounding a point charge with a low dielectric sphere, the linear
Poisson–Boltzmann equation is directly solved by calculating the reaction field potential via a
method that eliminates singularity contributions. This allows treatment of charges located at
dielectric boundaries. Two complementary mechanisms governing charge-fluctuation interactions
are considered: �1� electroelastic deformation �EED�, treating the membrane as an elastic slab
�smectic bilayer model�, and �2� electrohydrophobic solvation �EHS�, accounting for water
penetration into the membrane’s hydrophobic core. EED often leads to large membrane thickness
perturbations, far larger than those consistent with elastic model descriptions �M. B. Partenskii, G.
V. Miloshevsky, and P. C. Jordan, Isr. J. Chem. 47, 385 �2007��. We argue that a switch from EED
to EHS can be energetically advantageous at intermediate perturbation amplitudes. Both
perturbation mechanisms are simulated by introducing adjustable shapes optimized by the kinetic
Monte Carlo reaction path following approach �G. V. Miloshevsky and P. C. Jordan, J. Chem. Phys.
122, 214901 �2005��. The resulting energy profiles agree with those of recent atomistic molecular
dynamics studies on translating a charged residue across a lipid bilayer �S. Dorairaj and T. W. Allen,
Proc. Natl. Acad. Sci. U.S.A. 104, 4943 �2007��. © 2010 American Institute of Physics.
�doi:10.1063/1.3442414�

I. INTRODUCTION

Electroelastic coupling of electric fields or charges to
membrane surface fluctuations significantly influences mem-
brane stability, electroporation, ionic transport, and voltage
gating.1–7 This issue is especially significant since, in some
voltage gated channels,8–10 its voltage sensor �gating
charges� is partially embedded in the lipid bilayers. In the
transduction process of opening �or closing� the channel, the
gating charges move partially across the lipid bilayer
membrane,7 raising two obvious questions. How do low di-
electric environments, typically associated with the mem-
brane hydrophobic core, stabilize charges? How can the high
energy barriers for charge insertion into low dielectric envi-
ronments be surmounted? Previous continuum electrostatic
models,11–16 not accounting for membrane deformations
around buried charges, predict large energy barriers ranging
from 40 to 120 kT �1 kT= 2.48 kJ /mole at room tempera-
ture�. Recent fully atomistic molecular dynamics �MD�
simulations17–20 demonstrate both significant lipid deforma-
tion and water association with the charged residues during

their permeation through the membrane’s hydrophobic core.
Thus, membrane shape could be significantly altered by elec-
trostatic interactions with membrane-embedded charges. Re-
cent continuum studies6,21 combining harmonic elastic
theory with electrostatics demonstrate that membrane defor-
mations of a ponderomotive nature22 can significantly lower
the energetic cost of inserting charges into the membrane.
However, sometimes exceedingly large membrane deforma-
tions are predicted �e.g., �20 Å in Ref. 21�, violating elas-
ticity theory’s harmonic approximation;22 furthermore inter-
facial shapes are imposed rather than determined by
equilibration.21 Such large unphysical deformations indicate
that some new physics must be introduced in the continuum
treatment. A possibility is formation of a water-filled hydro-
phobic plume or pore �cavity or shunt� induced by a charge
buried deep within the membrane. MD simulations demon-
strate the possibility of spontaneously forming such aqueous
structures due to electric fields generated by transmembrane
charge imbalance23 or bilayer embedded charges.17–20

Near microsecond atomistic MD simulations24 of sys-
tems comprising hundreds of thousands of atoms are now
possible. However, conformational changes in biomolecules,
ligand binding, or charge translocations across the membrane
minimally require thousandfold longer times. Directly simu-
lating such events is extremely time consuming since transi-
tion state sampling only occurs during a small fraction of the
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simulation time; the computation mainly samples the energy
surface close to local energy minima. A solution is to focus
exclusively on the rare transition events of interest, rather
than on the waiting time between events, which are typically
many orders of magnitude longer. This approach can be ap-
plied to problems of arbitrary atomic complexity.25,26 Alter-
nately, the molecular system can be simplified by removing
those degrees of freedom less relevant to the physics of in-
terest and simulating the residual system, in this way gaining
important insights into the underlying physics. Such coarse-
grained modeling27 treats only a few selected degrees of
freedom evolving under the mean influence of the system
remainder. We apply this approach to modeling multidielec-
tric membrane-water-charge systems. The basic idea is to
decompose system dynamics into two parts: fast �noise� and
slow �reaction coordinates� dynamics. To simulate transition
events a realistic reaction coordinate is essential, i.e., identi-
fying the degrees of freedom that capture the essential phys-
ics. This is usually done by predetermining a reaction coor-
dinate and forcing system evolution along it. Such an
artificially forced transition modifies system dynamics in an
unspecified way, typically carried out by dragging the system
from initial to final state over the energy barrier. We devel-
oped a practical procedure, kinetic Monte Carlo reaction path
following �kMCRPF�,28 which generates a realistic pathway
given the predetermined reaction coordinate and the remain-
ing slow degrees of freedom. Here we apply this method to
the membrane-water-charge assembly, to enforce transmem-
brane charge displacement, and to study coupling between
the charge and membrane surface fluctuations and the forma-
tion of water-filled pores. The slow, dynamically significant
degrees of freedom are variables characterizing the
membrane-water-charge system, parameters describing the
charge position, the shape of the water-membrane interface,
and the water-filled pore. A natural reaction coordinate for
charge translocation is the normal to the membrane
�z-coordinate�. The charge equilibrates its surroundings; after
each thermally enforced step along the reaction coordinate,
all other degrees of freedom are fully relaxed. Energy is then
computed as a function of the reaction coordinate.28

We study membrane fluctuations triggered by a single
charge of variable strength �0.5e�q�1.5e� sited at selected
distances from the unperturbed membrane’s midplane.29,30

Were the membrane a rigid planar slab there would be a large
“image force” barrier.11 Our goal is to establish how mem-
brane flexibility and charge-induced water penetration alter
this picture. A novel numerical approach is developed to
simulate the delicate interplay between the deformable mem-
branes and embedded charges. The linear Poisson–
Boltzmann �PB� equation31 is solved via a multidielectric
continuum model for a range of membrane-water interfacial
profiles with a point charge surrounded by a low dielectric
“Born sphere.” This computational model intimately couples
membrane shape, membrane elasticity, electrostatics, and in-
terfacial tension arising from water penetration into the
membrane’s hydrophobic interior. We consider two descrip-
tions of the physical problem: electroelastic deformation
�EED�, where the membrane is an elastic slab �smectic bi-
layer model�, and electrohydrophobic solvation �EHS�,

where water penetrates the membrane’s hydrophobic core. In
both cases effects of interfacial fluctuations are analyzed.
The associated energy penalties reflect elastic membrane de-
formation �EED� and/or “interfacial tension” �EHS�. Ener-
getic stabilization of the charge, relative to an unperturbed
membrane interface, arises from aqueous shielding of the
charges’ electric field, generating fluctuations promoted by
the ponderomotive force. Using kMCRPF �Ref. 28� we show
that the EED typically predicts instabilities leading to a
charge-solvated state with deformations far exceeding the
elastic limit. This suggests that at some point there is switch-
ing from EED fluctuations to EHS ones. Fluctuations are
investigated using an extended family of parametrized
shapes sampling a wide range of solvated states. Our results
indicate that fluctuations typically originate due to EED,
which then trigger the massive water penetration governed
by EHS.

The article is organized as follows. Section II describes
both physical and computational details: eliminating the sin-
gularity term, modeling elastic and hydrophobic surface fluc-
tuation, and applying the kMCRPF method. Section III pre-
sents and discusses the results. Section IV briefly outlines the
conclusions.

II. COMPUTATIONAL MODEL AND SIMULATION
METHOD

The model system is shown in Fig. 1. Azimuthal cylin-
drical symmetry is assumed. A point charge is embedded in a
Born sphere of a dielectric constant �p. It is located on the
cylinder axis and is freely mobile in both directions. Lipid
headgroups are ignored; model membrane only describes the
hydrophobic core. Membrane deformation is allowed and, to
solvate the charge, a water plume can penetrate the mem-
brane’s hydrophobic core.

A. Source-free Poisson–Boltzmann equation

To mathematically describe electrostatic interaction of
the point charge in Fig. 1 with multidielectric surroundings,
the linearized PB equation31,32 is used. The electrostatic po-
tential is infinite at the location of a point charge. To use a
grid-based finite difference this singularity must be removed.
In fact, this point charge contribution is invariant; a charge
only influences energy variation through its interactions
with dielectric media. In standard finite-difference
approaches,33,34 a point charge is projected onto the nearest
grid points, and numerical solution accuracy depends on grid
spacing. With smaller spacing, interactions among the
charges distributed over grid points markedly accentuate the
singularity contribution, affecting computational accuracy.
Therefore, we use an efficient algorithm originally developed
in Ref. 35 to completely project out the singularity and to
directly calculate the reaction field potential. The linearized
PB equation35 can be written as

� · � � � = �2�q�/kBT� − 4�q , �1�

with � as the position-dependent dielectric constant, � as the
inverse of Debye length, q as the unit charge, kB as Boltz-
mann’s constant, T as the temperature, and � as the unknown
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electrostatic potential. We limit consideration to low ionic
strengths, where the linearized PB is known to be quite
reliable.36 With a point charge located at a grid point, there is
a local singularity in �. Within the Born sphere, where
�=0 and �=�p, Eq. �1� reduces to the Poisson equation35

�p�2�c = − 4�q . �2�

The Coulomb potential �c can be determined analytically
from Eq. �2�.37 This can be used to eliminate the singularity
in � in Eq. �1�. The source-free PB equation35 can be derived
by subtracting Eq. �2� from Eq. �1�,

� · � � �� = �2�q�/kBT� − � · �� − �p� � �c, �3�

with ��=�−�c, the reaction field potential. Within the Born
sphere �=0 and �=�p=1, and Eq. �3� reduces to the Laplace
equation. Outside the charged sphere �c is well defined from
Eq. �2�; thus, the point charge singularity is eliminated and
the reaction field potential �� is determined directly from Eq.
�3�. The source charge q in Eq. �1� has been replaced by the
analytical Coulomb potential in Eq. �3�.

At the boundary points of the computational domain we
define the reaction field potential as ��=��−q / ��p��rb ,zb��
with ���0. ��rb ,zb�=��rb−r0�2+ �zb−z0�2 is the distance
between a point charge located at �r0 ,z0� and the boundary
points �rb ,zb�. We assume that the cylindrical boundary is
located far from the point charge and that, at boundary
points, the electrostatic potential �=���0 is negligible. A
charge can be arbitrarily sited relative to grid points, signifi-
cant for one near or exactly on the dielectric bulk water-
membrane boundary. Consequently there is no electrostatic
potential discontinuity in crossing a dielectric boundary.
Mapping of a charge onto the grid points is not needed. The
reaction field potential �� is directly distributed over all grid
points. Following standard charging arguments,37 the electro-
static energy is

Eelect = 1
2q���r0,z0� , �4�

with ���r0 ,z0� the reaction field potential at location of the
point charge.

To reliably use finite-difference methods to solve Eq.
�3�, the computational domain is divided into discrete cylin-
drical cells with dielectric discontinuities always on cell
boundaries, never within a cell. The basic finite-difference
algorithm described in detail in Ref. 6 and applied to Eq. �3�
yields a set of algebraic equations. Despite simplifying the
solvent, it remains computationally expensive to solve the
PB equation. Moreover, this system of algebraic equations
must be solved for each MC �Monte Carlo� step along the
transition pathway. Therefore, multifrontal massively parallel
solver �MUMPS�,38 an accurate direct method based on
Lower and Upper matrix factorization, is used to solve the
system of linear equations, A��=b, where A is an asymmet-
ric sparse matrix, �� is the solution vector, and b is the
right-hand side vector. The MUMPS solver utilizes MPI
�Message Passing Interface� for message passing and makes
use of the BLAS, BLACS, and ScaLAPACK libraries.

B. Elastic energy

Our first model treats membranes as elastic slabs sand-
wiched between two aqueous phases. Due to flexibility,32 the
membrane can deform in response to external forces such as
a charge’s electric field. This couples electrostatics with
membrane elasticity, requiring a joint and consistent treat-
ment. In the continuum model for the elastic energy of flu-
idlike membranes, proposed by Helfrich in analogy to smec-
tic phases of liquid crystals,39,40 the elastic energy is
expressed as the integral41,42

Eelast = 2��
0

R

w�r�rdr , �5�

with w�r�=a · �z1�r�+z2�r��2+b · ���z1�r��2+ ��z2�r��2�, a
=E / �2h0

2�, b=K /4, where E and K are membrane compres-
sion �dilation� and bending �tilt� elastic constants, respec-
tively, h0 is the thickness of the unperturbed membrane, � is
the Laplace operator, and zi describes the profiles of lower
�i=1� and upper �i=2� membrane-water interfaces. This
model has been extensively used in studying membrane fluc-
tuations, protein insertion energetics, membrane inclusion in-

FIG. 1. Two-dimensional cylindrical computational do-
main with R=100 Å and Z between 	40 and 40 Å.
This system is multidielectric: membrane with dielec-
tric constant �m=2; the water domains with �w=80 and
the charged sphere of radius 2 Å with �p=1. A mesh
with spacings of 0.1 and 0.2 Å �1001
801 and 501

401 grid points� was used in computation. The figure
is generated using our CE-MEA code.
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teractions, membrane rafts, and membrane influences on ion
channel gating.32,43–46 Both lipid tail compression �modeled
by E� and tilt �or lipid leaflet bending, modeled by K� �Ref.
42� contribute to the energy of nonuniform dimplelike per-
turbations. For the optimized dimple shapes the typical bend-
ing contribution does not exceed �10%–15% of that due to
dilation/compression.6,47,48 The surface tension contribution
to the elastic deformation is ignored as it is assumed negli-
gible for solvent-free membranes.49,50 Reported membrane
elastic constants span quite a range �see Refs. 6, 21, 41, and
51–54 for discussion and references�. In our analyses of
membrane elasticity6,41,45,48 we adopted values suggested by
theoretical treatments of peptide insertion �see Refs. 50 and
51 and references therein�. At 300 K these are E
=0.35 kT /Å, K=13.5 kT, and h0=25.2 Å for
dipalmitoylphosphatidylcholine50 �DMPC� and E
=0.45 kT /Å, K=4.83 kT, and h0=26 Å for
dioleoylphosphatidylcholine51 �DOPC� bilayers. For com-
parative purposes we use the same constants, which are
roughly comparable to values �E=0.34 kT /Å and K
=6.9 kT� used in a study of electroelastic stabilization of
membrane buried charges.21 However, appropriate criteria
for selecting elastic constants for such studies are hard to
quantify. For instance, applying macroscopic moduli derived
from experiments with giant bilayer vesicles52–54 to the
nanoscales of interest here is questionable �see Refs. 2, 3, 6,
48, and 51 for discussion�. Because of this and similar un-
certainties in treating hydrophobic phenomena �see below�
our approach must be viewed as semiquantitative. As will be
seen later �Sec. III B, Fig. 10 curve 5� qualitative behavior is
insensitive to moderate elastic parameter variation.
Surface deformations are described by either Gaussian
zi�r�=ui exp�−r2 /�i

2� or Hertzian zi�r�=ui Kei�r /�i� /Kei�0�
profiles6 where ui, either positive or negative, is the mem-
brane displacement amplitude normal to the unperturbed sur-
face, �i is the radial deformation decay length, and Kei is the
zero order Kelvin function. For the Gaussian shape �zi�r�
=−4ui��i

2−r2�exp�−r2 /�i
2� /�i

4, and for the Hertzian shape
�zi�r�=uiKer�r /�i� / ��i

2 Kei�0��. For large deformations the
harmonic approximation implicit in Eq. �5� is inadequate,22

indicating that model modifications are needed at high elec-
tric field strengths.

C. Hydrophobic energy

In addition to dimplelike, purely elastic membrane per-
turbations maintaining bilayer integrity, water can penetrate
the membrane interior. We denote this stabilization mode
EHS because �due to charge solvation� water resides in or
even spans the membrane hydrophobic interior.55 EHS can
be dominant when elastic treatments lead to unphysically
large deformations.6,21 Several studies addressed competition
between the elastic and hydrophobic responses of mem-
branes to local perturbations using phenomenological con-
tinuum models. One of these focused on hydrophobic mis-
match between the inserted peptide �e.g., gramicidin A �gA�
channels� and the lipid bilayer44–50,56–61 is discussed here in
greater detail. The elastic energy is usually computed assum-
ing that the mismatch 2�u= lh− lm between the hydrophobic

length of the channel lh and the hydrophobic thickness of the
membrane lm is completely compensated by the local adjust-
ment of the membrane thickness, thus eliminating the hydro-
phobic contribution. In such studies the local thickness varia-
tion 2�u in contact with the peptide is a boundary condition
establishing the elastic part of the insertion energy.44–49,58–61

Such boundary conditions implicitly assume that permitting
water entry to a hydrophobic region is very unfavorable en-
ergetically compared to an elastic perturbation deterring wa-
ter access, a hypothesis which has been analyzed both ex-
perimentally and theoretically.50,56,59 Following Refs. 56 and
59 consider a cylindrical “inclusion” modeling a peptide he-
lix of radius R whose hydrophobic length lh is less than that
of the surrounding membrane. If the membrane fails to ad-
just elastically, the bilayer acyl chains are partially exposed
to water, leading to an edge energy, �Ah=4��R�u, where �
is the interfacial tension and Ah is the area of the hydropho-
bic contact opened due to the mismatch.56,59 If local adjust-
ment of membrane thickness compensates part of the mis-
match, �u���u, then the total mismatch energy is �wmis

=4��R��u−�u��+4Keff�u�2, where Keff is an effective �elas-
tic� spring constant depending on R, the elastic moduli, and
the boundary condition describing membrane slope at the
inclusion surface.56,59 Optimizing �u� yields �uopt�
=��R / �2Keff�. If the mismatch �u�uopt� , then some “slip-
page” occurs resulting in hydrophobic contact in a narrow
region �z��u−�uopt along the border. Analogous energetic
tradeoffs have been modeled similarly in analyzing mem-
brane rafts, e.g., cholesterol enriched membrane regions.57,60

Competition between the hydrophobic penalty and the elec-
troelastic stress is also crucial in membrane electroporation,
with the hydrophobic energy penalty proportional to the sur-
face area of the water-filled cavity created in forming an
aqueous plume or a membrane-spanning pore �see Ref. 62
for a review�.

We now consider possible competition between the two
mechanisms of charge stabilization: continuum electroelastic
coupling6,21 and water penetration of the membrane’s hydro-
phobic core. Presumably, the latter can prevent huge, un-
physical elastic perturbations predicted by the elastic treat-
ment �Sec. II B�. Once formed in the membrane’s
hydrophobic interior, a water-filled cavity’s energy is most
simply described by15,63

Ehydro = �A , �6�

with A the hydrophobic pore’s total area. A wide � range,
typically 0.04–0.12 kT /Å2, has been proposed in studies of
peptide insertion and electroporation �see Refs. 47, 50, 57,
and 64–66 and references therein�. We treat � as a model
parameter and analyze its effect on competition between the
two charge stabilization mechanisms. This is reasonable not
only because of uncertainties in the “correct” �, but also
because our treatment of the aqueous cavity approximates it
by smooth geometric shapes, ignoring atomic structure.
Given this approximation, more precise specification of �
would be out of place �see also Ref. 66�.
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D. kMC reaction path following

Reaction barrier crossing is commonly analyzed by de-
fining a physically based reaction coordinate and forcing sys-
tem evolution along this path. kMCRPF �Ref. 28� affects this
rapidly and correctly. It has been used to study ion and water
permeation through the ClC chloride and aquaporin
pores68,69 and gating in gramicidin A.70 Here we apply it to
force the charge or the water dimple across the membrane
and find minimum-energy pathways and energy profiles
along the reaction paths. For illustration, assume a charge
crosses the membrane. kMCRPF navigates on the energy
surface as follows: �i� choose zq �the charge’s z-coordinate�
as the reaction coordinate; �ii� allow only unidirectional
�constrained� motion of the charge along the reaction coor-
dinate, with all other degrees of freedom unconstrained and
free to relax. The kMCRPF algorithm28 involves the follow-
ing steps. �1� Calculate the initial system energy Eold. �2�
Perform a unidirectional move along the reaction coordinate.
�3� Calculate the energy Enew of a new state with �E=Enew

−Eold. �4� If �E�0, accept this trial move; if �E0, accept
the trial move if ��exp�−�E /kBT�, where � is a random
number between 0 and 1; otherwise reject it, reduce the
move step length along the reaction coordinate and repeat
step �2�. �5� Use the unconstrained Metropolis MC method71

to perform many MC trials relaxing the other degrees of
freedom while fixing the reaction coordinate and then return
to step �2�.

Processes such as pore formation, water plume penetra-
tion, etc. are not readily observed directly. To apply kM-
CRPF and simulate charge translocation we parametrize per-
turbation profiles. Five basic, fairly general fluctuation
shapes �panels 1–5: cylinder, ellipse, ellipse-cone, dimple,
and ellipse-dimple, respectively� are illustrated in Fig. 2.
Shapes 1–3 depict perturbations describing the membrane’s
hydrophobic core and are treated as EHS, with hydrophobic
energy given by Eq. �6�. Shapes 4 and 5 are treated differ-
ently. If considered as embedded in the hydrophobic core,
they are described by EHS �as were shapes 1–3�. However, if
viewed as elastic membrane perturbations dimples are
treated by EED except for the ellipse of panel 5. Shape 5 is
treated in mixed mode as a hydrophobic plume �EHS� on top
of an elastic dimple. In shapes 4 and 5 water dimples are
parametrized as either Gaussian or Hertzian forms. Thus,
shape 5 is composite, where the charge induces both mem-
brane distortion �the lower, blue dimple, modeled as EED�

and an elliptic plume �the upper, green pore, viewed as
EHS�. Here plume and dimple are free to separate, merge, or
overlap. Dielectric constants of 40, 60, and 80 were assigned
the water-filled elliptic pore.

The various shapes permit increasing descriptive flex-
ibility. The relaxing degrees of freedom are �1� pore radius,
�2� ellipse axes’ lengths, �3� length of the cones’ base and
ellipse axes’ lengths, �4� the dimple amplitudes and decay
lengths u1, u2 and �1, �2, and �5� elliptical plume axes’
lengths �treated as EHS� and dimple amplitudes and decay
lengths u1, u2 and �1, �2 �treated as EED�. With dimple
amplitude as the reaction coordinate, the charge’s
z-coordinate zq is a relaxing degree of freedom �with the
charge’s location fluctuating axially�. Otherwise the charge is
fixed for each zq. In this way the kMCRPF approach permits
either a charge or a water dimple to navigate on an energy
surface, find the minimum-energy pathways, and determine
the associated energy profiles. In addition to establishing the
effect of charge location, calculations were carried out at
three ionic strengths, 0, 100, and 200 mM; results were ionic
strength independent.

Continuum electroelastics of membrane electrolyte as-
sembly �CE-MEA� parallel computer code was developed in
mixed FORTRAN 90/95 and C/C��. It was implemented using
the MPI-2 standard for parallel communications. This code
runs on Linux or Windows Intel clusters with 64 bit address-
ing.

III. RESULTS AND DISCUSSION

A. Water dimple movement across a membrane: EED

Here membrane fluctuations associated with water
dimples are treated by elastic theory. By fixing the charge at
some zq, we determine energy profiles for transmembrane
movement of an “elastic water dimple.” The amplitude u1

�the reaction coordinate� of the lower dimple is unidirection-
ally constrained to increase while the other degrees of free-
dom �1, u2, and �2 are freely variable. We explored the pa-
rameter domain �0.5e�q�1.5e ,−12�zq�0� to study
energetics of charge-membrane-water interactions. Total en-
ergy profiles, the sum of electrostatic and elastic contribu-
tions, as functions of water dimple amplitude are illustrated
in Fig. 3 for a DOPC membrane and plotted separately for
four different charge values q. Each of the seven curves
graphs the total energy of a membrane-embedded point

FIG. 2. Parametrized profiles of water pores �panels 1 and 3� and water plumes �panels 2, 4, and 5� used for simulating charge translocation across the
membrane. The water phase within the membrane core treated with the EHS and the EED is colored in green and blue, respectively. The water dimples with
the Hertzian shapes are illustrated in panels 4 and 5. The pictures are generated using the CE-MEA code.
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charge at a specific axial position zq. The charge is sur-
rounded by a 2 Å radius sphere of dielectric constant �=1
with membrane and water � of 2 and 80, respectively.
Dimples of Hertzian shape are only considered in the context
of electroelastic coupling �e.g., in the EED treatment�.

Figures 3�a�–3�d� present total energy profiles in q−zq

space. At midmembrane �zq=0� a 0.5e charge cannot be sol-
vated by the elastic dimples; the total energy grows mono-
tonically with u1. Increasing the charge reduces the energy
penalty for fluctuation �the ponderomotive effect�, and for
q=0.8e a local minimum is present for large u1. Further in-
creasing q deepens the well and reduces the activation barrier
for solvation. The barrier of �10 kT for q=0.8e disappears
for q	1.5e, where the membrane’s only stable state corre-
sponds to a huge perturbation �with dimple amplitude of
�16 Å� solvating the ion. Simultaneously the solvation well
deepens with q from �0 kT �q=0.8e� to �−95 kT
�q=1.5e�. The critical value of q leading to spontaneous
�barrierless� solvation depends on zq. It decreases as the
charge approaches the surface and for zq� �−4 Å the ion is
spontaneously solvated for all q considered. For u1=0 Å
�the corresponding u2�0; the other membrane surface is
practically unperturbed�, the total energy drops as the charge
approaches the surface. The minimum-energy conformation
is for an undeformed membrane with the charge in bulk wa-
ter. All other conformations have higher energy. When the
dimple reaches the charge and “swallows” it, the elastic en-
ergy component becomes solely responsible for the cost of
further membrane deformation, while the electrostatic com-
ponent stays practically unchanged. The dynamics of water
dimple development, its growth and charge solvation, is il-
lustrated in Fig. 4 �see online enhanced video�. The ampli-
tude u1 is for elastic dimple growth in the lower part of a
DOPC membrane, as seen in Fig. 4.

Amplitude dependent electrostatic and elastic energy
profiles are illustrated in Figs. 5�a� and 5�b�, respectively,
with electrostatic profiles shown for q=0.5e, roughly scaling
as q2. Thus, the total energy drop of �15 kT �q=0.5e� be-
comes �60 kT �q=1.0e�. For zq�−4 Å, the electrostatic
energy first nearly plateaus and then drops abruptly �upper
three curves in Fig. 5�a�� with increasing dimple amplitude.

FIG. 3. Total energy profiles as functions of elastic water dimple amplitude
for a charge crossing a DOPC membrane �h0=26 Å�. Four charge values
are considered: �a� q=0.5e, �b� q=0.8e, �c� q=1.0e, and �d� q=1.5e. Each
panel plots the energy of a point charge bound to the membrane at rq

=0 Å for different axial positions zq. In all cases the energy is defined with
respect to the following reference state: an unperturbed membrane with the
charge immobilized in bulk water �zq=−16 Å�.

FIG. 4. kMC reaction path following of the lower water dimple across a DOPC membrane. A charge of q=1.0e is fixed at zq=0 Å. Dimple amplitude u1

grows from bottom to top. Its decay length �1 is freely variable. The lower water dimple reaches the charge, solvates it, and then grows further. Dimple growth
was followed to zq=8 Å. The amplitude and decay length of the upper dimple are free to fluctuate. The upper membrane interface is also allowed to fluctuate
upward thus protruding into the bulk water. The movie is produced using the CE-MEA code �enhanced online�. �URL: http://dx.doi.org/10.1063/1.3442414.1�
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For zq�−4 Å, the electrostatic energy always drops sharply
�lower four curves in Fig. 5�a��. The electrostatic energy is
practically constant after the charge is incorporated by the
water dimple �bottom plateau in Fig. 5�a��. The elastic en-
ergy steadily increases as the water dimple penetrates further
into the membrane, independent of charge position or mag-
nitude �Fig. 5�b��, demonstrating that the optimized shape of
the dimple is most affected by the interplay between the
stretching and bending elastic contributions while the
charge’s electric field only plays a minor role. This also ac-
counts for the �q2-dependence of the electrostatic compo-
nent of the optimized energy, only possible for linear media
�� q-independent� with fixed geometry �dimple shape
q-independent�.

Thus, the charge’s solvation energy is bistable. For some
q0.8e there is a low-energy state where the water dimple
solvates the charge. However, the associated membrane de-
formations are often large, apparently in excess of values
consistent with the harmonic elastic treatment.22 This un-
physical behavior prompts consideration of an additional
route to instability, one where elastic fluctuations trigger lo-
cal water penetration into the membrane’s hydrophobic core.
A joint treatment is discussed next demonstrating that

switching from EED to EHS reduces the upper limit of elas-
tic dimple amplitudes dramatically to �7–8 Å. Put differ-
ently, allowing for this local “breakdown” suppresses the
huge deformations predicted by purely elastic treatments.6,21

It must be noted that our estimates of the “switching ampli-
tude” are semiquantitative, given the approximations inher-
ent in the EHS model.

B. Charge movement across a membrane:
EED-EHS coupling

To describe water penetration of the membrane’s hydro-
phobic core, we couple the pore forming �EHS� and elastic
�EED� mechanisms. As the charge position zq and the water
dimple amplitudes u1 and u2 can all vary, any may be the
independently constrained reaction coordinate along the
z-direction. We choose zq, apply kMCRPF, and describe
membrane relaxation as a process forming water dimples
and/or water-filled hydrophobic pores. The charge was
tracked from the lower interface �zq�−13 Å� to midmem-
brane �zq=0 Å�. After each accepted move along zq, the
other degrees of freedom were relaxed using 200 MC trials.
In all calculations described a charge of 1.0e was used.

Figures 6�a� and 6�b� plot total energy profiles for the
pore and plume shapes of Fig. 2 for a DOPC membrane with
interfacial tension constants �=0.08 and 0.04 kT /Å2, re-
spectively. Energy is measured relative to that for the charge
fixed in bulk water �zq=−16 Å� abutting an unperturbed
�flat� membrane. Figure 6 shows that surface fluctuations due
to water dimple formation �EED� significantly �by �20 kT�
lower the energy barrier relative to that of the unperturbed
�planar� membrane and qualitatively change the profiles from
“bell-shaped” �black curve� to “parabolic” �thick red and
green curves�. Cyan �square� and blue �circle� curves de-
scribe cylindrical and merged ellipse-cone shapes �Fig. 2,
panels 1 and 3, respectively�. The cylindrical pore �Fig. 2,
panel 1� initially remains closed; consequently the black and
cyan �square� curves in the left part of Fig. 6 are effectively
superposable. As the charge penetrates the membrane, a cy-
lindrical pore of fluctuating radius �Fig. 2, panel 1� is cre-
ated, which remains open as the charge moves toward mid-
membrane. The zq at which opening a cylindrical pore occurs
is a �-dependent value �Figs. 6�a� and 6�b��. The blue �circle�
curve, corresponding to a merged ellipse-cone shape, is
closer to the thick red and green curves. The five closely
spaced curves intermediate between cyan �square� and blue
�circle� traces describe elliptical �Fig. 2, panel 2� and Gauss-
ian and Hertzian shaped dimples without �Fig. 2, panel 4�
and with the elliptical plume �Fig. 2, panel 5�. These various
pore and plume shapes have essentially no effect on the en-
ergy profiles. This �generally closely bunched� set of five
thin curves also illustrates energetic consequences of interfa-
cial tension on hydrophobic pore formation �EHS�. Elastic
dimples are energetically favored over plumes or pores at all
zq for larger �, �0.08 kT /Å2 �Fig. 6�a��. Equation �6� indi-
cates that the energy barrier should increase for �
0.08 kT /Å2. If ��0.06 kT /Å2, elastic dimples are fa-

vored near the membrane surface �zq�−4 Ǻ� with water

plumes more stable near midmembrane �zq�−4 Ǻ� by

FIG. 5. Electrostatic �a� and elastic �b� energy profiles as functions of water
dimple amplitude for a charge bound to a DOPC membrane at rq=0 Å and
various zq. Electrostatic profiles are for q=0.5e. The Fig. 3 reference con-
vention is used.
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�18 kT �Fig. 6�b��. For yet smaller �, �0.04 kT /Å2,
switching could occur even nearer the membrane-water in-
terface.

Figure 7 illustrates total energy profiles as a function of
zq in DOPC for “hybrid” fluctuations �Fig. 2, panel 5�, de-
scribing plume water with an � of 80. Charge translocation
induces both elliptic water plume and elastic dimple fluctua-
tions everywhere on the pathway �Fig. 8, see online en-
hanced video in .mov format where the charge moves up
across a DOPC membrane�. Near midmembrane �zq
−6 Å� the water plume dominates energetics �Fig. 8� and the
total energy �Fig. 7, four curves with symbols� is less than
that of the pure elastic model �Fig. 7, two upper curves with-
out symbols�. Hertzian dimples are always slightly favored
over Gaussian ones. The energy barrier drops as � decreases.
Elastic fluctuations at the membrane-water interface promote
water penetration into the membrane interior. Both EED and
EHS contribute to charge solvation.

The dielectric properties of water plumes in the hydro-
phobic core of the membrane may differ from those of bulk
water. Figure 9 illustrates the energetic effects of varying
water plume � and � for hybrid EED/EHS fluctuations �with
Hertzian dimples�. For zq�−6 Å, the hybrid profiles of
Figs. 7 and 9 closely mimic those of the pure elastic model
�solid lines�. However, for zq−6 Å energy barriers clearly
drop due to water plume influences. Energy barriers are
higher for water plumes with smaller � and larger �. For a
midmembrane charge �zq=0 Å� the energy varies within an
�10 kT range, regardless of � or �.

Energy profiles are also sensitive to membrane elastic
moduli. Total energies as functions of zq in DOPC and
DMPC membranes for hybrid fluctuations �panel 5� are plot-
ted in Fig. 10 for a plume of � 80. DOPC exhibits lower
barriers, presumably due to its smaller bending modulus.
Again, lowering � also reduces the barrier.

Charge solvation switches from EED to EHS at interme-
diate perturbation amplitudes. Figure 11 presents the mean
amplitudes of Gaussian elastic dimples in DOPC membranes
as functions of zq. Amplitudes grow as the charge moves
toward midmembrane. If plume formation is suppressed the
amplitude grows steadily up to �15 Å �black curve with
squares�. Otherwise, dimple amplitude increases to �8 Å
and then declines �green curve�. This behavior is affected by
the tension coefficient �compare green and red curves�. Thus,
nearer the membrane-water interface �zq�−8 Å� charge sol-
vation mainly reflects water dimple influences. For zq
−8 Å and �=0.04 kT /Å2 dimple amplitudes drop due to
plume effects on charge solvation energetics and the dimple
essentially disappears. Water penetrates the membrane’s in-
terior and solvates the charge, an effect very sensitive to the
tension constant for a midmembrane charge: for low � an
elliptic water-filled pore forms with a dramatic decease in
dimple amplitude �green �triangles� curve in Fig. 11�.

FIG. 6. Total energy profiles as a function of charge position in a DOPC
membrane. The thick black curve illustrates the energy for a flat membrane
�no water dimples or plumes�. Thick red and green curves are energies for
elastic Gaussian and Hertzian shaped dimples, respectively, calculated using
the EED model. Thin curves plot energy profiles for the water plume shapes
of Fig. 2, described by the EHS model with interfacial tension �
=0.08 kT /Å2 �a� and �=0.04 kT /Å2 �b�. Cyan �squares� and blue �circles�
on two thin curves are the upper and lower limiting cases that correspond to
cylindrical and merged ellipse-cone shapes �Fig. 2, panels 1 and 3, respec-
tively�. The other five curves are closely spaced and intermediate between
these two.

FIG. 7. Total energy profiles as functions of zq in a DOPC membrane for
“hybrid” fluctuations with an elliptic water plume described by EHS and
elastic water dimples described by EED �Fig. 2, panel 5�. The water plume
was assigned surface tension constants �=0.04 kT /Å2 and �
=0.08 kT /Å2. Effects due to both Gaussian and Hertzian dimple shapes are
depicted. GED and HED refer to Gaussian and Hertzian shaped dimples,
and HWE refers to plume shape: the hydrophobic water ellipse �Fig. 2,
panel 5�.
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IV. CONCLUSIONS

We developed a novel continuum model for studying
interactions between membrane-embedded charges and the
membrane-water surface fluctuations in multidielectric envi-
ronments. This model treats the reaction field of membrane-
embedded charges, membrane elastic deformations, and for-
mation of hydrophobic water-filled pores and plumes in the
membrane interior. A unique feature couples electro/elastic/
hydrophobic energy calculations with the kMCRPF method
to evolve the membrane-water-charge system along the reac-
tion coordinate. This introduces dynamics into the continuum
model.

Membrane fluctuations play important roles in stabiliz-
ing membrane-bound charges. Charges far from the mid-
plane, zq�−4 Å, always promote significant thickness fluc-

tuations and are solvated by elastic water dimples. Nearer
midmembrane, a larger charge is required for membrane
breakdown, triggering pore or plume formation. For a charge
at midmembrane, this critical value is q�0.8e. This charge-
solvated state and the associated elastic deformations far ex-
ceed elastic theory’s range of validity,22 strongly suggesting
that at some point there must be a switch from elastic mem-
brane surface fluctuations to water-filled hydrophobic pore
formation.

The transmembrane transition energy barrier is strongly
affected by fluctuations and differs significantly from the
classical picture, a planar �unperturbed� membrane. The op-
timized barrier shape alters from a wide bell to a parabola.
Similar behavior was seen in atomistic MD simulations
translating a charged arginine side chain across a lipid
bilayer.17

FIG. 8. Hybrid fluctuations with an elliptic water plume �EHS� and elastic Hertzian water dimples �EED� for a charge crossing a DOPC membrane. The video
depicts the case with �=0.04 kT /Å2. The charge moves from bottom to top. Near the membrane-water interface charge solvation mainly reflects elastic water
dimple influences. As the charge approaches midmembrane, the water plume takes control. The size and shape of the plume fluctuate occasionally forming a
continuous shunt. The movie is produced using the CE-MEA code �enhanced online�. �URL: http://dx.doi.org/10.1063/1.3442414.1�

FIG. 9. Total energy profiles as functions zq in a DOPC membrane for
hybrid fluctuations, illustrating the effects of varying water plume � and
interfacial tension �. The black curve is the water plume-free case. Hertzian
dimple shapes are used throughout.

FIG. 10. Total energy profiles as functions of charge position in DOPC and
DMPC membranes for hybrid fluctuations. Profiles for a � of 0.04 and
0.08 kT /Å2 are illustrated.
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Nearer the membrane-water interface, zq�−6 Å, charge
stabilization mainly reflects elastic dimple formation with a
small additional effect from water penetration. For zq
−6 Å a penetrating water plume dominates solvation; its for-
mation is promoted by elastic fluctuations due to increased
electric field strength near the top of the dimple.6 Overall
charge translocation is strongly affected by the combined
effect of the elastic and hydrophobic fluctuations. In the ex-
amples considered they reduce the barrier from �60–65 kT
�planar membrane� to �25–30 kT. For comparison, the en-
ergy barrier found in MD simulations17 was �28.5 kT.

System behavior depends strongly on the parameters de-
scribing the water plume �dielectric and tension constants�.
The energy barrier drops with decreasing interfacial tension.
Estimates of � vary widely,47,50,57,64–66 depending on interac-
tion between hydrophobic bilayer organizational forces and
curvature energy due to lipid head group tilt, attenuating hy-
drophobic influences. Our analysis indicates that the hydro-
phobic mechanism is competitive with elastic dimple forma-
tion for smaller �. It should be noted that there are other
important mechanisms that can assist in water penetration;
among them perturbation of the packing of lipid headgroups,
making the membrane interior more accessable.72

The major feature of our analysis is its self-consistent
treatment of electric fields and membrane perturbations,
achieved by equilibrating local fluctuation profiles, crucial
for the consistent analysis of charge stabilization. This differs
from an earlier treatment21 where membrane profiles are im-
posed rather than determined by equilibration. That study
predicted huge ��20 Å� deformation amplitudes, suggesting
the possibility of a hydrophobic mechanism.

Our analysis is likely applicable to voltage gating ion
channels, which can involve large transmembrane motion of
gating charges.8–10 Despite the voluminous simulation data
available,17–20,23,73,74 the physical basis for the relatively
small translocation barrier �only a few kT, consistent with
transmembrane voltages of ��100 mV� is not yet under-
stood. Another area where interfacial fluctuation may play a
crucial role is in the transmembrane movement of ions.75 It

should be noted that charged-induced fluctuations, effec-
tively smoothing the water/membrane boundary, can provide
a rationale for introducing a transitional region of increased
dielectric constant as done in some continuous treatments.76

ACKNOWLEDGMENTS

This work is supported by the NIH under Grant No.
GM-28643 and by Purdue University. Computational re-
sources are provided by the NCSA under Grant No.
MCB080096N. Thanks are due the referees for valuable
comments.

1 J. M. Crowley, Biophys. J. 13, 711 �1973�.
2 M. B. Partenskii, V. L. Dorman, and P. C. Jordan, J. Chem. Phys. 109,
10361 �1998�.

3 M. B. Partenskii and P. C. Jordan, in Liquid Interfaces in Chemical,
Biological, and Pharmaceutical Applications, edited by E.G. Volkov
�Marcel Dekker, New York, 2001�, p. 51.

4 E. Gouaux and R. MacKinnon, Science 310, 1461 �2005�.
5 C. Chen, S. W. Smye, M. P. Robinson, and J. A. Evans, Med. Biol. Eng.
Comput. 44, 5 �2006�.

6 M. B. Partenskii, G. V. Miloshevsky, and P. C. Jordan, Isr. J. Chem. 47,
385 �2007�.

7 S. I. Börjesson and F. Elinder, Cell Biochem. Biophys. 52, 149 �2008�.
8 Y. Jiang, A. Lee, J. Chen, V. Ruta, M. Cadene, B. T. Chait, and R.
MacKinnon, Nature �London� 423, 33 �2003�.

9 Y. Jiang, V. Ruta, J. Chen, A. Lee, and R. MacKinnon, Nature �London�
423, 42 �2003�.

10 S. B. Long, E. B. Campbell, and R. Mackinnon, Science 309, 903
�2005�.

11 A. Parsegian, Nature �London� 221, 844 �1969�.
12 A. Georgallas, J. D. MacArthur, X.-P. Ma, C. V. Nguyen, G. R. Palmer,

M. A. Singer, and M. Y. Tse, J. Chem. Phys. 86, 7218 �1987�.
13 D. Sitkoff, K. A. Sharp, and B. Honig, J. Phys. Chem. 98, 1978 �1994�.
14 B. Roux, Biophys. J. 73, 2980 �1997�.
15 D. Sitkoff, N. Ben-Tal, and B. Honig, J. Phys. Chem. 100, 2744 �1996�.
16 P. Koehl, Curr. Opin. Struct. Biol. 16, 142 �2006�.
17 S. Dorairaj and T. W. Allen, Proc. Natl. Acad. Sci. U.S.A. 104, 4943

�2007�.
18 T. W. Allen, J. Gen. Physiol. 130, 237 �2007�.
19 L. B. Li, I. Vorobyov, A. D. MacKerell, Jr., and T. W. Allen, Biophys. J.

94, L11 �2008�.
20 L. Li, I. Vorobyov, and T. J. Allen, J. Phys. Chem. B 112, 9574 �2008�.
21 S. Choe, K. A. Hecht, and M. Grabe, J. Gen. Physiol. 131, 563 �2008�.
22 L. Landau and E. Lifshitz, Theory of Elasticity �Pergamon, New York,

1986�.
23 A. A. Gurtovenko and I. Vattulainen, J. Am. Chem. Soc. 127, 17570

�2005�.
24 D. C. Rapaport, The Art of Molecular Dynamics Simulation, 2nd ed.

�Cambridge University Press, Cambridge, England, 2004�.
25 G. V. Miloshevsky and P. C. Jordan, Structure �London� 14, 1241 �2006�.
26 G. V. Miloshevsky and P. C. Jordan, Structure �London� 15, 1654 �2007�.
27 T. Simonson, Curr. Opin. Struct. Biol. 11, 243 �2001�.
28 G. V. Miloshevsky and P. C. Jordan, J. Chem. Phys. 122, 214901 �2005�.
29 M. B. Partenskii, G. V. Miloshevsky, and P. C. Jordan, Biophys. J. 94,

387 �2008�.
30 M. B. Partensky, G. V. Miloshevsky, A. Hassanein, and P. C. Jordan,

Biophys. J. 96, 663a �2009�.
31 F. Fogolari, A. Brigo, and H. Molinari, J. Mol. Recognit. 15, 377 �2002�.
32 D. Andelman, in Handbook of Biological Physics, edited by R. Lipowsky

and E. Sackman �Elsevier, New York, 1995�, Vol. 1, Chap. 12.
33 I. Klapper, R. Hagstrom, R. Fine, K. Sharp, and B. Honig, Proteins 1, 47

�1986�.
34 B. Honig, K. Sharp, and A. S. Yang, J. Phys. Chem. 97, 1101 �1993�.
35 Z. Zhou, P. Payne, M. Vasquez, N. Kuhn, and M. Levitt, J. Comput.

Chem. 17, 1344 �1996�.
36 P. C. Jordan, R. J. Bacquet, J. A. McCammon, and P. Tran, Biophys. J.

55, 1041 �1989�.
37 J. D. Jackson, Classical Electrodynamics, 3rd ed. �Wiley, New York,

1999�.
38 P. R. Amestoy, A. Guermouche, J. Y. L’Excellent, and S. Pralet, Parallel

FIG. 11. Averaged �over 200 MC trials for each zq� amplitudes of Gaussian-
shaped elastic dimples in DOPC membranes as functions of zq. Conventions
of Fig. 7 apply.

234707-10 Miloshevsky et al. J. Chem. Phys. 132, 234707 �2010�

http://dx.doi.org/10.1016/S0006-3495(73)86017-5
http://dx.doi.org/10.1063/1.477691
http://dx.doi.org/10.1126/science.1113666
http://dx.doi.org/10.1007/s11517-005-0020-2
http://dx.doi.org/10.1007/s11517-005-0020-2
http://dx.doi.org/10.1560/IJC.47.3-4.385
http://dx.doi.org/10.1007/s12013-008-9032-5
http://dx.doi.org/10.1038/nature01580
http://dx.doi.org/10.1038/nature01581
http://dx.doi.org/10.1126/science.1116270
http://dx.doi.org/10.1038/221844a0
http://dx.doi.org/10.1063/1.452323
http://dx.doi.org/10.1021/j100058a043
http://dx.doi.org/10.1016/S0006-3495(97)78327-9
http://dx.doi.org/10.1021/jp952986i
http://dx.doi.org/10.1016/j.sbi.2006.03.001
http://dx.doi.org/10.1073/pnas.0610470104
http://dx.doi.org/10.1085/jgp.200709850
http://dx.doi.org/10.1529/biophysj.107.121566
http://dx.doi.org/10.1021/jp7114912
http://dx.doi.org/10.1085/jgp.200809959
http://dx.doi.org/10.1021/ja053129n
http://dx.doi.org/10.1016/j.str.2006.06.007
http://dx.doi.org/10.1016/j.str.2007.09.022
http://dx.doi.org/10.1016/S0959-440X(00)00197-4
http://dx.doi.org/10.1063/1.1924501
http://dx.doi.org/10.1016/S0006-3495(08)79067-2
http://dx.doi.org/10.1016/j.bpj.2008.12.3503
http://dx.doi.org/10.1002/jmr.577
http://dx.doi.org/10.1002/prot.340010109
http://dx.doi.org/10.1021/j100108a002
http://dx.doi.org/10.1002/(SICI)1096-987X(199608)17:11<1344::AID-JCC7>3.0.CO;2-M
http://dx.doi.org/10.1002/(SICI)1096-987X(199608)17:11<1344::AID-JCC7>3.0.CO;2-M
http://dx.doi.org/10.1016/S0006-3495(89)82903-0
http://dx.doi.org/10.1016/j.parco.2005.07.004


Comput. 32, 136 �2006�.
39 W. Helfrich, Z. Naturforsch. C 28, 693 �1973�.
40 H. J. Deuling and W. Helfrich, J. Phys. �France� 37, 1335 �1976�.
41 P. Jordan, G. Miloshevsky, and M. Partenskii, in Interfacial Catalysis,

edited by A. G. Volkov �Dekker, New York, 2003�, Vol. 95, Chap. 3.
42 G. V. Miloshevsky, V. A. Sizyuk, M. B. Partenskii, A. Hassanein, and P.

C. Jordan, J. Comput. Phys. 212, 25 �2006�.
43 S. A. Safran, Statistical Thermodynamics of Surfaces, Interfaces and

Membranes �Westview, Boulder, CO, 2003�.
44 R. L. Goforth, A. K. Chi, D. V. Greathouse, L. L. Providence, R. E.

Koeppe, and O. S. Andersen, J. Gen. Physiol. 121, 477 �2003�.
45 M. B. Partenskii, G. V. Miloshevsky, and P. C. Jordan, J. Chem. Phys.

118, 10306 �2003�.
46 D. Reeves, T. Ursell, P. Sens, J. Kondev, and R. Phillips, Phys. Rev. E

78, 041901 �2008�.
47 H. W. Huang, Biophys. J. 50, 1061 �1986�.
48 M. B. Partenskii and P. C. Jordan, J. Chem. Phys. 117, 10768 �2002�.
49 P. Helfrich and E. Jakobsson, Biophys. J. 57, 1075 �1990�.
50 T. A. Harroun, W. T. Heller, T. M. Weiss, L. Yang, and H. W. Huang,

Biophys. J. 76, 3176 �1999�.
51 C. Nielsen and O. S. Andersen, Biophys. J. 79, 2583 �2000�.
52 W. Rawicz, K. C. Olbrich, T. McIntosh, D. Needham, and E. Evans,

Biophys. J. 79, 328 �2000�.
53 E. A. Evans and D. Needham, J. Phys. Chem. 91, 4219 �1987�.
54 E. A. Evans and W. Rawicz, Phys. Rev. Lett. 64, 2094 �1990�.
55 Alberts A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Mo-

lecular Biology of the Cell, 4th ed. �Garland Science, New York, 2002�.
56 J. A. Lundbæk and O. S. Andersen, Biophys. J. 76, 889 �1999�.
57 P. L. Kuzmin, S. A. Akimov, Y. A. Chizmadzhev, J. Zimmerberg, and F.

C. Cohen, Biophys. J. 88, 1120 �2005�.
58 C. Nielsen, M. Goulian, and O. S. Andersen, Biophys. J. 74, 1966

�1998�.
59 O. S. Andersen, C. Nielsen, A. M. Maer, J. A. Lundbæk, M. Goulian, and

R. E. Koeppe II, Biol. Skr. Dan. Vid. Selsk. 49, 75 �1998�.
60 J. A. Lundbæk, O. S. Andersen, T. Werge, and C. Nielsen, Biophys. J.

84, 2080 �2003�.
61 N. Dan, A. Berman, P. A. Pincus, and S. A. Safran, J. Phys. II 4, 1713

�1994�.
62 J. Weaver and Y. Chizmadzhev, Bioelectrochem. Bioenerg. 41, 135

�1996�.
63 L. D. Landau and E. M. Lifshitz, Statistical Physics �Addison-Wesley,

Reading, MA, 1969�.
64 Z.-J. Wang and D. Frenkel, J. Chem. Phys. 123, 154701 �2005�.
65 P. Boucher, B. Joos, M. Zuckermann, and L. Fournier, Biophys. J. 92,

4344 �2007�.
66 In this respect it would be also appropriate to mention the existing con-

troversy in estimating the energy of the hydrophobic voids formed in the
process of membrane fusion �see Ref. 67 and reference therein�.

67 V. S. Markin and J. P. Albanesi, Biophys. J. 82, 693 �2002�.
68 G. V. Miloshevsky and P. C. Jordan, Biophys. J. 86, 825 �2004�.
69 G. V. Miloshevsky and P. C. Jordan, Biophys. J. 87, 3690 �2004�.
70 G. V. Miloshevsky and P. C. Jordan, Biophys. J. 86, 92 �2004�.
71 N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, J.

Chem. Phys. 21, 1087 �1953�.
72 J. F. Nagle, J. C. Mathai, M. L. Zeidel, and S. Tristram-Nagle, J. Gen.

Physiol. 131, 77 �2007�.
73 H. Leontiadou, A. E. Mark, and S.-J. Marrink, Biophys. J. 92, 4209

�2007�.
74 A. A. Gurtovenko and I. Vattulainen, Biophys. J. 92, 1878 �2007�.
75 S. Paula, A. G. Volkov, and D. W. Deamer, Biophys. J. 74, 319 �1998�.
76 S. Tanizaki and M. J. Feig, Chem. Phys. 122, 124706 �2005�.

234707-11 Surface fluctuations and embedded charges J. Chem. Phys. 132, 234707 �2010�

http://dx.doi.org/10.1016/j.parco.2005.07.004
http://dx.doi.org/10.1016/j.jcp.2005.06.013
http://dx.doi.org/10.1085/jgp.200308797
http://dx.doi.org/10.1063/1.1572460
http://dx.doi.org/10.1103/PhysRevE.78.041901
http://dx.doi.org/10.1016/S0006-3495(86)83550-0
http://dx.doi.org/10.1063/1.1519840
http://dx.doi.org/10.1016/S0006-3495(90)82625-4
http://dx.doi.org/10.1016/S0006-3495(99)77469-2
http://dx.doi.org/10.1016/S0006-3495(00)76498-8
http://dx.doi.org/10.1016/S0006-3495(00)76295-3
http://dx.doi.org/10.1021/j100300a003
http://dx.doi.org/10.1103/PhysRevLett.64.2094
http://dx.doi.org/10.1016/S0006-3495(99)77252-8
http://dx.doi.org/10.1529/biophysj.104.048223
http://dx.doi.org/10.1016/S0006-3495(98)77904-4
http://dx.doi.org/10.1016/S0006-3495(03)75015-2
http://dx.doi.org/10.1051/jp2:1994227
http://dx.doi.org/10.1016/S0302-4598(96)05062-3
http://dx.doi.org/10.1063/1.2060666
http://dx.doi.org/10.1529/biophysj.106.092023
http://dx.doi.org/10.1016/S0006-3495(02)75432-5
http://dx.doi.org/10.1016/S0006-3495(04)74158-2
http://dx.doi.org/10.1529/biophysj.104.043315
http://dx.doi.org/10.1016/S0006-3495(04)74087-4
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1085/jgp.200709849
http://dx.doi.org/10.1085/jgp.200709849
http://dx.doi.org/10.1529/biophysj.106.101295
http://dx.doi.org/10.1529/biophysj.106.094797
http://dx.doi.org/10.1016/S0006-3495(98)77789-6

