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Abstract
Flow cytometry is a key technology in the study of HIV disease. In this article, we review various
cellular markers that can be measured in the setting of pathogenesis or vaccination studies,
including markers of activation, differentiation, senescence, immune suppression, and function. In
addition, we discuss important considerations for making these measurements. Finally, we
examine how flow cytometry studies have taught researchers about the disease process, and the
potential for flow cytometry technology to guide treatment decisions and evaluate vaccine
candidates in the future.
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Introduction
With 33 million existing cases, and 7000 cases diagnosed daily, the worldwide scope of the
HIV/AIDS epidemic is immense (1). Accordingly, the scientific resources directed at the
problem are enormous (more than $10 billion within the last decade alone) (2). In particular,
significant effort is devoted to the clinical monitoring of CD4 T-cell counts (3), which is
used to guide treatment decisions (4). However, beyond the clinic, a myriad of other cell
subsets are studied in HIV+ populations, with the aim of predicting disease prognosis,
developing new targets for therapy, finding surrogate markers for vaccine efficacy, or
understanding disease pathogenesis.

Flow cytometry has emerged as the primary technical tool for these endeavors, in part
because of its historical application defining immune cell subsets (5). Indeed, many of the T-
cell subsets altered by HIV disease were first identified by flow cytometry. The volume of
literature in this area is a testament to the power of flow cytometry; it is ideally suited for
understanding the cellular changes associated with HIV because it measures protein
expression at the single-cell level. This characteristic allows researchers to define, with
exquisite specificity, the immune cells and functions that play a role in HIV disease.

Cellular Parameters Studied in HIV Disease
Over the past 25 years of HIV research, flow cytometry has revealed a host of molecules
modulated over the course of disease. Early studies used flow cytometry to describe changes
in the peripheral blood that led to immunodeficiency (6),(7), and confirmed that the loss of
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CD4+ T-cells was a hallmark of infection. A great deal of work since has sought to define
the reasons for this loss and further describe the biology of infection. This work has helped
define many new T-cell subsets, thereby demonstrating the power of flow cytometry, and
such efforts continue today (8). When designing new studies, researchers typically must
choose a subset of these molecules to examine. The decision is best made with an
understanding of each marker’s biology and what changes indicate about disease
progression. In this review, we first examine fundamental aspects of the biology and
measurement of various markers. In later sections, the role of these molecules in disease
pathogenesis will be described.

Markers of activated cells
The activation of T-cells is a key aspect of HIV pathogenesis (8). It accelerates viral
replication (9),(10),(11), and is a strong predictor of disease progression (even
independently of CD4+ T-cell counts) (12),(13),(14),(15). Notably, low levels of activated
cells may even be associated with resistance to infection (i.e., in highly exposed, persistenly
seronegative women (16)), while high levels of immune activation before seroconversion
(17), and during the first eight months of infection (15), may be linked to rapid progression.
Finally, failure of highly active anti-retroviral therapy (HAART) is associated with ongoing
CD4+ T-cell activation (18).

The importance of T-cell activation in HIV was first recognized in the late 1980s, through
seminal studies of HLA-DR and CD38 by Giorgi and colleagues (19). HLA-DR is
constitutively expressed by antigen-presenting cells (APCs), and is involved in the
presentation of antigen to CD4+ T-cells. Although it is not expressed by most T-cells, a
subset of activated T-cells becomes HLA-DR+ during an immune response. The reason for,
and consequence of, HLA-DR up-regulation by T-cells is not well understood, but there is
clear evidence that this phenomenon is a hallmark of HIV disease progression (19), (20),
(21). In contrast, CD38 is constitutively expressed by naïve T-cells, down-regulated in
resting memory cells, and then elevated again in activated cells (22). These aspects of HLA-
DR and CD38 expression indicate that precise analysis requires multicolor flow cytometry
(e.g., 6+ colors). For studies of HLA-DR, T-cell markers must be included in the staining
panel (particularly since the prognostic significance of HLA-DR differs between CD4+ and
CD8+ T-cells (12)) and markers of APCs may be useful as exclusion (or “dump” channel)
markers. For studies of CD38, markers that define naïve and memory T-cell subsets
(described below) are necessary to discriminate those cells expressing CD38 as a
consequence of T-cell activation. Notably, the density of CD38 expression on individual
cells is informative as well (23), (13), (24), though such measurements require additional
experimental parameters, so that the number of molecules expressed can be accurately
derived from the fluorescence intensity (25).

The cell surface glycoprotein CD69 is another marker of T-cell activation that is commonly
studied. Though the precise function of this molecule is not known, the distribution and
kinetics of its expression have been investigated extensively (26). These studies indicate that
CD69 is one of the earliest markers up-regulated upon T-cell activation, that it is widely
expressed in inflamed tissue (by a broad array of cell types), and that it is usually transient in
peripheral blood cells (as it is diluted with proliferation) (27). The early kinetics and broad
distribution of CD69 expression make it an ideal means to identify antigen-responsive T-
cells in ex vivo stimulation assays, and viably purify these cells. However, because it is
diluted with cell proliferation, it can not be used for long-term stimulation assays. Moreover,
when studied directly ex vivo (without in vitro re-stimulation), it can severely underestimate
the proportion of activated cells in vivo (which tend to be HLA-DR+ CD38+ CD69−).

Chattopadhyay and Roederer Page 2

Cytometry A. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Finally, markers of cellular proliferation can be used as surrogates for T-cell activation
(since activation is required for proliferation). Indeed, the measurement of one such
molecule, Ki-67, correlates with expression of HLA-DR, CD38, and CD69 in HIV+
individuals (28). Compared to other markers of activation, however, Ki-67 has an important
advantage: it provides a measure of T-cell turnover. Specifically, since the loss of CD4+ T-
cells occurs gradually over years of chronic HIV disease, the level of T-cells over short
periods of time (i.e., days or weeks) is relatively constant. During this time, the proportion
of proliferating cells essentially reflects the proportion of destroyed cells (i.e., steady-state
kinetics) (29), so high levels of Ki-67 expression reflect rapid T-cell destruction (and
replacement) in HIV disease. In theory, the measurement of activation markers does not
provide this information, since not all activated cells are destined to die. However, since
Ki-67 is a nuclear antigen, measurement can only be performed after fixation and
permeabilization; therefore, viable proliferating cells cannot be purified for further analysis.
In this regard, measurement of other cell surface molecules associated with cellular
proliferation might be preferred (such as CD71, the transferrin receptor).

Markers of T-cell senescence
In healthy individuals, T-cell activation is tightly regulated, requiring an initial signal
delivered by T-cell receptor engagement and a second signal provided by the binding of
costimulatory proteins on the cell surface. During chronic HIV infection, CD8+ T-cells
expressing CD28, one of these costimulatory molecules, are progressively replaced by
CD28− cells (30). The CD8+ CD28− cells that accumulate exhibit characteristics similar to
cells that have repeatedly undergone antigen-driven proliferation in vitro: cell cycle arrest,
short telomeres, and inhibition of telomerase activity (31). This phenotype is shared by
CD8+ T-cells in other settings of chronic antigenemia, such as cytomegalovirus (CMV)
infection (32); however, it should be noted that these cells are not anergic. In fact, IFNγ
production (33), proliferation (34), and high cytolytic activity (34), (35) are observed within
the CD28− subset of CD8+ T-cells. Still, these cells (called effector or terminal effector
cells) certainly exhibit reduced proliferative potential (36); thus, the buildup of CD28− cells
in HIV disease may severely inhibit the homeostatic replacement of lost T-cells.

Similarly, although its precise function on T-cells remains unknown (32), the expression of
CD57 also defines a subset of senescent cells expanded in HIV infection (37), (38). These
cells are largely contained within the CD28− population; however, they can be found even
in central memory cell populations (which are CD28+). Interestingly, CD57 expression
tracks closely with the cytolytic enzyme perforin, thereby defining a subset of cells (also
containing granzyme A and B) that is highly cytotoxic (39). In this way, highly cytotoxic
senescent cells can be purified from the T-cell compartment for further analysis using just a
single cell surface marker.

Markers like PD-1 and CTLA-4 provide negative costimulatory signals to T-cells that
inhibit activation (40), (41). Both are elevated in untreated HIV infection, suggesting a role
for these markers in the immune dysregulation associated with disease (42), (43), (44), (45).
This is further supported by the observations that 1) HIV-specific CTL expressing PD-1
have increased susceptibility to spontaneous and Fas-mediated apoptosis (46), and 2)
blockade or knockout of CTLA-4 increases inflammation (40). Notably, the distribution of
these molecules among T-cell subsets is not uniform. Both are up-regulated upon
stimulation, but constitutive expression can be observed in central memory T-cells (in the
case of PD-1, (47), (48)) or regulatory T-cells (for CTLA-4, (40)). Thus, when studying
these markers, researchers must consider whether direct, ex vivo analysis or in vitro re-
stimulation best reflects what is occurring in vivo. Unfortunately, there is little data available
to guide this decision.
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Finally, a common feature of HIV pathogenesis is the appearance of cells expressing
markers of apoptosis, such as CD95 (Fas) and Fas ligand (FasL). It is believed that viral
proteins, immune activation, and/or cytokine dysregulation can induce the pathways
associated with these markers (49); however, the relative importance of each mechanism
remains unclear. In any case, recent studies describe elevated levels of CD95+ (50) and
FasL+ (51) cells even in the earliest phases of infection. Moreover, cells described as
senescent by other markers (CD28−. CD57+, PD-1+, CTLA4+; see above) often express
markers associated with the CD95/FasL apoptotic pathway. Thus, senescence of T-cells in
HIV disease involves multiple factors, including the loss of costimulatory molecules,
accumulation of terminally differentiated cells, expression of inhibitory receptors, and
induction of apoptosis.

Markers of early T-cells
The accumulation of activated and/or senescent cells in HIV+ individuals suggests that less
differentiated cells are progressively lost. Indeed, there is evidence that naïve (52), (53),
central memory (15), and IL7 receptor alpha (CD127) positive cells are depleted in HIV+
individuals (15). It is important to note that, among the many cell types described in this
review, naïve and memory subsets may be the most difficult to define; there is little
consensus regarding which cell surface markers best discriminate the various stages of T-
cell differentiation (54).

The markers most commonly considered for human studies are CD45RA, CD45RO, CD11a,
CCR7, CD27, CD28, CD57, and CD62L. When measured together, cell subsets expressing
nearly every possible combination of these markers can be found, suggesting great
phenotypic heterogeneity among T-cell subsets. However, since it is usually impractical to
measure all simultaneously, a balance must be struck between technologic limitations and
identification of “pure” subsets. This decision is easiest for cells that have not yet
encountered antigen (naïve cells), since this population is wholly CD45RA+ CD45RO−
CD11adim CCR7+ CD27+ CD28+ CD57− CD62L+ (54). Importantly, a combination of any
three of these markers can distinguish naïve cells from memory cells with high specificity
(55). For memory cell subsets, it becomes harder to select a panel of markers to discriminate
subsets, as protein expression is more heterogeneous than naïve cells. Moreover, it is often
not known which phenotypically-distinct subsets are functionally different. Nevertheless,
broad distinctions can be drawn based on a wide variety of attributes. Central memory
populations are long-lived (40), traffic through lymph nodes (using molecules like CCR7
(56) and CD62L (54)), exhibit longer kinetics for cytokine production than other memory
cell subsets (57), (58), and are enriched for IL2-producing cells (59). The phenotype of these
cells is typically CD45RA− CD45RO+ CD11ahigh CCR7+ CD27+ CD28+ CD57− CD62L
+. However, cells lacking expression of CD27, CD28, or CD62L are observed frequently,
and, in the absence of functional data describing these cells, it remains unclear if these are
truly central memory cells or some transitional phenotype. Interestingly, cells exhibiting
markers of senescence (CD57+) or exhaustion (PD-1+) are present among CCR7+ “central”
memory cells as well (37), (46). Finally, effector cells (known for rapid production of
cytokines and cytolytic enzymes) can be grouped together roughly by the absence of CCR7,
CD28, and CD62L from their cell surface. However, again, the discrimination of “pure”
subsets of effector cells is complicated by their varying degrees of CD45RA, CD45RO,
CD27, and CD57 expression.

In summary, a number of markers can be used to measure naïve and memory T-cell subsets
in HIV+ individuals. Unfortunately, the expression of particular combinations cannot be
related precisely to the nomenclature that typically describes maturational states (naïve,
central memory, effector, senescent/terminal). Still, regardless of which markers are
employed, a consensus has emerged that untreated HIV infection is characterized by the loss
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of less mature cells and the accumulation of highly-differentiated cells. This can be restated
in terms of regenerative potential as well: early cells, capable of homeostatic proliferation
(naïve and central memory, CD127+ cells), are progressively replaced with terminally
differentiated late-stage cells. In this regard, the measurement of only a couple of key
markers (e.g., CD127, CD57) may be sufficient to describe the maturational status of T-cells
in HIV+ individuals. Similarly, the measurement of certain markers may be of little value,
because they are lost upon cryopreservation (CD62L, (54)) or are inversely expressed
(CD45RA and CD45RO, (54)). In the case of CD45RA and CD45RO, only one of these
markers is needed when other markers of T-cell differentiation are examined.

Markers for Regulatory T-cells
Recently, much attention has been focused on defining and quantifying a population of T-
cells capable of suppressing T-cell function. These regulatory T-cells were first described by
Gershon and Kondo (60) through studies of transferred cells in mice, and were later defined
on the basis of flow cytometric measurements of CD25 expression (61). Recently, the
identification of these cells was refined through measurements of forkhead transcription
factor p3 (FoxP3) (62). In theory, the accumulation of regulatory T-cells in HIV infected
individuals may contribute to immunodeficiency and hasten progression to AIDS (63), (64).
As such, these cells could be a therapeutic target or a correlate of poor vaccine efficacy.
However, the examination of regulatory T-cells is particularly complicated in HIV+
individuals due to the abundance of activated cells, which can also express CD25 and FoxP3
without producing suppressive cytokines (such as IL10) (65). Thus, better ways of
identifying regulatory T-cells are needed, and may be possible using combinations of
CD127 (66), CD39 (67), and/or glucocorticoid-induced tumor necrosis factor receptor
(GITR) (68). Additionally, the measurement of immunosuppressive cytokines (e.g., IL10,
TGFβ) may be informative, although the proportion of cells expressing these cytokines after
in vitro re-stimulation is usually very low and therefore long stimulation periods are required
for detection.

Markers of T-cell function
Measurements of T-cell function are central to understanding HIV disease, since they reveal
how HIV dysregulates immunity, and indicate which T-cell functions are necessary for
natural or vaccine-induced control of the virus. These measurements may be performed to
examine the state of global T-cell function (using polyclonal stimulants, like staphylococcus
enterotoxin B (SEB) or phorbol myristate acetate (PMA)/ionomycin) or the nature of
various antigen-specific T-cell responses (using peptides or proteins derived from HIV or
other pathogens). When examining antigen-specific T-cell responses, it is often necessary to
compare responses to HIV against other viruses (e.g., CMV, Epstein-Barr Virus (EBV)), in
order to distinguish deficits in HIV-specific immunity from general deficits in T-cell
function (69). Regardless, flow cytometric assays are typically used to measure three types
of T-cell function: cytotoxicity, proliferation, and cytokine secretion.

In the setting of viral infections, cytotoxicity is an important means of eliminating infected
cells and preventing cell-to-cell spread of viral particles. Two pathways are known to
mediate this function. The first involves the engagement of death receptors (such as CD95 or
the TNFα receptor), while the second involves the release of cytolytic enzymes (such as
granzyme (grz) A, grz B, or perforin) (70). Differential expression of these molecules is
observed (e.g., grz A+ grz B− perforin− and grz A+ grz B+ perforin+ subsets co-exist),
suggesting that cells can differ in their intrinsic cytotoxic capacity (39). However, the
cyotoxic capacity of various subsets has never been compared, because cytolytic enzymes
must be measured after fixation and permeabilization (which prevents isolation of viable
cells for in vitro cytotoxicity assays). Isolation of live CD95+ or TNFα receptor+ cells is
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possible, but in vitro apoptosis assays are not sufficiently sensitive to detect differences in
the apoptotic ability of cells expressing various combinations of these markers. Moreover,
this pathway may not be restricted by antigen-specificity (CD95 and TNFα receptor are not
strictly associated with antigen stimulation in vitro); therefore, it is difficult to establish how
the capacity to induce apoptosis in vitro reflects what occurs during an in vivo, pathogen-
specific response. Still, there is a substantial body of literature that describes dysregulation
of cytotoxic pathways in HIV+ individuals (71). Notably, within HIV+ individuals, perforin
levels are lower within HIV-specific CD8+ T-cells than other antigen-specific cell
populations (72), (39).

When assessing cytotoxic potential of cells within functional assays, it is important to
consider the kinetics with which cytolytic enzymes are released and regenerated upon
antigenic stimulation. Specifically, cytolytic enzymes can be secreted immediately upon in
vitro re-stimulation, and although intracellular stores of enzymes subsequently regenerate,
the rate at which they are replaced may differ by molecule or cell type. This complicates
efforts to measure cytolytic enzymes within in vitro functional assays, because the ideal
stimulation period (six hours? overnight?) cannot be determined easily. Furthermore, it
remains unclear whether a recently stimulated cell regenerates the same combination of
cytolytic enzymes that it had with previous antigen exposure (i.e., does a stimulated grz A+
grz B− perforin− regenerate only grz A, or does it acquire intracellular stores of grz B and
perforin?). Thus, the plasticity of phenotypes may complicate efforts to define correlates of
vaccine efficacy, since cell types deemed important by in vitro functional assays may have
little resemblance to the in vivo cell responsible for vaccine-induced protection.

Proliferation of T-cells can be measured in a variety of ways. As described earlier, direct
staining of T-cells for Ki-67 can indicate the proportion of proliferating cells in vivo. When
peptide-MHC Class I or II multimers (“tetramers”) are included in the staining panel, in vivo
proliferation can be assessed by antigen specificity. However, there are important limitations
to this method. First, the use of tetramers requires a priori knowledge of HLA type (and
tetramers for all HLA types may not be available readily). Second, it is not clear that all
Ki-67+ cells complete the proliferative process, since HIV proteins may induce cell cycle
arrest in some CD4+ cells, and some Ki-67+ CD8+ cells may die before completing division
(73). Third, Ki-67 does not reveal the proliferative capacity of cells that are not concurrently
exposed to antigen in vivo. For example, in people with chronic HIV infection, the
proliferative capacity of resting T-cells directed against opportunistic antigens might not be
reflected by Ki-67 expression, since these antigens are not likely to be present. Thus, in
many cases, the only way to assess proliferative potential is through in vitro stimulation
assays.

To assess cell proliferation in vitro, a common stimulation assay employs carboxy
fluorescein succinimidyl ester (CFSE) to label cells (74). For this method, cells are loaded
with an acetylated form (CFDA-SE), which crosses cellular membranes and reacts with
intracellular esterases. These enzymes remove acetate groups and convert CFDA-SE to
CFSE, which is fluorescent. Subsequently, CFSE couples covalently to intracellular
proteins, forming a stable complex that cannot leak out of the cell. In proliferation assays,
PBMC are loaded with CFDA-SE for 5–10 minutes, and (after a wash step) the loaded cells
are then cultured in the presence of antigen for 4–7 days. With each round of proliferation,
CFSE is equally divided among daughter cells, so that the fluorescence (on a per cell basis)
is reduced by half. In flow cytometry experiments, this is usually visualized as a series of
peaks on univariate histogram. The brightest peak represents cells that have not proliferated,
while the dimmest represents cells that have proliferated the most. Using mathematical
models, the number of rounds of proliferation can be estimated, along with the proportion of
cells that participated in each round of proliferation. The assay becomes more powerful
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when combined with cell sorting (to isolate and further characterize proliferating cells) or
multicolor staining (to assess other phenotypic or functional characteristics). However, three
limitations of the CFSE should be noted. First, when cells are overloaded with CFSE,
proliferation is reduced (perhaps due to CFSE toxicity). Second, the fluorescence of CFSE is
brighter and the spectrum is broader than fluorescein-conjugated antibodies; therefore,
compensation must be performed with CFSE-labeled cells. Third, the assay does not
quantify terminal or effector cells well, since these cells may release cytokines or kill other
cells without dividing.

Finally, measurements of cytokine production are also an important means of assessing T-
cell function in HIV+ individuals. Intracellular cytokine staining (ICS) is the most common
method for performing these measurements on a flow cytometer (75). Briefly, this technique
involves stimulating cell samples in vitro for a period of 6–18 hours with HIV proteins or
peptides (typically representing commonly circulating strains of HIV), alongside chemicals
that trap cytokines intracellularly (e.g., Monensin or Brefeldin A, inhibitors of protein
secretion). Cells are then stained with antibodies against cell surface proteins, fixed,
permeabilized, and incubated with antibodies against cytokines. By using this method in the
context of multicolor flow cytometry, cytokine production can be assessed within individual
cells, and related to other T-cell phenotypes (such as T-cell senescence or activation). The
primary disadvantage of this technique is that it does not allow for isolation of viable cells
(since fixation/permeabilization is lethal). Still, the assay has an important advantage over
classical, bulk secretion assays (such as ELISAs), which cannot discriminate cells secreting
a single cytokine from those secreting multiple cytokines simultaneously.

In fact, recent data suggests that cells capable of secreting multiple cytokines simultaneously
may play an important role in the immune response against HIV. In these studies, four
cytokines (MIP1β, IFNγ, IL2, and TNFα) were measured together with the degranulation
marker CD107a, to provide an indication of the quality of the immune response (5). Cells
secreting multiple cytokines were more frequently observed in those individuals who
maintained low levels of virus and normal levels of CD4+ T-cells for many years (long-term
non-progressors, LTNP) (76). Moreover, these cells were also frequently observed in
individuals infected with HIV-2 (77), a less pathogenic disease than HIV-1. These data
suggest that the presence of polyfunctional cells (expressing 3+ functions) is associated with
reduced disease. However, this association could simply be a consequence of reduced
viremia in those with less pathogenic disease, rather than a direct cause of viral control. To
address this issue, prospective experiments were performed in the setting of murine
Leishmania, where an effective vaccine was available. In that model, vaccinated mice
generated more polyfunctional cells than sham-injected mice, and subsequently experienced
a reduced disease burden upon Leishmania challenge (78). This suggests, then, that the
presence of polyfunctional cells is a cause, not merely an effect, of antigen control. Similar
results have since been observed in monkeys vaccinated against - and then challenged with –
SIV, providing more evidence for the importance of polyfunctional cells in HIV immunity
(79). Notably, in the Leishmania studies, cells making multiple cytokines simultaneously
also produced higher levels of each individual cytokine (as indicated by higher mean
fluorescence intensity, MFI), suggesting that it might be possible to distinguish
polyfunctional cells from monofunctional cells based solely on the MFI measurements from
one cytokine (78).

The measurement of multiple cytokines simultaneously can also reveal the functional
maturation of a response (59). Specifically, there is emerging evidence that memory cells
modulate not only surface markers like CD45RA and CCR7, but also cytokine secretion,
over the course of an immune response. It is postulated that the least differentiated antigen-
specific cells produce IL2 alone or TNFα alone, while central memory (or intermediate)
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cells may be polyfunctional. Furthermore, as the response matures, these cells become
transitional (downregulating IL2 expression) and effector cells (producing IFNγ alone).
Although this model is supported by recent and ongoing studies ((78), unpublished data), it
has – to date – not been applied to HIV studies to determine if functional maturation is
impaired in HIV disease.

Why Make These Measurements?
Flow cytometry has been used to address a wide variety of questions critical to our
understanding of HIV and AIDS. The most fundamental of these questions asks which cell
subsets are affected by disease. Early studies defined the changes to major cell lineages that
occurred after HIV infection (a decrease in CD4+ T-cells and a reciprocal increase in CD8+
T-cells (80)), and identified the distribution of cellular co-receptors for the virus (CCR5 is
expressed by memory T-cells, CXCR4 is found on almost all CD4+ T-cells (81)).
Subsequently, researchers recognized the high rate at which T-cells were lost in HIV+
individuals, by performing kinetic analyses of T-cell turnover (82), (83). These studies relied
heavily on flow cytometry to enumerate CD4+ T-cells before and after therapy. Within just
a few years, flow cytometric quantification and purification of naïve T-cells also showed
that the production mechanisms needed to replace these lost cells failed as individuals
progressed to AIDS (53). Finally, elevated levels of activated T-cells are well-described in
HIV+ individuals (reviewed above).

Though these studies greatly advanced our understanding of HIV pathogenesis, a key
question remained unresolved until about five years ago. Given the relatively low proportion
of cells infected with HIV during the chronic phase of disease (0.05% of CD4+ T-cells),
what accounted for the dramatically reduced level of CD4+ T-cells found in HIV+ people?
Flow cytometric studies of acute infection, first in the animal (SIV) model (50) and
subsequently in humans (84), shed light on this issue by revealing very high levels of
infected cells, and a profound loss of over 60% of the body’s CD4+ memory T-cells within
weeks of infection. This depletion was particularly striking in the gut, since this tissue
contains primarily memory CD4+ T-cells. Notably, subsequent studies revealed that damage
to the gut had severe consequences, as bacterial products were found in the systemic
circulation of individuals in the early stages of HIV disease (84). As a recent study showed,
these bacterial products bind toll-like receptors on CD4+ and CD8+ T-cells (85), perhaps
causing generalized immune activation.

Thus, with the help of flow cytometry, a better understanding of how the T-cell
compartment is remodeled upon infection has emerged. Initially, HIV destroys large
numbers of memory CD4+ T-cells, causing particular damage to the gut, which allows the
translocation of bacterial products into systemic circulation. Bacterial ligands for toll-like
receptors, bind CD4+ and CD8+ T-cells, activating them and amplifying the already
significant loss of T-cells that accompanies early HIV disease. To compensate for this loss,
homeostatic pathways for cell replacement are invoked. However, over time, continued
infection of memory T-cells and the loss of cells to activation-induced cell death strains the
homeostatic apparatus. A final blow is delivered before AIDS diagnosis, when CXCR4-
tropic strains of virus emerge and deplete immature and naïve cells. Although this represents
a broad account of the disease process, it is by no means complete. The myriad of markers
described earlier in this review (and summarized in Table 1) has been examined across a
wide variety of patient groups, ranging from those with acute/early infection to those dying
of AIDS. For more detailed information, readers are encouraged to consult a variety of
thoughtful reviews (86), (87), (8).
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Flow cytometry studies have also provided important clinical information that helps predict
disease outcome and guide treatment decisions. To this end, the strongest predictors of
disease progression (and thus the need for therapeutic intervention) are CD4+ T-cell count
(88) and viral load (89). Though these measures are the gold-standard for initiation of
therapy, they do not fully capture an individual’s risk for disease progression. For example,
in a recent retrospective study of HIV+ people infected for less than 18 months, a substantial
proportion of patients who had more than 350 CD4+ T-cells/uL blood (the current threshold
for treatment initiation) were destined to progress to AIDS within only three years. This
suggests that additional tools are needed to help identify, early in disease, more HIV+
individuals at risk for rapid disease progression. Despite substantial investigation, only a few
such markers have been reported. For example, in the setting of early HIV disease, the
ability of Ki-67 to predict disease progression independently of CD4+ T-cell count or viral
load was recently recognized (15). Similarly, in the setting of chronic infection, CD38
expression is a CD4− and viral load-independent predictor of disease outcome (12).

The identification of these kinds of predictive measures is not only important for guiding
treatment decisions, but also for the development of preventive and therapeutic HIV
vaccines. Vaccine efficacy trials require large patient cohorts, followed for long periods of
time, therefore great effort is devoted to finding any early evidence of an effective immune
response. To this end, a number of flow cytometry-based studies have examined HIV-
specific T-cells, identified by ICS or tetramers, in individuals with less pathogenic HIV
disease. These individuals include LTNP, defined by their ability to maintain normal CD4+
T-cell counts and undetectable levels of virus, without treatment, for years after infection.
(Some of these people can also be identified by their expression of “protective” HLA alleles
B27 and B57 (90).) Early research described high levels of HIV-specific CD8+ T-cells in
LTNP; however, the frequency of these cells alone could not explain reduced disease
burden, since HIV-specific CD8+ T-cells were readily detectable in normal progressors as
well (91), (92). Instead, it could have been the quality of these cells that mattered. For
example, the breadth of the HIV-specific CD8+ T-cell response (as indicated by the number
of epitopes of HIV-Gag protein targeted) correlated with low viral load and high CD4+ T-
cell counts (93). Moreover, HIV-specific CD8+ T-cells from LTNP were more likely to: 1)
be polyfunctional (76), 2) express the cytolytic enzymes perforin and granzyme B (94), 3)
kill infected cells rapidly (95), (94), 4) and recognize lower levels of peptide (suggesting
that they expressed high avidity T-cell receptors) (95). In theory, vaccines that generate
similar T-cell responses may be effective.

Finally, flow cytometry has established itself as an important tool for the study of a number
of other HIV-related questions. For example, with the advent of highly active anti-retroviral
therapy (HAART), many studies were aimed at defining the immunologic benefits of
therapy. Moreover, studies sought to understand the source, maturation, and function of the
cells that reconstituted the T-cell compartment after therapy. As the prevalence of treatment
grew, it also became apparent that some individuals would not respond to therapy
(immunologic non-responders), and research was directed toward identifying these
individuals and defining their T-cell characteristics. The body of literature addressing these
issues is reviewed elsewhere (96), (97), (98).

Conclusion
Few diseases have produced the sheer volume of scientific literature that HIV has generated.
Notably, the vast majority of these studies have relied on some form of flow cytometry
technology, and therefore the history of these two fields is intimately linked. Clearly, flow
cytometry is an important tool in the study of HIV pathogenesis, but given the multitude of
immune measurements that can be made using this technique, researchers must think
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carefully about which markers to examine, and ought to consider the subtleties involved in
performing each of these measurements. Nevertheless, as demonstrated by the studies
described in this review, carefully designed experiments can reveal important aspects of
HIV pathogenesis, guide treatment decisions, and help evaluate the immunogenicity of
vaccine candidates. Such efforts may stem the tide of the global HIV/AIDS epidemic.
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