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Abstract
Background—The neurosteroid allopregnanolone has pronounced neuroprotective actions,
increases myelination, and enhances neurogenesis. Evidence suggests that allopregnanolone
dysregulation may play a role in the pathophysiology of Alzheimer’s disease (AD) and other
neurodegenerative disorders. Our prior data demonstrate that allopregnanolone is reduced in
prefrontal cortex in male patients with AD compared to male cognitively intact control subjects,
and inversely correlated with neuropathological disease stage (Braak and Braak). We therefore
determined if allopregnanolone levels are also reduced in AD patients compared to control
subjects in temporal cortex, utilizing a larger set of samples from both male and female patients. In
addition, we investigated if neurosteroids are altered in subjects who are APOE4 allele carriers.

Methods—Allopregnanolone, dehydroepiandrosterone (DHEA), and pregnenolone levels were
determined in temporal cortex postmortem samples by gas chromatography/mass spectrometry,
preceded by high performance liquid chromatography (40 subjects with AD/41 cognitively intact
control subjects).

Results—Allopregnanolone levels are reduced in temporal cortex in patients with AD (median
2.68 ng/g, n= 40) compared to control subjects (median 5.64 ng/g, n=41), Mann-Whitney
p=0.0002, and inversely correlated with Braak and Braak neuropathological disease stage
(Spearman r= −0.38, p=0.0004). DHEA and pregnenolone are increased in patients with AD
compared to control subjects. Patients carrying an APOE4 allele demonstrate reduced
allopregnanolone levels in temporal cortex (Mann-Whitney p=0.04).
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Conclusions—Neurosteroids are altered in temporal cortex in patients with AD and related to
neuropathological disease stage. The APOE4 allele is associated with reduced allopregnanolone
levels. Neurosteroids may be relevant to the neurobiology and therapeutics of AD.

Introduction
Allopregnanolone is a neurosteroid with a number of properties that may be relevant to the
pathophysiology and treatment of Alzheimer’s disease (AD) and other neurodegenerative
disorders, demonstrating pronounced neuroprotective actions in the setting of excitotoxicity
[1,2], traumatic brain injury (TBI) [3–5], and neurodegeneration [6–8]. It also increases
myelination [9–11], enhances neurogenesis [12], decreases inflammation [11,13,14], and
reduces apoptosis [15–17]. Since excitotoxicity [18–21], neurodegeneration [22,23], and
traumatic brain injury [24,25], as well as dysregulation in myelination [26,27], neurogenesis
[28], apoptosis [29,30], and inflammation [31] have been implicated in the pathogenesis and
clinical course of AD, deficits in allopregnanolone and/or alterations in its regulation could
represent critical components of AD pathophysiology.

Emerging evidence demonstrating allopregnanolone deficits in neurodegenerative disorders
is consistent with this hypothesis. For example, allopregnanolone levels are decreased in
Niemann-Pick type C mice [7], a neurodegenerative disorder that shares a number of
properties with AD. These include cholesterol dysregulation, neurofibrillary tangle
formation, β-cleaved amyloid precursor protein accumulation, and myelin breakdown
[28,32–37]. Further, allopregnanolone administration delays neurological symptom onset
and doubles lifespan in Niemann-Pick type C mice [6–8]. Also consistent with a role for
allopregnanolone in disorders in which neurodegeneration is a salient characteristic,
allopregnanolone and other neurosteroids are altered in AD. Our laboratory determined
previously that allopregnanolone levels in prefrontal cortex are significantly decreased in
male AD patients compared to male cognitively intact control subjects, and that
allopregnanolone levels are inversely correlated with neuropathological disease stage (Braak
and Braak) [38]. Additional data also support the hypothesis that there may be
allopregnanolone deficits in AD; for example, allopregnanolone is reduced in the periphery
in serum [39] and plasma [40] in patients with AD compared to control subjects.
Importantly, these earlier serum and plasma investigations also raise the possibility that
other GABAergic neurosteroids (i.e. 3α-hydroxy-4-pregnen-20-one, [41,42]) with
considerable cross-reactivity with the antibody used in radioimmunoassay procedures
[40,43] may also be altered in AD.

It is possible that the determination of peripheral neurosteroid levels in blood may have
proxy or surrogate biomarker potential for central neurosteroid levels in brain. Our prior
efforts demonstrating that serum pregnenolone levels are closely correlated with
hippocampal pregnenolone levels in rodents support this possibility [44]. Further, human
data demonstrating that cerebrospinal fluid (CSF) levels of pregnenolone and
dehydroepiandrosterone (DHEA) are correlated with temporal cortex levels of these
respective neurosteroids within the same patient cohort are also consistent with proxy or
surrogate biomarker potential for neurosteroid levels in more accessible tissues such as
blood and CSF [45]. It should be noted, however, that several mechanisms for cerebral
uptake of neurosteroids from peripheral blood circulation may influence central
concentrations [46]. Given a compelling rationale informed by both preclinical and clinical
findings from multiple research groups that implicate allopregnanolone dysregulation as a
component in the pathophysiology of neurodegenerative disorders such as AD (and suggest
a possible role for allopregnanolone or synthetic analogs in AD therapeutics), we thus
investigated allopregnanolone levels in temporal cortex in patients with AD and cognitively
intact control subjects. The overarching goal of the current study was to determine if we
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could replicate our prior neurosteroid findings in prefrontal cortex in male AD and male
control patients in a second brain region (temporal cortex) utilizing samples from a larger
cohort of subjects that includes both male and female patients

In addition to allopregnanolone, other neurosteroids such as DHEA and pregnenolone may
be candidate modulators of AD pathophysiology (see Figure 1 for biosynthetic pathways).
For example, DHEA appears to be elevated in postmortem brain tissue [38,47] and CSF
[45,47,48] in AD patients compared to control subjects, and positively correlated with Braak
and Braak neuropathological disease stage [38]. Like allopregnanolone, DHEA
demonstrates a number of neuroprotective effects. For example, DHEA is protective against
amyloid β-protein toxicity [49,50] and a number of other insults involving oxidative stress,
including anoxia [51], glucocorticoid-induced toxicity [52,53], and NMDA-induced
excitotoxicity [54]. In addition, DHEA enhances neurogenesis in rodent models and
augments cell proliferation of human neural stem cells [52,55,56]. Pregnenolone may also
play a role in the pathogenesis and clinical course of AD, given its neuroprotective effects
against glutamate [57] and amyloid β-protein toxicity [58], and actions on learning and
memory in animal models [59,60]. We therefore determined DHEA and pregnenolone levels
in this postmortem brain tissue investigation using temporal cortex samples from patients
with AD and cognitively intact control subjects. Since the current study includes temporal
cortex postmortem tissue from males and females, this larger collection of samples will also
provide data to determine if our prior neurosteroid findings in male subjects are also
generalizable to female patients. To our knowledge, this is among the largest postmortem
brain tissue investigations focusing on neurosteroids and AD to date.

In addition, this larger cohort of 40 patients with AD and 41 cognitively intact control
subjects provides the opportunity to conduct exploratory analyses to determine if the
presence of the APOE4 allele (the ε4 allele of apoliprotein E, or ApoE), a known risk factor
for the development of late onset AD [61], is associated with alterations in
allopregnanolone, DHEA, and/or pregnenolone levels in temporal cortex. The mechanisms
by which the APOE4 isoform of ApoE mediates AD risk are not yet completely understood.
ApoE is a cholesterol transport protein that is present at high concentrations in the brain
[62–64]. Since a major role of ApoE involves the regulation of cholesterol uptake into
neurons (an action critical for synaptic function), and since cholesterol is the immediate
precursor to pregnenolone (and pregnenolone is a precursor to other neurosteroids such as
allopregnanolone), it is possible that AD risk conferred by the APOE4 allele may include a
mechanism involving dysregulation in downstream events such as neurosteroid biosynthesis.
To begin to test this possibility, we compared neurosteroid levels in temporal cortex in
patients who are heterozygous or homozygous for the APOE4 allele, to subjects who do not
carry this APOE isoform associated with elevated AD risk.

Methods and Materials
Postmortem Tissue

Frozen right hemisphere temporal cortex samples from a total of 81 patients were utilized in
this investigation: samples from 40 subjects with AD (17 males, 23 females) and 41
cognitively intact control subjects (21 males, 20 females) from the Joseph and Kathleen
Bryan Alzheimer’s Disease Research Center (ADRC) collection at Duke University were
analyzed for the neurosteroids allopregnanolone, DHEA, and pregnenolone by highly
sensitive and specific gas chromatography/mass spectrometry (GC/MS) preceded by high
performance liquid chromatography (HPLC) purification. A subset of this collection for
which CSF was also available within the same cohort (n=41, approximately half of the total
collection utilized for the current study) has been analyzed previously for pregnenolone and
DHEA levels, and correlations of CSF pregnenolone and DHEA levels to respective
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temporal cortex levels of these two neurosteroids have been reported in an earlier
investigation [45]. Allopregnanolone levels in temporal cortex and APOE findings have not
been reported previously (except in poster format, [65]). Temporal lobe boundaries were the
superior and middle temporal gyri. Subjects were enrolled in the ADRC autopsy and brain
donation program, as described previously [66]. Procedures for enrollment were approved
by the Duke University Medical Center Institutional Review Board. Cognitively intact
control subjects had no neurological disorders. AD was diagnosed clinically according to
National Institute of Neurological and Communicative Disorders/Alzheimer’s Disease and
Related Disorders Association (NINCDS/ADRDA) criteria. AD diagnosis was confirmed at
autopsy using the National Institute on Aging/Reagan Institute criteria. Neuropathological
disease stage was determined using the Braak method (Braak and Braak 1991). Postmortem
interval (PMI) was less than 35 hours for all tissue samples tested.

Neurosteroid Analyses
Gas Chromatography/Mass Spectrometry Analyses (GC/MS) preceded by
High Performance Liquid Chromatography (HPLC)—Neurosteroid analyses in
temporal cortex tissue were performed as previously described [38,45,67], with minor
modifications. All glassware was silanized. Between 100 and 180 mg of brain tissue was
homogenized in 5 volumes of distilled water containing trace quantity (4000 dpm/injection)
of tritiated neurosteroid (New England Nuclear Life, Wellesley, MA) to detect the HPLC
fraction containing the neurosteroid of interest, and a constant amount of deuterated
allopregnanolone (D4-allopregnanolone, 400 pg) and deuterated pregnenolone (D4-
pregnenolone, 400 pg) as the internal standards (Cambridge Isotopes, Andover MA).
Supernatants were extracted three times with three volumes of ethyl acetate and dried under
nitrogen prior to HPLC purification, performed with 900 µL injections per sample on an
1100 Series Agilent HPLC equipped with a Packard 500TR Flow Scintillation Analyzer for
radiopeak detection. Each neurosteroid was collected into a separate fraction based upon the
retention time of its radioactive analogue, utilizing hexane, tetrahydrofuran, and ethanol as
the mobile phase and a Phenomenex LiChrosorb DIOL (5 µm particle size) 250 mm × 4.6
mm column. The HPLC fractions containing allopregnanolone, DHEA, and pregnenolone
were transferred to 1 mL Reacti-Vials, evaporated to dryness, and derivatized utilizing
heptafluorobutyric acid anhydride (HFBA) [50 µL HFBA added to 450 µL ethyl acetate at
room temperature for 2 hours]. Derivatized samples were transferred to autosampler vials
equipped with deactivated glass inserts using 2 × 50 µL pesticide-grade heptane and
evaporated, then reconstituted and vortexed in pesticide-grade heptane. Standards and
samples were injected onto an Agilent 5973 Mass Spectrometer (MS) coupled to an Agilent
6890N Gas Chromatograph (GC) equipped with an Agilent HP-5MS 30 meter × 0.250 mm
× 0.25 um capillary column, and analyzed in the negative ion chemical ionization mode
(NICI) utilizing methane as the reaction gas and helium as the carrier gas. The derivatized
steroids of interest subjected to NICI yield negative ions in the mass range between m/z 100
and m/z 700. In addition to the GC retention time characteristic of each steroid, the
structural identification of each neurosteroid assayed was provided by its unique mass
fragmentation pattern. Mass spectrometer single ion monitoring mode was utilized to focus
on the most abundant ion fragment for each steroid derivative (allopregnanolone = 474.4
and 494.3; DHEA = 464.4 and 444.4; pregnenolone = 492.3 and 472.4).

For neurosteroid quantification, the standard curve for the steroid of interest was prepared
by combining varying known quantities of the steroid (Steraloids, Newport, RI) with a
constant amount of deuterated internal standard. Identical to the samples, the standard curve
was extracted three times in ethyl acetate prior to HPLC purification and GC/MS injection
(standard curve r2=0.99 for each neurosteroid). The area under the peak of each known
quantity of neurosteroid was divided by the area under the peak of the internal standard.
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This ratio was then plotted on the y-axis against known quantities of each steroid to generate
the standard curve. Only peaks with a signal to noise ratio greater or equal to 5:1 were
integrated. The limit of detection with this method was 2 pg for allopregnanolone, 2 pg for
DHEA, and 5 pg for pregnenolone.

Statistical Analysis
Non-parametric statistical approaches were utilized. Neurosteroid levels in AD patients and
cognitively intact control subjects were analyzed by Mann-Whitney U test statistic.
Correlational analyses (neurosteroid levels vs. PMI, and neurosteroid levels vs. Braak and
Braak staging) were also assessed non-parametrically and Spearman correlation coefficients
were determined. Both AD subjects and cognitively intact control subjects were included in
the correlational analyses of neurosteroid levels vs. Braak and Braak neuropathological
disease stage, since cognitively intact control subjects without clinical evidence of AD may
meet neuropathological criteria for early Braak stages, and since these changes may reflect
early stages of AD (or predisposition to developing AD) in the absence of detectable clinical
symptomatology. P values < 0.05 were considered to be statistically significant.

Results
Median PMI was 6.33 hours for the Alzheimer’s group and 7.68 hours for the cognitively
intact control group (See Table 1 for patient characteristics). There was no significant
difference in median PMI in the Alzheimer’s group compared to the cognitively intact
control group (Mann-Whitney U test statistic p=0.20). Median age was 81.0 years for the
Alzheimer’s group and 82.0 years for the cognitively intact control group. There was no
significant difference in median age in the Alzheimer’s group (n=40) compared to the
cognitively intact control group (n=41), Mann-Whitney U test statistic p=0.44. None of the
three neurosteroids tested (allopregnanolone, DHEA, pregnenolone) demonstrated
significant correlations with PMI (Spearman p≥0.40 for each neurosteroid).

Allopregnanolone Levels in Temporal Cortex in Patients with AD vs. Control Subjects, and
Relationship to Neuropathological Disease Stage (Braak and Braak)

Allopregnanolone levels are significantly decreased in temporal cortex in patients with AD
(median 2.68 ng/g, n=40) compared to cognitively intact control subjects (median 5.64 ng/g,
n=41), Mann-Whitney p=0.0002 (Figure 2, Table 2). These findings are very similar to
those previously reported in prefrontal cortex, in which median allopregnanolone level in
male patients with AD was 2.50 ng/g (n=14), and median allopregnanolone level in male
cognitively intact control subjects was 5.59 ng/g (n=15), using the same mass spectrometry-
based methodology [38]. Also consistent with our prior investigation in prefrontal cortex,
allopregnanolone levels are inversely correlated with Braak and Braak neuropathological
disease stage in the current study, Spearman r=−0.38, p=0.0004 (Figure 3), thus replicating
our previous findings in prefrontal cortex in which an inverse correlation with Braak and
Braak stage was also reported (Spearman r=−0.49, p=0.007) [38].

DHEA and Pregnenolone Levels in Temporal Cortex in Patients with AD vs. Control
Subjects, and Relationship to Neuropathological Disease Stage (Braak and Braak)

DHEA levels are significantly elevated in temporal cortex in the current study in subjects
with AD (median DHEA level 4.75 ng/g, n=40) compared to cognitively intact control
subjects (median DHEA level 2.23 ng/g, n=41), Mann-Whitney p=0.0185 (Figure 4, Table
2). Pregnenolone levels are also significantly elevated in patients with AD (median
pregnenolone level 22.24 ng/g, n=40) compared to cognitively intact control subjects
(median pregnenolone level 10.24 ng/g, n=41), Mann-Whitney p=0.022 (Figure 5, Table 2).
Both DHEA levels in temporal cortex (Spearman r= 0.26, p=0.017, n=81; Figure 6) and
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pregnenolone levels in temporal cortex (Spearman r=0.24, p = 0.032, n=81; Figure 7), are
positively correlated with Braak and Braak neuropathological disease stage.

DHEA levels are significantly higher in female patients compared to male patients, in both
the AD group (6.48 vs. 2.85 ng/g, respectively; p=0.04) and the cognitively intact control
group (3.39 vs. 2.04 ng/g, respectively; p=0.036). There are no significant differences in
pregnenolone or allopregnanolone levels in female patients compared to male patients (in
either the AD group or the cognitively intact control group), data not shown.

APOE4 Allele Status and Neurosteroid Levels
APOE status was available for 80 of 81 subjects. Allopregnanolone median level in
temporal cortex is significantly decreased in patients homozygous or heterozygous for the
APOE4 allele (2.86 ng/g, n=36) compared to patients not carrying an APOE4 allele (5.23
ng/g, n=44), Mann Whitney p=0.04; Figure 8. Patients homozygous or heterozygous for the
APOE4 allele did not demonstrate significantly different median DHEA or pregnenolone
levels compared to subjects who are not APOE4 allele carriers (data not shown).

Discussion
This investigation demonstrates that neurosteroid levels are altered in temporal cortex in
patients with AD compared to cognitively intact control subjects using a postmortem brain
tissue collection that includes both male and female patient samples (n=81; 40 AD, 41
control). Findings are consistent with our prior study in prefrontal cortex, using a smaller
collection of samples from male patients only (n=29; 14 AD, 15 control) [38]. In the current
study in temporal cortex, allopregnanolone levels are significantly reduced in AD patients
compared to cognitively intact control subjects, and inversely correlated with Braak and
Braak neuropathological disease stage (replicating our prior findings in prefrontal cortex).
DHEA and pregnenolone levels, conversely, are significantly elevated in patients with AD
compared to cognitively intact control subjects, and positively correlated with Braak and
Braak neuropathological disease stage (also similar to our earlier findings in prefrontal
cortex). In addition, the presence of the APOE4 allele is associated with neurosteroid
alterations; specifically, subjects either heterozygous or homozygous for the APOE4 allele
demonstrate significantly reduced allopregnanolone levels compared to patients who do not
carry this APOE isoform. These findings and their potential ramifications are discussed
below.

Allopregnanolone Levels in Temporal Cortex Are Reduced in Alzheimer’s Disease and
Inversely Correlated with Neuropathological Disease Stage

Allopregnanolone levels in temporal cortex are significantly decreased in patients with AD,
similar to our prior findings in a smaller study in prefrontal cortex that included samples
from males only [38]. Allopregnanolone levels are also inversely correlated with
neuropathological disease stage (Braak and Braak), suggesting that decreases in this
neurosteroid may have functional relevance and reducing the likelihood that the finding of
decreased allopregnanolone levels in AD is simply an epiphenomenon. Replication of our
prior prefrontal cortex allopregnanolone results in a second brain region (and extension of
earlier prefrontal cortex findings to female subjects) further strengthens the rationale for the
preliminary hypothesis that a dysequilibrium in neurosteroid pathways may contribute to the
pathogenesis of AD. As previously noted, allopregnanolone is a molecule with pleiotropic
actions, including pronounced neuroprotective effects against several processes associated
with AD risk and/or pathophysiology; deficits in this neurosteroid may thus impact multiple
dimensions of AD neurobiology and merit additional investigation.
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In addition to the possible role of allopregnanolone reductions in AD pathogenesis,
converging preclinical and clinical evidence also support the preliminary hypothesis that
restoration of allopregnanolone levels in states of deficiency could be clinically therapeutic.
For example, allopregnanolone is significantly decreased in Niemann-Pick type C mice, and
one-time administration of this neurosteroid doubles lifespan and markedly delays
neurological symptom onset [6–8]. The mechanisms by which allopregnanolone exerts these
robust effects may include GABAA receptor modulation and activity at pregnane-X-
receptors [8]. Further, allopregnanolone administration is neuroprotective against TBI
[3,4,12,13] and stroke [68] in rodent models, to an even greater degree than its precursor,
progesterone. Clinically, progesterone reduces death by 50% at 30 days post-injury in
patients with moderate to severe TBI [69], a finding that has been replicated in an
independent cohort [70] and led to a multi-site randomized controlled trial projected to
enroll over 1100 patients (ClinicalTrials.gov Identifier: NCT00822900). Given the superior
neuroprotective effects of allopregnanolone compared to progesterone in TBI and stroke
rodent models, it is possible that progesterone metabolism to allopregnanolone may
represent a mechanistic component to its therapeutic efficacy. This is further supported by
prior work demonstrating that the anticonvulsant effects of progesterone are prevented if
metabolism to allopregnanolone is blocked with an enzyme inhibitor [71–73]. Data are
hence accruing to suggest that allopregnanolone may be a key modulator of neurobiological
events in disorders in which neurodegeneration is a prominent component.

DHEA Levels in Temporal Cortex are Elevated in Alzheimer’s Disease and Positively
Correlated with Neuropathological Disease Stage

Our current findings suggest that temporal cortex DHEA levels are significantly increased in
patients with AD compared to cognitively intact control subjects, and that DHEA levels in
this brain region are positively correlated with Braak and Braak neuropathological disease
stage (replicating our prior findings in prefrontal cortex [38], and extending this earlier
effort by including samples from female subjects). Elevation in median DHEA level in
temporal cortex in this investigation is also consistent with prior evidence of DHEA
increases in CSF in subjects with AD [45]. As DHEA levels decline precipitously with age
to levels approximately 20% of those observed in young adulthood, it has been hypothesized
that decreases in DHEA may be linked to AD pathophysiology. Along these lines, evidence
that DHEA protects against amyloid β-protein toxicity [49], attenuates β25–35-amyloid
peptide-induced memory impairment [74], and inhibits amyloid β-protein-induced calcium
increases [75], supports the possibility that DHEA elevations in temporal cortex in AD
patients could be compensatory in some manner. Also, the administration of β-amyloid
peptide produces elevations in DHEA [47], and it is thus possible that β-amyloid deposition
precedes DHEA alterations in AD and potentially plays an etiological role in the DHEA
changes observed in temporal cortex in the current study. DHEA enhancement of axonal
outgrowth [76] and other neurotrophic and neuroprotective actions previously outlined in the
introduction are also consistent with this possibility, as are the positive effects of DHEA on
learning and memory in rodent models [59,60,77]. Alternatively, DHEA positively
modulates excitatory NMDA receptors [78,79] and negatively modulates inhibitory GABAA
receptors [80]; therefore, this neurosteroid could potentially contribute to excitotoxic
mechanisms in AD (particularly in the setting of concurrent deficits in allopregnanolone, an
inhibitory GABAergic neurosteroid).

Pregnenolone Levels in Temporal Cortex are Elevated in Alzheimer’s Disease and
Positively Correlated with Neuropathological Disease Stage

Similar to the DHEA findings described above, pregnenolone levels in temporal cortex are
also significantly elevated in patients with AD, and positively correlated with Braak and
Braak neuropathological disease stage. Like allopregnanolone and DHEA, pregnenolone
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demonstrates a number of properties that suggest it may be a logical candidate for future
study in AD, such as enhancing learning and memory and increasing long-term potentiation
in rodents [59] [81]. Given its diverse effects including microtubule stabilization [82],
positive actions on neuritic outgrowth [83], the enhancement of myelination [84], protection
against glutamate-induced cellular damage [57], prevention of increases in intracellular
calcium induced by β-amyloid protein [75], and protection of mouse hippocampal (HT-22)
cells against β-amyloid protein toxicity [58], pregnenolone elevations in AD could result in
pleiotropic actions that impact a number of neurobiological processes relevant to AD.
However, the precise etiology of these alterations and their functional consequences will
require extensive additional study.

APOE4 Allele Status and Neurosteroid Levels in Temporal Cortex
Patients either homozygous or heterozygous for the APOE4 allele also had significantly
reduced allopregnanolone levels compared to subjects without this APOE isoform. Since
ApoE is a major cholesterol transport protein in the brain, and since cholesterol is the
immediate precursor to pregnenolone (and pregnenolone is a precursor for multiple other
downstream neurosteroids, including allopregnanolone and DHEA), it is possible that the
APOE4 allele may be associated with compromised neurosteroid regulation by impacting
upstream events involving cholesterol regulation and metabolism. This may be relevant to
pregnenolone alterations in AD, since the conversion of cholesterol to pregnenolone is the
rate-limiting step in neurosteroid formation [85,86]. Recent evidence that mRNA levels of
diazepam binding inhibitor (which facilitates cholesterol transport to the inner mitochondrial
membrane, an action required for pregnenolone synthesis) are elevated in patients with AD
[87] is potentially consistent with our finding of elevated pregnenolone levels in temporal
cortex in AD patients compared to cognitively intact control subjects. Conversely, however,
the presence of the APOE4 allele is not associated with alterations in pregnenolone (or
DHEA) in temporal cortex in this cohort, unlike the association of the APOE4 allele with
significantly reduced allopregnanolone levels in this study. Of note, it is possible that the
neurosteroid allopregnanolone may also play a role in cholesterol homeostasis, as
allopregnanolone administration at postnatal day 7 significantly reduces neuronal and
microglial cholesterol accumulation in Niemann-Pick type C mice [8,11]. Precisely how the
presence of the APOE4 allele may influence neurosteroid regulation will require future
investigation, but initial evidence that the presence of this isoform is associated with
significant reductions in allopregnanolone merit additional study. Since accruing data
strongly suggest that alterations in cholesterol metabolism are involved in the pathogenesis
of AD [64,88], the investigation of downstream neurosteroid biosynthesis represents a
logical avenue for future examination.

Study Limitations
Limitations of this investigation in temporal cortex postmortem tissue include a relatively
small sample size (40 subjects with AD and 41 cognitively intact control subjects).
However, the current investigation is more than twice as large as our prior study in
prefrontal cortex [38], and also larger than a number of published postmortem brain tissue
investigations focusing on neurosteroids and AD [67,89,90]. Another limitation that is
frequently unavoidable in postmortem brain tissue studies is inability to control for
medication status at the time of death, for either AD patients or cognitively intact control
subjects. Since some pharmacological agents increase allopregnanolone [51,91–97] and
pregnenolone [44,95,98], this could be a confounding element. In addition, smoking status at
the time of death is not known for this cohort, and smoking is associated with elevations in
DHEA [99] and may also be associated with elevations in allopregnanolone and
pregnenolone [100].
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Summary
In congregate, the results of this investigation are consistent with a role for neurosteroids in
the pathophysiology and therapeutics of AD. In light of recent converging preclinical and
clinical evidence linking allopregnanolone deficits to neurodegenerative disorders,
restoration of this neurosteroid may represent a logical treatment strategy. Since
allopregnanolone levels are inversely related to Braak and Braak neuropathological disease
stage, reductions in this neurosteroid may have functional significance and relevance to
illness progression. Decreases in allopregnanolone levels in the presence of the APOE4
allele, a well-established risk factor for late-onset AD, introduce additional lines of
investigation for future exploration and hypothesis-testing. Findings that DHEA and
pregnenolone are elevated in AD compared to cognitively intact control subjects (and
positively correlated with Braak and Braak neuropathological disease stage) suggest altered
regulation of neurosteroid biosynthetic pathways, potentially involving the accumulation of
pregnenolone precursor and blockage in downstream allopregnanolone formation.
Additional efforts and replication of these findings will be required to examine these
possibilities.
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Figure 1.
Biosynthetic Pathways and Chemical Structures for Selected Neurosteroids.
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Figure 2.
Allopregnanolone levels in temporal cortex are significantly decreased in subjects with
Alzheimer's disease (median 2.68 ng/g, n=40) compared to cognitively intact control
subjects (median 5.64 ng/g, n=41), Mann-Whitney p=0.0002.
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Figure 3.
Allopregnanolone levels in temporal cortex are inversely correlated with neuropathological
disease stage (Braak and Braak), Spearman r = −0.38, p=0.0004.
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Figure 4.
DHEA levels in temporal cortex are significantly increased in subjects with Alzheimer's
disease (median 4.75 ng/g, n=40) compared to cognitively intact control subjects (median
2.23 ng/g, n=41), Mann-Whitney p=0.0185.
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Figure 5.
Pregnenolone levels in temporal cortex are significantly increased in subjects with
Alzheimer's disease (median 22.24 ng/g) compared to cognitively intact control subjects
(median 10.24 ng/g), Mann-Whitney p=0.022.
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Figure 6.
DHEA levels are positively correlated with neuropathological disease stage (Braak and
Braak) in temporal cortex, Spearman r= 0.26, p=0.017.
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Figure 7.
Pregnenolone levels are positively correlated with neuropathological disease stage (Braak
and Braak) in temporal cortex, Spearman r=0.24, p=0.032.
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Figure 8.
Allopregnanolone levels in temporal cortex are significantly decreased in subjects
homozygous or heterozygous for the APOE4 allele (median 2.86 ng/g, n=36) compared to
patients who are not APOE4 allele carriers (5.23 ng/g, n=44), p=0.04.
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