
Copyright � 2010 by the Genetics Society of America
DOI: 10.1534/genetics.110.116855

The Impact of Genetic Architecture on Genome-Wide Evaluation Methods

Hans D. Daetwyler,*,†,1 Ricardo Pong-Wong,* Beatriz Villanueva‡,§ and John A. Woolliams*

*The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Roslin EH25 9PS, United
Kingdom, †Animal Breeding and Genomics Centre, Wageningen University, 6700 AH Wageningen, Netherlands,

‡Scottish Agriculture College, Edinburgh EH9 3JG, United Kingdom and §Departamento de Mejora
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ABSTRACT

The rapid increase in high-throughput single-nucleotide polymorphism data has led to a great interest
in applying genome-wide evaluation methods to identify an individual’s genetic merit. Genome-wide
evaluation combines statistical methods with genomic data to predict genetic values for complex traits.
Considerable uncertainty currently exists in determining which genome-wide evaluation method is the
most appropriate. We hypothesize that genome-wide methods deal differently with the genetic
architecture of quantitative traits and genomes. A genomic linear method (GBLUP), and a genomic
nonlinear Bayesian variable selection method (BayesB) are compared using stochastic simulation across
three effective population sizes and a wide range of numbers of quantitative trait loci (NQTL). GBLUP had
a constant accuracy, for a given heritability and sample size, regardless of NQTL. BayesB had a higher
accuracy than GBLUP when NQTL was low, but this advantage diminished as NQTL increased and when
NQTL became large, GBLUP slightly outperformed BayesB. In addition, deterministic equations are
extended to predict the accuracy of both methods and to estimate the number of independent
chromosome segments (Me) and NQTL. The predictions of accuracy and estimates of Me and NQTL were
generally in good agreement with results from simulated data. We conclude that the relative accuracy of
GBLUP and BayesB for a given number of records and heritability are highly dependent on Me, which is a
property of the target genome, as well as the architecture of the trait (NQTL).

THE rapid progress and reducing costs of genome
sequencing and high-throughput DNA techni-

ques have led to a great interest in applying genome-
wide evaluation methods to identify individuals of high
genetic merit. Genome-wide evaluation uses associations
of a large number of SNP (single nucleotide poly-
morphism) markers across the whole genome with
phenotypes to produce accurate estimates of breeding
values (EBVs) for candidates to selection (Meuwissen

et al. 2001). The accuracy of genome-wide selection (i.e.,
selection based on genomic EBVs) is expected to be
substantially higher than that of traditional best linear
unbiased prediction (BLUP) selection, which is based
on pedigree and phenotypic data (Daetwyler et al.
2008; Goddard 2009; Hayes et al. 2009c). In addition,
genome-wide selection has the potential to reduce
inbreeding rates because of the increased emphasis on
own rather than family information (Woolliams

et al. 2002; Daetwyler et al. 2007; Dekkers 2007).
Furthermore, the application of genome-wide evalua-
tion approaches can significantly aid our understanding
of quantitative trait genetic architecture.

The genome-wide evaluation methods suggested to
date can be broadly categorized into groups according to
whether there is an assortment of the SNP by magnitude
of effect or contribution to the variance. One group
treats SNP homogeneously and includes variants of
genomic best linear unbiased prediction (GBLUP). This
group includes a form of ridge regression (Meuwissen

et al. 2001) and the use of a realized relationship matrix
computed from the markers instead of the traditional
pedigree matrix (NejatiJavaremi et al. 1997; Villanueva

et al. 2005; Hayes et al. 2009c). Both approaches have
been shown to be equivalent (Habier et al. 2007;
Goddard 2009). A second group provides for hetero-
geneity among SNP contributions to the variance, with
some contributions permitted to be large while the
remainder are small, possibly zero. This assortment is
helped by Bayesian approaches, which place priors on
numbers of SNP with major contributions (e.g., BayesA
and BayesB; see Meuwissen et al. 2001, 2009; Lee et al.
2008), or with some penalty based on functions of the
magnitude of effect for each SNP (e.g., Lasso; see
Tibshirani 1996; Yi and Xu 2008) or with other smooth-
ing metrics (Long et al. 2007). A third group attempts to
reduce dimensionality by using principal components
or partial least squares (Raadsma et al. 2008; Solberg
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et al. 2009) to identify an informative subset of SNP
genotypes. The main two methods currently used in real
data sets are a linear prediction method, GBLUP, and
variants of nonlinear Bayesian variable selection ap-
proaches such as BayesB.

In most simulated published data, the accuracy of
BayesB outperformed that of GBLUP (e.g., Meuwissen

et al. 2001; Habier et al. 2007; Lund et al. 2009).
However, real data results have not consistently sup-
ported this conclusion. Two reviews of empirical results
in dairy cattle to date have shown that GBLUP and
BayesB result in very similar accuracies for most traits
(Hayes et al. 2009a; Vanraden et al. 2009). One reason
for the disagreement between simulated and real data
results could be that the genetic architecture simulated
is significantly different from what is found in real
populations. Most studies published to date that com-
pare methods using simulated architectures have con-
sidered only 50 or fewer QTL affecting the trait (e.g.,
Meuwissen et al. 2001; Habier et al. 2007; Lund et al.
2009). In this article we hypothesize that the relative
utility of genome-wide evaluation methods depends
significantly on both the genomic structure of the
population and the genetic trait architecture.

The main objective of this study was to compare a
linear method, GBLUP, and a nonlinear variable selec-
tion method, BayesB, using simulated data across a
range of population and trait genetic architectures to
further understand the mechanics of genome-wide
evaluation methods. An important secondary objective
was to extend deterministic prediction models to pre-
dict the accuracy of both methods. Theoretical models
complement stochastic simulation by helping the un-
derstanding of the factors involved in genome-wide
evaluation performance and, in return, stochastic sim-
ulation is used to confirm theoretical derivations.

METHODS

Theoretical development: Daetwyler et al. (2008)
derived equations for predicting the accuracy of a
simple least-squares genome-wide evaluation approach
for continuous and dichotomous traits. The original
formula for genome-wide accuracy for a continuous
trait is rg ĝ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNPh2Þ=ðNPh2 1 nGÞ

p
, where rgĝ is the

correlation between true and estimated additive genetic
values (i.e., accuracy), NP is the number of individuals in
the training population, h2 is the heritability, and nG is
the number of independent loci (Daetwyler et al.
2008). The accuracy was independent of how large the
subset of loci was that make nonzero contributions.
Thus, it did not matter whether there were many
nonzero loci effects of small magnitude or only a few
nonzero loci effects of large magnitude. In Daetwyler

et al. (2008), the formulae were derived by considering
the regression of phenotypes on one locus at a time as

loci were assumed independent. Therefore the formula
will work for small numbers of dispersed loci in a
genome but the accuracy will tend to zero as nG becomes
large; erroneously, because loci cannot be added inde-
pendently in a finite genome due to linkage. Daetwyler

et al. (2008) discussed that an empirical value for the
number of independent chromosome segments (M̂e)
could be used in place of nG, because nG was assumed
independent. Goddard (2009) also proposed accuracy
predictions for GBLUP, which used the concept of
predicted Me. His derivation builds on work by
Visscher et al. (2006) in which the variance of identi-
cal-by-descent sharing for full sibs was developed and
provides a prediction for Me, which is Me ¼ 2NeL/
log(4NeL), where L is the genome length in Morgans
(Goddard 2009). Substituting Me in place of nG in the
original formula of Daetwyler et al. (2008) results in

rg ĝG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NPh2

NPh2 1 Me

s
; ð1Þ

which also predicts the accuracy of GBLUP. At no time
does the argument moving from the original formula of
Daetwyler et al. (2008) to Equation 1 depend on the
distribution of the effects of loci, so we come to the first
hypothesis in this study that states that GBLUP accuracy
is independent of the number of quantitative trait loci
(NQTL) associated with the phenotypic trait.

Our second hypothesis was that the accuracy of
BayesB when NQTL is high would tend to that of GBLUP.
If our first hypothesis is confirmed, then the depen-
dence of GBLUP on Me is an advantage at high NQTL,
even though NQTL may be higher than Me. Heuristically,
if GBLUP delivers accuracy as if there are a Me number
of QTL, the benefit from prior information that there
are approximately Me (or more) QTL is unclear given
Equation 1. On the other hand, it is a clear disadvantage
if NQTL , Me because GBLUP cannot adapt the model
to suit the data. In contrast, BayesB is a variable selection
method that attempts to determine the ‘‘optimum
dimensionality’’ given the data and prior information.
When NQTL is high this optimum is likely to be Me in
both methods. Hence, the accuracy of BayesB at high
NQTL can be predicted in the same way as GBLUP, but if
NQTL , Me, variable selection may deliver an advantage
in accuracy because choosing a subset of variables will
reduce the dimensionality of the model. Thus, substitut-
ing NQTL for Me is likely to better predict the accuracy of
BayesB. This results in the following equation,

rg ĝB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NPh2

NPh2 1 minðNQTL;MeÞ

s
: ð2Þ

Further rearrangement of Equations 1 and 2 allows for
empirical estimates of Me (M̂e) to be made in the
following way,
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M̂e ¼ ðNPh2Þð1� r 2
g ĝÞ=r 2

g ĝ; ð3Þ

where r 2
g ĝ is the squared accuracy of estimates of genetic

values using GBLUP or BayesB (when NQTL $ Me) for
individuals without phenotypes. Predicting M̂e with
GBLUP requires molecular relatedness to be known,
whereas this is not required when using BayesB. This
result gives a further subhypothesis that the empirical
Me is predicted by the formula for independent chro-
mosome segments given by Goddard (2009). Also, if
NQTL , Me, additional information on NQTL can be
gathered using BayesB accuracy because it can choose a
subset of loci or variables, by applying the following
formula:

N̂QTL ¼ ðNPh2Þð1� r 2
g ĝBÞ=r 2

g ĝB : ð4Þ

Therefore, additional insight into quantitative traits can
be gained by combining genome-wide evaluation and
deterministic prediction. The accuracy of BayesB is of
course influenced by the priors used in the analyses
(especially priors on the proportion of loci with no
effect); hence it is important to use appropriate priors
to get accurate N̂QTL.

Simulations: Our study consisted of three main steps.
First, populations of individuals were simulated to be in
mutation drift equilibrium. Second, effects were as-
signed to a number of QTL that were randomly selected
from the whole set of segregating loci, and true genetic
values and phenotypes were generated for each in-
dividual. The third step consisted of the genetic evalua-
tions of the individuals generated with both GBLUP and
BayesB.

Populations and genome: Populations in mutation
drift equilibrium were simulated by random mating
individuals for many generations with recombination
and mutation. The number of male and female parents
was 1

2 Ne across generations. A total of 1000, 5000, and
10,000 generations were simulated until linkage dis-
equilibrium and heterozygosity values were stable for
Ne¼ 200, Ne¼ 1000, and Ne¼ 2000, respectively. In the
final generation, a set of training individuals (of variable
size) in which the loci effects were to be estimated was
generated by random mating. Using the same parents, a
set of validation individuals of size equal to the training
set was produced whose genetic values were to be
predicted. In scenarios where the size of the training
sets (NP) was larger than Ne, population size was
increased by increasing the number of offspring per
mating in the final generation.

The total genome size was 10 M (10 chromosomes of
1 M each). In generation zero all individuals were com-
pletely homozygous for the same allele and mutations
were applied at a rate of 2.5 3 10�5 per locus per meiosis
in the following generations. Mutations switched allele
one to two and vice versa. The number of randomly dis-
tributed mutations per chromosome was sampled from

a Poisson distribution with mean corresponding to the
product of the number of loci per chromosome and the
mutation rate. Similarly, recombinations per chromo-
some were sampled from a Poisson distribution with a
mean of one per morgan and were then randomly placed
along the chromosome. Linkage disequilibrium (LD)
statistics, i.e., R2 (Hill and Robertson 1968), between
adjacent segregating loci were averaged among all pairs
exceeding a minor allele frequency of 0.05 and matched
expected R2 values (Sved 1971; Tenesa et al. 2007). Allele
frequency distributions were found to follow a U-shaped
distribution.

The number of loci at the start of the simulation
(generation zero) required several considerations con-
cerned with obtaining an appropriate number of
segregating loci (Ne) and NQTL in the final generation.
The realized relationship matrix used in GBLUP can be
singular if NL is less than the number of individuals in
the matrix (Vanraden 2008), preventing the inversion
needed to compute solutions. Thus, NL at mutation drift
equilibrium was made larger than the maximum sum of
training and validation individuals to be used, and a
similar NL was used across all scenarios. However, as Ne

increased, the proportion of segregating loci in the last
generation also increased and for Ne ¼ 200, Ne ¼ 1000,
and Ne ¼ 2000, approximately 0.04, 0.28, and 0.52 of
initial loci were segregating at mutation drift equilib-
rium, respectively. This required the adjustment of the
number of initial loci. Across all scenarios, NL varied
between 4576 and 4721 loci (SE , 9.5 loci). To obtain
NQTL, Me in a random mating population, as derived by
Goddard (2009), was used as a guide to allow compar-
isons to be made across Ne. The following NQTL

scenarios were simulated: 0.03, 0.05, 0.15, 0.30, 0.50,
0.75, and 1 Me. Table 1 outlines the corresponding NQTL

for these proportions of Me for the three Ne, whereas
Table 2 shows all scenarios that were carried out. Note
that throughout this study our use of the terms ‘‘low’’ or
‘‘high’’ NQTL may refer to different actual NQTL across
the three Ne because NQTL was scaled to be proportional
to Me (Table 1).

The desired NQTL were randomly chosen from NL.
True allele substitution effects were sampled from N (0,
1). True breeding values for 2NP (i.e., training and
validation set) individuals were calculated for each QTL
as 2(1 � p j)bj (where p j is the major allele frequency at

TABLE 1

Number of QTL simulated for each proportion of
independent chromosome segments (Me) for
three values of effective population size (Ne)

Ne 0.03 Me 0.05 Me 0.15 Me 0.3 Me 0.5 Me 0.75 Me 1 Me

200 13 22 67 133 223 334 445
1000 57 94 283 566 944 1415 1887
2000 106 177 531 1063 1772 2657 3543
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locus j), �2pjbj, and ((1 � pj) � pj)bj for the major and
minor homozygote and heterozygote genotype, respec-
tively (Falconer and Mackay 1996). Total breeding
values were obtained by summing over NQTL. Breeding
values were scaled to have the variance of h2 (i.e.,
phenotypic variance is 1). Phenotypic records were
simulated for NP (training set) animals by adding in-
dependent environmental terms drawn from N(0, 1� h2)
to true breeding values. In addition, sampling bj from a
Laplace (double exponential) distribution was investi-
gated in scenario 4. The accuracy of both genome-wide
evaluation methods was computed as the correlation
between true and estimated breeding values.

GBLUP analysis: The evaluation with GBLUP ap-
plied the following model, which was fit in ASReml
(Gilmour et al. 1995): y ¼ m1 1 Za 1 e, where y is the
vector of phenotypic values, m is the population mean, Z
is an incidence matrix for random individual effects, a is
a vector of random individual additive genetic values, and
e is the residual. Random effects a and e were assumed
normally distributed as N ð0;Gs2

aÞ and N ð0; Is2
eÞ, re-

spectively, where G was the realized relationship matrix
computed using the NL loci. In G, the relationship
between a pair of individuals was based on identical-by-
state probabilities and included all training individuals
with phenotypes and validation individuals without phe-
notypes. The total allelic relationship at a locus between
a pair of individuals was calculated as 0:5

P2
i¼1

P2
j¼1 dij ,

where dij is 1 if allele i in the first individual is identical to
allele j in the second individual and 0 otherwise. Averaging
over loci as 0:5

P2
i¼1

P2
j¼1 dij ½NL��1 yields the numerator

relationship between all individual pairs required for G
(NejatiJavaremi et al. 1997). Breeding values were ob-
tained by solving the mixed model equations (Henderson

1975).
BayesB analysis: We implemented a variant of the

original BayesB (Meuwissen et al. 2001). The model
applied was y ¼ m1 1

PNL

j¼1 Xjbj 1 e, where m was the
mean, X was an incidence equal to �1, 0, and 1 for 11,

12/21, and 22, respectively, b is the allele substitution
effect for locus j, and e was the vector of residuals
distributed as N ð0;s2

eÞ. Allele substitution effects were
assumed to come for a mixture distribution where a
proportion (p) had no effect and a proportion (1 � p)
had effects distributed as N ð0;s2

snpÞ.
The prior used for m was uniform, over a long range

(i.e.,�100s2
P to 1 100s2

P), and for s2
e was uniform (i.e., 0

to 1 100s2
P), where s2

P is the phenotypic variance of the
data set analyzed. The prior for s2

snp was taken from a
scaled inverted chi-square distribution of the form
s2

snp � ys2x�2
y , where s2 represented the prior value for

s2
snp and y was its degree of belief (Wang et al. 1994). A

weak prior was chosen to be 1 for both y and s2 across all
scenarios. The influence of our s2 on s2

snp estimates from
BayesB was investigated and was found to be small. A
critical discussion of the impact of priors on BayesB can
be found in Gianola et al. (2009).

To test effect of p on breeding value accuracy, two types
of scenarios were carried out. In the majority of scenarios,
1 � p was fixed to true values simulated for a particular
scenario, 1 � p ¼ NQTL[NL]�1, which we call the ‘‘in-
formed prior.’’ However, in scenario 8, 1� p was fixed to
57 QTL for all NQTL scenarios, 1 � p ¼ 57 QTL[NL]-1,
which we term the low prior. While not done in this study,
one could estimate 1� p instead of using a prior and this
may be an advantage in real data with unknown NQTL

(e.g., Pong-Wong and Hadjipavlou 2010).
Our implementation of sampling loci variances was

slightly different from that of Meuwissen et al. (2001).
They performed a haplotype analysis and therefore
several haplotype effects would need estimating per
locus and having more than one effect per locus
required sampling of locus variances. In this study,
biallelic loci were simulated and, because only one
effect was estimated per locus, it was not necessary to
sample a per-locus variance. This process of sampling
from one variance is more similar to that of Xu (2003).
However, his implementation assumed all loci had an
effect, which is comparable to BayesA of Meuwissen

et al. (2001). In contrast, our model assumed that some
loci will not have an effect (p), which is more similar to
BayesB. In addition, while Xu (2003) used a naı̈ve prior
for s2

snp, we used an informative prior (i.e., y and s2 ¼ 1)
as proposed by Ter Braak et al. (2005).

The length of the Gibbs chain was 105,000 iterations
and the first 5000 iterations were discarded as burn-in.
Estimates at every 20th iteration were stored as a sample
resulting in a total of 5000 samples. Several analyses
were carried out to test if the sampling protocol was
appropriate. Autocorrelations of effects and estimated
breeding values were found to be close to zero in stored
samples, which showed that they were almost indepen-
dent, so Monte Carlo error was , 0.0003 in all scenarios
(Geyer and Thompson 1992). This allowed for short-
ening of the chain length to 45,000 iterations (2000
samples) for scenarios with NP ¼ 2000 to reduce

TABLE 2

Parameter values for the simulated scenarios, where Ne is the
effective population size; NP is the number of individuals
in the training set; h2 is the heritability; Prior is the prior

used for p in BayesB; and Me is the number of
independent chromosome segments

Scenario Ne NP h2 Prior Me

1 200 200 0.3 Informed 445
2 200 1000 0.3 Informed 445
3 1000 1000 0.5 Informed 1887
4 1000 1000 0.3 Informed 1887
5 1000 1000 0.1 Informed 1887
6 1000 500 0.3 Informed 1887
7 1000 2000 0.3 Informed 1887
8 1000 1000 0.3 57 QTL 1887
9 2000 2000 0.3 Informed 3543
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running time. Furthermore, convergence was investi-
gated by using a variety of starting values for s2 in the
BayesB. Using different starting values resulted in nearly
identical estimates of s2

snp and breeding value accuracy
suggesting that our Gibbs chains were converging. In
addition, a long chain of 160,000 iterations was run and
s2

snp estimates and accuracy values were very similar to
the shorter chain. While convergence cannot be guar-
anteed in any MCMC study, evidence suggests that our
MCMC protocol converged.

RESULTS

GBLUP accuracy: The accuracy of GBLUP for a given
set of values for NP and h2 stayed constant regardless of
NQTL in all scenarios simulated (Figure 1 and Table 3).
This confirmed our first hypothesis. The constant
accuracy results from the unique Me of a random mating
population, which, in turn, depends on Ne and L
(Goddard 2009). The plateau of GBLUP accuracy
increased when more phenotypic records were used in
the estimation of breeding values and when h2 increased
(Figure 1). Sampling bj from a Laplace (double expo-
nential) distribution resulted in the same GBLUP
accuracy as sampling from N(0, 1).

BayesB accuracy: In contrast to GBLUP, with BayesB
the accuracy was highest at low NQTL and then de-

creased as NQTL increased (Figure 1 and Table 3). Once
NQTL was high, BayesB reached a plateau where the
accuracy does not decrease anymore despite increasing
NQTL. This plateau was observed in all BayesB scenarios
and the value of the accuracy at this plateau depended
on Ne, h2, and NP (Tables 3 and 4). The plateau
decreased when Ne increased. An increase in h2 and
NP influenced the accuracy in two ways: first, it raised the
overall accuracy in all NQTL scenarios, and second, it
slightly shifted the onset of the accuracy plateau to
higher NQTL. Sampling effects from a Laplace distribu-
tion instead of N(0, 1) raised BayesB accuracy slightly,
but when NQTL was equal to 0.03 Me or NQTL . 0.5 Me no
difference in accuracy was observed between sampling
from both distributions.

The use of low NQTL priors for 1 � p yielded a lower
accuracy than informed priors (Table 2, scenario 8, and
Figure 2). The gap between the accuracy of informed
and low priors increased as NQTL increased because the
proportion of the genetic variance explained by the low
NQTL prior became smaller.

Comparison of GBLUP and BayesB: The compari-
son of GBLUP and BayesB leads to several key observa-
tions. BayesB always performed better than GBLUP at
low NQTL. However, as NQTL increased, the difference
between the two methods became smaller and eventu-
ally both approaches achieved very similar accuracy. The
NQTL at which this equivalence occurred was increased

Figure 1.—Accuracy of GBLUP and BayesB
(informed priors for p) in validation individuals
for different numbers of QTL and heritabilities
(h2) when the effective population size is 1000
and the number of individuals in the training
set is 1000. SE , 0.018 in all scenarios.

TABLE 3

Accuracy of GBLUP and BayesB (informed priors for p) for different effective population sizes (Ne), numbers of QTL
expressed as proportions of Me, and numbers of individuals in the training set (NP) when the heritability

is 0.3. SE , 0.023 in all scenarios

Method Ne NP 0.03 Me 0.05 Me 0.15 Me 0.3 Me 0.50 Me 0.75 Me 1 Me

GBLUP 200 200 0.405 0.450 0.429 0.414 0.444 0.416 0.398
1000 1000 0.505 0.501 0.508 0.502 0.507 0.501 0.511
2000 2000 0.575 0.579 0.571 0.568 0.571 0.571 0.568

BayesB 200 200 0.739 0.649 0.463 0.400 0.398 0.365 0.344
1000 1000 0.865 0.772 0.601 0.516 0.480 0.451 0.445
2000 2000 0.886 0.812 0.646 0.573 0.544 0.522 0.506
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with increasing Ne, NP, and h2 (Figure 1 and Tables 3 and
4). Once NQTL increased past the equivalence point,
BayesB had a slightly lower accuracy than GBLUP and
settled at a constant accuracy (Table 3). The difference
between GBLUP and BayesB at high NQTL decreased
when NP was increased. Sampling effects from a Laplace
instead of a Normal distribution did not affect these
general trends.

In Figure 2, the maximum x-value of NQTL plotted is
equal to the predicted Me from Goddard (2009) and
one observes that BayesB accuracy approaches the
plateau and becomes similar to GBLUP accuracy well
below Me. A first inspection therefore suggests that the
second hypothesis does not hold. However the argu-
ment for the second hypothesis is based upon the
empirical M̂e. M̂e calculated with Equation 3 for h2 ¼
0.1, 0.3, and 0.5 by averaging over the values of NQTL

gives values of 890, 900, and 700. In this context,
hypothesis 2 is shown to be broadly valid, in that
superiority of BayesB over GBLUP disappears when
NQTL approaches M̂e, although there is a trend for
BayesB accuracy to become similar to GBLUP accuracy
sooner than Me. These observations held for other
scenarios. The comparison between Me and M̂e is
addressed in more detail below.

Decay in accuracy: The decay in accuracy between
training and validation individuals was also greater for
GBLUP than that of BayesB at low NQTL (Table 4) as
observed by Habier et al. (2007). However, this trend
diminished as NQTL increased and the decay of accuracy
reached similar levels in both methods at high NQTL.

Predictions of accuracy: Figure 3 shows the accuracies
of GBLUP and BayesB predicted with Equations 1 and 2,
respectively, and the accuracies from simulations in the
validation set. Predictions of GBLUP and BayesB (at high
NQTL) accuracy were generally accurate. The accuracy of
the predictions was highly dependent on Me. In BayesB,
the drop in accuracy as NQTL increased was predicted

well. Equation 2 tended to overpredict BayesB accuracy,
particularly in scenarios where NQTL was a low pro-
portion of Me, using Goddard (2009), and low h2 and NP.

Empirical M̂e and N̂QTL: We estimated Me using the
accuracy of GBLUP or BayesB (when NQTL ¼ Me)
(Equation 3). When GBLUP accuracy was used, we
averaged the accuracy across all NQTL scenarios simu-
lated for a given set of values for h2 and NP. This was done
for each population replicate to obtain a standard error.
It is a subhypothesis that Me as predicted by Goddard

(2009) approximates M̂e. Empirical estimates of Me

using GBLUP were always lower than those using BayesB
(Table 5) due to the higher GBLUP accuracy when NQTL

is high. The estimates using BayesB accuracy were more
variable than GBLUP as shown by the larger SE of
BayesB. A general trend was apparent showing that M̂e

increased as NP increased, which suggests that M̂e has
not reached a bound; however, the change in M̂e is small
in relation to the difference from Me. Furthermore, M̂e

does not increase linearly with NP and this may indicate
that it may be approaching asymptotic values.

The number of QTL controlling the trait (NQTL) was
estimated using Equation 4 with reliability values from
BayesB when NQTL , Me. As shown in Figure 4 for
scenario 7, the estimated NQTL do follow the actual NQTL

well and are predictive of the trend. Empirical N̂QTL

were better estimated with higher NP. Note that in-
correct priors will reduce N̂QTL accuracy.

DISCUSSION

We have compared GBLUP and BayesB at various
population and trait genetic architectures and at various
NP. We demonstrated that GBLUP had a constant
accuracy, for a given NP and h2, regardless of NQTL.
The accuracy of BayesB was greatest at low NQTL,
decreased with increasing NQTL, and eventually reached
a lower accuracy plateau below which the accuracy did

TABLE 4

Accuracy of GBLUP and BayesB (informed priors for p) in training (T) and validation (V) individuals for different effective
population sizes (Ne), numbers of QTL (NQTL) expressed as proportions of Me, and numbers of individuals in the

training set (NP) when the heritability is 0.3. SE , 0.023 in all scenarios

Ne ¼ 200 Ne ¼ 1000

NQTL Population NP ¼ 200 NP ¼1000 NP ¼ 500 NP ¼1000 NP ¼2000

BayesB 0.03 Me T 0.794 0.958 0.801 0.883 0.933
V 0.739 0.952 0.757 0.865 0.924

0.05 Me V 0.649 0.905 0.602 0.772 0.870
0.15 Me V 0.463 0.803 0.421 0.601 0.744
0.30 Me V 0.400 0.709 0.371 0.516 0.656
0.50 Me T 0.599 0.778 0.583 0.657 0.741

V 0.398 0.654 0.373 0.480 0.613
1 Me V 0.344 0.591 0.342 0.445 0.567

GBLUP All T 0.656 0.771 0.625 0.682 0.747
V 0.444 0.622 0.407 0.507 0.612
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not fall even when NQTL was further increased. BayesB
has an advantage over GBLUP at low NQTL, but this
advantage decreased as NQTL increased and it finally
diminished completely or, in some cases, the advantage
switched to GBLUP depending on Ne and NP. The point
at which GBLUP and BayesB accuracy became equal was
related to the empirical number of independent seg-
ments estimated from the GBLUP accuracy, M̂e, which
was less than the theoretical prediction of Me provided
by Goddard (2009). It is clear from this study that
quantifying the superiority of GBLUP over BayesB or
vice versa depends upon three sets of attributes: the
population genome structure (e.g., Ne), the trait genetic
architecture (e.g., NQTL, h2), and the size of the training
set. Superiority is, therefore, not a property of the
method and general statements to that effect should
be avoided. Furthermore, we have proposed and tested
equations for the prediction of GBLUP and BayesB
accuracy and the estimation of M̂e and N̂QTL. Our
predictions follow achieved GBLUP and BayesB accu-
racy well. Empirical M̂e values seem to be approaching
an asymptote with increasing NP and our estimates of
N̂QTL follow the trend of true NQTL.

The constant accuracy of GBLUP, for a given h2 and
NP, confirmed our first hypothesis and clearly shows that
this accuracy depends crucially on genomic properties,
and not on properties of the trait, and is summarized in
the concept of Me. In turn, Me will depend on Ne and L,
which can be viewed, in the short term, as constants in a
random mating population (Goddard 2009). In a
wider sense, Me and the more commonly known
haplotype blocks are both measures resulting from
population history and as such are related, although
not interchangeable. Haplotype blocks are physical
segments of the genome within which haplotype di-
versity is low, bounded by areas where evidence for
historical recombination exists (e.g., Goldstein 2001;
Gabriel et al. 2002; Frazer et al. 2007). While haplotype
blocks are a physical measure, Me is a more statistical
concept related to the behavior of the genome in
genomic evaluations. It is theoretically derived from

variation in relationship between relatives and from the
continuum of variation in linkage disequilibrium across
the genome (Goddard 2009). Both the number of
haplotype blocks and Me increase with increasing Ne

and in close relatives haplotype blocks will be long and
Me will be small (Hayes et al. 2009c). It should be noted
that the dependence of GBLUP on Me shown in this
study does not support the conclusion that GBLUP
assumes an infinitesimal model in which there are a very
large number of genes each contributing a small
portion to the genetic variance. In fact, GBLUP is
indifferent to NQTL, unless NQTL is very small (i.e., one
or , 10 QTL; unpublished results), as demonstrated in
this study.

While it is clear that in GBLUP the accuracy depends
on Me and not on NQTL, in BayesB the accuracy depends
on the interplay of both features of genetic architecture
(NQTL and Me). Our results follow our second hypoth-
esis that the behavior of BayesB accuracy at high NQTL is
similar to that of GBLUP. The accuracy of BayesB
declines as NQTL increases and eventually becomes
similar to GBLUP as NQTL increases. The point at which
this occurs approaches Me with increasing NP. There-
fore, we show that the accuracy of BayesB at high NQTL is
also dependent on Me just like in GBLUP. This is also
supported by the accuracy plateau being observed
across similar proportions of Me and that near equiva-
lence is approximated closely by NQTL¼ M̂e, where M̂e is
the empirical estimate of Me obtained from GBLUP.
Therefore, the plateau is not a function of actual NQTL

but of Me. Another argument for M̂e to be a major
determinant in BayesB accuracy at high NQTL is that it
can be accurately predicted with Equation 3. In addi-
tion, a recent study of Barley using real data has also
shown that GBLUP accuracy exceeded that of BayesB
when NQTL was large (Zhong et al. 2009).

The difference in accuracy between GBLUP and
BayesB may be explained by the way both methods
process and model information. With GBLUP, each
independent segment is estimated irrespective of
whether it has an effect whereas with BayesB, an

Figure 2.—Accuracy of BayesB in validation
individuals with informed priors on p (BayesB
Prior Informed) and a low prior of 57 QTL re-
gardless of the actual number of QTL (BayesB
Prior 57 QTL) when the effective population size
is 1000, the number of individuals in the training
set is 1000, and heritability is 0.3. Accuracy of
GBLUP is included for reference. SE , 0.009
in all scenarios.
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additional step is involved in which for each locus it is
estimated if the locus has an effect or not. The fact of
choosing a near-correct subset of loci with effect with
BayesB increases accuracy but there is also an error
associated with determining p, which depends on NL.
When NQTL , Me the advantage of choosing a subset is
clear but when NQTL $ Me this diminishes (heuristically,
it is likely that each independent segment contains
QTL). Thus, under the latter scenario, GBLUP per-
forms slightly better than BayesB. This argument is
further supported by the decreasing difference in
accuracy between GBLUP and the BayesB accuracy
plateau at high NQTL when NP is increased, because
BayesB can identify the loci with effect better with more
information.

The use of QTL effects sampled from a Laplace
distribution instead of a Normal distribution resulted in
no quantitative change to GBLUP accuracy and in only
minor changes in accuracy to BayesB. Overall, the
trends observed were fully consistent with the conclu-

sions obtained with normally distributed effects, con-
firming other studies that have compared these effect
distributions (Habier et al. 2007; Daetwyler et al. 2008;
Meuwissen 2009).

It is challenging to compare statistical approaches
that embody different statistical philosophies. In the
genomic and animal breeding context, comparing
approaches using point estimates of breeding values,
such as their accuracy, is common. Breeding itself is an
application of decision theory (e.g., Woolliams and
Meuwissen 1993) and in model terms the value of a
breeding decision may be measured as the expected
rate of genetic gain (DG) arising from the decision. The
focus on accuracy in this article arises from the
‘‘breeders equation’’ E[DG] ¼ ir sA/L, where i is stan-
dardized intensity, sA is the additive genetic standard
deviation, L is generation interval, and r is the accuracy.
The concept of accuracy is therefore central to the
infrastructure of genetic evaluation.

This does not mean that accuracy as presented here
will remain the key comparison in the future, and the
richer information available from Bayesian methods
may at some point overturn this paradigm. The expec-
tation of the posterior distribution for an individual’s
breeding value is a natural estimate arising from a
Bayesian analysis (e.g., Goddard 2009; Meuwissen et al.
2009) and also gives a natural comparison with the
estimates from BLUP approaches. In addition, alterna-
tive measures of comparison to expected gain (in a
Bayesian sense, minimizing the squared loss) have been
considered, such as percentiles of the posterior, which
will be influenced by (co)variances of candidates (e.g.,
Woolliams and Meuwissen 1993), or other ap-
proaches to selection such as minimax regret.

Genome-wide evaluation methods are popular be-
cause they seem to offer a solution to predicting a large

Figure 3.—Predicted (solid bars) and simulated (shaded
bars) accuracy of GBLUP and BayesB for (A) a heritability
(h2) of 0.3 and varying effective population size (Ne) and num-
ber of individuals in the training set (NP) and for (B) Ne ¼
1000 and varying h2 and NP. Different numbers of QTL ex-
pressed as proportions of Me were considered for BayesB.

TABLE 5

Estimated (M̂e) and predicted (Me and MeH) number of
independent chromosome segments. Estimates were

obtained from Equation 3 with mean squared accuracy of
GBLUP or BayesB from 50 replicates of simulated

data (6SE). The number of QTL is 1 Me and
predictions are Me ¼ 2NeL/log(4NeL) as
in GODDARD (2009) and MeH ¼ 2NeL as

in HAYES et al. (2009c)

M̂e

Ne NP h2 GBLUP BayesB Me MeH

200 200 0.3 294 6 29 579 6 73 445 4,000
200 1,000 0.3 487 6 17 584 6 25 445 4,000
1,000 1,000 0.5 883 6 24 1,103 6 27 1,887 20,000
1,000 1,000 0.3 890 6 28 1,243 6 33 1,887 20,000
1,000 1,000 0.1 822 6 41 1,551 6 111 1,887 20,000
1,000 500 0.3 803 6 39 1,187 6 48 1,887 20,000
1,000 2,000 0.3 1,014 6 21 1,280 6 26 1,887 20,000
2,000 2,000 0.3 1,253 6 24 1,769 6 42 3,543 40,000
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numbers of parameters (i.e., loci effects) from a limited
number of phenotypes, but a number of concerns have
been expressed. For example, Bayesian methods with-
out an influential prior may experience convergence
problems. Investigation with noninformative priors for
scale factors have resulted in BayesB accuracy similar to
those using priors in this study (unpublished results).
However, more investigation of convergence of ge-
nome-wide methods is needed, including minimum
length of Gibbs chains, influence of priors on conver-
gence, and optimal protocols for parallel computing. At
the same time, there is concern that the priors on
degree of belief and scale factors used in the BayesB
(Meuwissen et al. 2001) exert too much influence,
thereby preventing Bayesian learning (Gianola et al.
2009). Gianola et al. (2009) clearly show that priors
influence estimates.

The findings that both GBLUP and BayesB depend
significantly on Me are given more weight by the fact that
the accuracy of both methods can be predicted with
Equations 1 and 2, respectively. The predictions were
generally accurate but limitations have also been high-
lighted, especially in predicting BayesB accuracy. Ex-
tensions to the formulae may be needed to predict
BayesB more accurately at low NQTL relative to Me when
h2 or NP are also low, and there is also a need to review
whether Me as formulated by Goddard (2009) is a good
predictor of M̂e. However, being able to predict the
trend in BayesB accuracy is a significant step forward
(Figure 3). One of the assumptions in the original
derivation (Daetwyler et al. 2008) was that all of the
genetic variance was tagged by the loci used in the
analysis. This represents a complication when applying
our equations to predict the accuracy using a commer-
cially available SNP chip, because the current chips are
likely to miss a portion of the genetic variance. First, it is
likely that the number of SNP on current chips is not
high enough to tag all the genetic variance and variation
not associated with SNP (e.g., copy number variation;
Redon et al. 2006) will also be missed. Second, SNP with
higher than average heterozygosity are selected for
developing the chips and therefore loci with low minor
allele frequency are proportionally underrepresented

(i.e., ascertainment bias). The result of this missing
genetic variance in the analysis of real populations is
that our deterministic equations are likely to over-
predict the accuracy in both methods.

The fact that our equations account for the entire
genetic variance will, however, be a clear advantage as
the scientific community moves toward the analysis of
sequence data for which our formulae are appropriate
in their current form. In sequence data analysis, all
basepairs are included and therefore no rare alleles
would be missing. Thus, all the genetic variance is
contained in the sequence and the prediction does
not rely on capturing LD with the true mutation.

Additional insight into quantitative traits can be
gained by combining genome-wide evaluation and de-
terministic prediction. We have shown that Me can be
estimated with Equation 3 if the accuracy of GBLUP or
BayesB is known. Two theoretical values for Me have
been proposed to date, Me¼ 2NeL/log(4NeL) (Goddard

2009) and 2NeL (Hayes et al. 2009c). Our estimates
of Me (M̂e), even though still increasing with increasing
NP, remain lower than both theoretical values but were
of the right order of magnitude when using Goddard’s
equation (Goddard 2009) rather than 2NeL (Table 5).
In real data using 2NeL in Equation 1 appears to predict
GBLUP accuracy well (Hayes et al. 2009b), but this may
be due to the fact that SNP arrays miss a significant
proportion of the genetic variance. Once more of the
genetic variance is captured with new technology
we would expect that estimates of M̂e from real data
would likely tend toward the derivation of Goddard

(2009), or possibly lower. In addition to M̂e, NQTL can be
estimated with BayesB accuracy if NQTL , Me. As Figure
4 shows, this can be a coarse measure of NQTL, because
small changes in accuracy can cause relatively large
fluctuations in N̂QTL. A complication in estimating NQTL

is that several SNP may be in partial LD with a particular
QTL and this could lead to overestimates of NQTL.
In addition, BayesB requires knowledge of the true NQTL

in its prior. Nevertheless, estimates of NQTL could aid
investigations into complex trait architectures, perhaps
through examining the correspondence between the
assumed prior on NQTL and the resulting estimate.

Figure 4.—Actual number of QTL simulated
and number of QTL predicted with Equation 4
using BayesB accuracy when the effective popula-
tion size is 1000, the number of individuals in the
training set is 2000, and the heritability is 0.3.
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The trends observed in this study are supported by
experiences in real data. Results in dairy cattle geno-
typed with a 50K SNP chip show that GBLUP and BayesB
lead to very similar accuracies in most traits (Hayes et al.
2009a; Vanraden et al. 2009). Vanraden et al. (2009)
report correlations between linear and nonlinear meth-
ods of .0.99 in a vast majority of traits. This suggests that
in real animal populations quantitative traits are con-
trolled by a large number of QTL and for most traits
NQTL $ Me. There are of course exceptions to the rule
and, for example, in dairy cattle BayesB performed
better than GBLUP in milk fat content (Vanraden et al.
2009). This is likely due to a significant portion of the
variation being explained by few genes of large effect,
such as DGAT (Grisart et al. 2004). Hence, in this trait
it is likely that NQTL , Me or that a relatively small
number of QTL explain the majority of the genetic
variance in the trait. We have investigated a scenario
where one QTL explained 25% of the genetic variance
and 1000 very small QTL explained the rest of the
variance (results not shown) and the results confirmed
our hypothesis.

The principles established in this study should
be transferable to other populations as the trends
have been confirmed across three different Ne. In our
view, investigators need to gather evidence to answer
two questions. First, what is the population’s Me and,
second, how many NQTL are likely contributing to
the genetic variance in a particular trait? When NQTL

$ Me GBLUP will result in higher accuracy than BayesB,
but when NQTL , Me BayesB will outperform GBLUP.
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