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ABSTRACT

Model organisms offer many advantages for the genetic analysis of complex traits. However,
identification of specific genes is often hampered by a lack of recombination between the genomes of
inbred progenitors. Recently, genome-wide association studies (GWAS) in humans have offered gene-level
mapping resolution that is possible because of the large number of accumulated recombinations among
unrelated human subjects. To obtain analogous improvements in mapping resolution in mice, we used a
34th generation advanced intercross line (AIL) derived from two inbred strains (SM/J and LG/J). We
used simulations to show that familial relationships among subjects must be accounted for when analyzing
these data; we then used a mixed model that included polygenic effects to address this problem in our
own analysis. Using a combination of F2 and AIL mice derived from the same inbred progenitors, we
identified genome-wide significant, subcentimorgan loci that were associated with methamphetamine
sensitivity, (e.g., chromosome 18; LOD ¼ 10.5) and non-drug-induced locomotor activity (e.g.,
chromosome 8; LOD ¼ 18.9). The 2-LOD support interval for the former locus contains no known
genes while the latter contains only one gene (Csmd1). This approach is broadly applicable in terms of
phenotypes and model organisms and allows GWAS to be performed in multigenerational crosses
between and among inbred strains where familial relatedness is often unavoidable.

SUSCEPTIBILITY to diseases such as drug abuse is
partially determined by genetic factors. The iden-

tification of the alleles that underlie disease susceptibility
is an immensely important goal that promises to revolu-
tionize both the diagnosis and the treatment of human
disease. Genome-wide association studies (GWAS) in
humans can locate common alleles with great precision.
However, GWAS may be unable to identify the bulk of
the heritable variability for common genetic diseases;
some of this ‘‘missing heritability’’ is thought to be due to
rare alleles (Manolio et al. 2009). Model organisms are
complementary to human genetic studies and offer
unique advantages including the ability to control the
environment, perform dangerous or invasive procedures,
and test hypotheses by manipulating genes via genetic
engineering; a final advantage is that crosses between
two inbred strains avoid many of the difficulties asso-
ciated with rare alleles.

Studies in model organisms have frequently em-
ployed intercrosses (F2’s) to identify quantitative trait

loci (QTL) that underlie phenotypic variability. F2

crosses are easy to produce and easy to analyze; however,
due to a lack of recombination they can identify only
larger genomic regions and are thus unsuitable for
identifying the genes that cause QTL (Flint et al. 2005;
Peters et al. 2007). This is a serious limitation that can
be addressed by using populations with greater numbers
of accumulated recombinations. Darvasi and Soller

(1995) suggested the creation of advanced intercross
lines (AILs) by successive generations of random mating
after the F2 generation to produce additional recombi-
nations. An AIL offers vastly improved mapping resolu-
tion while maintaining the desirable property that all
polymorphic alleles are common.

We used an AIL to study sensitivity to methamphet-
amine, which is a genetically complex trait that may be
useful for identifying genetic factors influencing the
subjectively euphoric response to stimulant drugs and
susceptibility to drug abuse (Palmer et al. 2005; Phillips

et al. 2008; Bryant et al. 2009). For example, a prior
study suggested that the gene Casein Kinase 1 Epsilon
(Csnk1e) might influence sensitivity to the acute loco-
motor response to methamphetamine in mice (Palmer

et al. 2005). This conclusion has been bolstered by
additional pharmacological (Bryant et al. 2009) and
genetic studies. In addition, we have shown that poly-
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morphisms in this gene are associated with sensitivity
to the euphoric effects of amphetamine in humans
(Veenstra-Vanderweele et al. 2006). Another group
has subsequently reported that this same gene is
associated with heroine addiction (Levran et al.
2008). Thus, genes that modulate the acute locomotor
response to a drug in mice may also be important for
sensitivity to similar drugs in humans as well as the risk
for developing drug abuse.

The purpose of this study was to develop a framework
for rapid identification of high precision QTL and
ideally specific genes that influence sensitivity to meth-
amphetamine in mice by employing an AIL. We pro-
duced an F2 cross (n ¼ 490) and a corresponding 34th
generation AIL (n ¼ 688) derived from the inbred
strains SM/J and LG/J. This allowed us to compare and
integrate the results from F2 and AIL mice. We exam-
ined the locomotor stimulant response to a 2-mg/kg
dose of methamphetamine, which is extremely dispa-
rate in the two progenitor strains. We performed a GWAS
using either simple regression, which ignored related-
ness, or a mixed model that accounted for relatedness
by using identity coefficients that were calculated from
the pedigree. We also explored two methods to estimate
significance: simple permutation and gene dropping.
We discuss the performance of a mixed model that
includes polygenic effects vs. simple regression and the
performance of permutation vs. gene dropping. The
methods used in this study are applicable to a variety of
other phenotypes and populations.

MATERIALS AND METHODS

Subjects: Mice were housed in standard laboratory con-
ditions with a 12:12-hr light cycle and ad libitum access to food
and water. We obtained inbred SM/J and LG/J mice from
Jackson Labs (Bar Harbor, ME). Some of these mice were used
to breed additional inbred mice that were phenotyped while
others were used to produce SM 3 LG F1 mice. Similarly, some
F1 mice were phenotyped while others were used to produce
the F2 generation (n ¼ 490).

In addition, we obtained 140 F33 breeders from the lab-
oratory of James Cheverud (Washington University, St. Louis).
The F33 mice were outbred, with .50 families having been
maintained per generation since their inception. Breeding
was random except that siblings were not mated with one
another. Records from Dr. Cheverud’s lab allowed us to
construct a pedigree for each F33 mouse that traced back to
the original inbred founders. From these 140 F33 mice, 119
were successfully bred to create an F34 generation (n¼ 688), in
which phenotypes were measured. We produced only one F34

litter per breeding pair; breeding pairs were rotated after each
litter to avoid producing large numbers of full sibs; however,
the phenotyped (F34) generation inevitably contained many
sibs, half-sibs, and cousins as well as more distant and complex
relationships.

We chose to study the SM/J and LG/J strains mainly
because of the availability of an F33 AIL, which represents
almost 10 years of breeding. Another advantage was the avail-
ability of a known pedigree. In addition, these strains also
showed marked differences in the traits we chose to study, as

discussed below. All procedures were approved by the Univer-
sity of Chicago institutional animal care and use committee
(IACUC).

Behavioral testing: We used a standard procedure to eval-
uate the locomotor response to methamphetamine (Bryant

et al. 2009). The procedure involved testing mice over a 3-day
period; on days 1 and 2 mice were weighed and then received
vehicle (saline) injections while on day 3 mice were weighed
and then injected intraperitoneally with 2.0 mg/kg metham-
phetamine. On each test day mice were placed into an
automated test chamber (Accuscan Instruments, Columbus,
OH) outfitted with a two-dimensional array of infrared photo-
beams that recorded the position of each mouse 50 times per
second. These data were subsequently analyzed by a computer
to determine the total distance traveled, which was the depen-
dent measure for all analyses. Each test session was 30 min
long. Mice were placed in the chambers immediately after
injection and were returned to their home cages at the end of
each session. Additional phenotypes were measured in these
mice after methamphetamine testing; results from the QTL
analyses of some of those phenotypes may be reported in
future publications.

Genotyping of F2 mice: DNA from F2 mice were extracted
and genotyped at 123 SNP markers that were genotyped in the
AIL mice as well as 39 unique SNP markers; genotyping was
performed by KBiosciences (Hoddesdon, UK).

Genotyping of AIL mice: We designed a custom SNP
genotyping array that assayed SNPs using the Illumina
Infinium platform. This array was used for several projects
and thus contained many SNPs that were not polymorphic
between SM/J and LG/J mice. SNPs were selected from
databases maintained by The Broad Institute (http://www.
broad.mit.edu/personal/claire/MouseHapMap/), the Well-
come Trust (http://gscan.well.ox.ac.uk), and a prerelease of
imputed genotypes from the Center for Genome Dynamics
(Szatkiewicz et al. 2008). These SNPs were chosen to provide
uniform coverage of the mouse genome using either a genetic
map constructed by Shifman et al. (2006) or linear interpola-
tions based on that map and the physical position of the SNPs
as reported in build 36 of the mouse genome (http://www.
ncbi.nlm.nih.gov/genome/guide/mouse/). We preferentially
chose SNPs that were polymorphic between SM/J and LG/J,
had high Illumina quality scores, and had genotypes that were
experimentally observed rather than imputed. Despite these
efforts, several chromosomal regions contained no known
polymorphic SNPs for SM/J and LG/J (Figure 1B). In other
cases, low allele frequencies made genotypes difficult to call,
leading to gaps in our map in regions known to be poly-
morphic between SM/J and LG/J. This array was designed for
multiple applications and contained�4000 markers that were
predicted to be polymorphic between SM/J and LG/J as well
as �4500 that were not expected to be polymorphic between
these two strains. A full list of these SNPs is available at http://
phenome.jax.org/SNP/ under the name ‘‘Chicago1’’.

DNA samples were extracted from 839 mice (134 F33, 695
F34, and 10 controls: LG/J, SM/J, and LG 3 SM F1). DNA was
hybridized to the Illumina array in accordance with the
manufacturer’s instructions at the Keck Microarray Resource
(New Haven, CT). Raw intensity data were analyzed using
BeadStudio V3.2. We used the following metrics to perform
SNP and subject quality control: cluster separation, call
frequency, AB R mean, AB u mean, reproducibility errors,
heterozygosity excess, minor allele frequency, and X-linked
SNPs (for male heterozygotes). Four mice were excluded
due to low call rates, as were several hundred SNPs. In some
cases multiple adjacent SNPs were excluded because calling
was more difficult when the minor allele frequencies (MAF)
were low.
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The remaining mice (n ¼ 835) and SNPs were subjected to
further error checking. During this process an additional five
unintended duplicate samples were identified and excluded.
One SNP that was expected to be located on chromosome 6
showed strong linkage to markers on chromosome 9; we
excluded this single SNP from further analysis. Five SNPs from
four different regions showed unusual clustering patters that
suggested the presence of copy number variations, and these
SNPs were recoded as unknown. Checks for Mendelian in-
heritance and the genotypes of SNPs on the X chromosome
identified several errors in sample identification that we were
able to correct by making use of the pedigree and available
breeding records. Mendelian inheritance was also used to
impute a small number of missing genotypes. We identified 21
SNPs that Szatkiewicz et al. (2008) had predicted would be
monomorphic between SM/J and LG/J but were actually
polymorphic in both the control and the AIL samples.

There were a total of 3345 missing genotype values for 820
mice (excluding the 10 controls). Three hundred sixty-two of
the 820 mice had at least one missing genotype value and 43
mice had at least 10 missing values and accounted for 81.6% of
all missing values. Since missing genotype data accounted for
only a small portion of all genotype data and the SNPs were
densely distributed, some of the missing genotypes could be
imputed with a high reliability using available genotype in-
formation. However, 1966 genotypes could not be imputed
with high confidence. Some pairs of adjacent SNPs were
identical (r2 ¼ 1; both SM/J or both LG/J) for all mice with
complete genotype data, indicating that they had never been
separated by recombination. For such pairs, we excluded
whichever SNP had the most missing genotypes from further
analysis. At the conclusion of our quality control steps we had
830 AIL mice that were genotyped at 3105 SNPs.

We produced a genetic map using CRI-MAP v2.4 in
conjunction with the F33 and F34 generations. This map
contained all 3105 of the SNPs that were genotyped in the
AIL as well as 39 SNPs that were genotyped in the F2 but not the
AIL; thus the map contained a total of 3144 SNPs. SNP markers
were densely distributed along the genome. The mean
distance between two adjacent SNPs was 0.4727 cM; however,
there were several gaps on the map, the largest of which was
15.61 cM. Comparison of our genetic map to a map produced
using our F2 data or to the map from Shifman et al. (2006)
yielded broadly similar results.

Calculation of relationship matrices: Kinship coefficients
and identity coefficients were calculated using the pedigree
for the AIL, which began in the F1 and continued to the F34

generation, using the method of Karigl (1981). We de-
veloped an algorithm that combined top-down and bottom-
up methods of estimation to obtain the generalized kinship
coefficients. While other methods exist for calculating kinship
coefficients and identity coefficients (Abney 2009), the size of
this pedigree required us to develop an alternate strategy that
was less memory intensive (see supporting information, File S1
for more details).

Association in F2: We analyzed data from the F2 by using a
standard regression model; the model can be written as

yi ¼ x9ib 1 ga;iba 1 gd;ibd 1 ei ; i ¼ 1; 2; . . . ;n; ð1Þ

where x9i is a vector of covariates (e.g., sex) and b is a vector of
the corresponding effect parameters. The additive genotype
ga,i is coded as (�1, 0, 1) corresponding to genotypes (AA, AB,
or BB). ba is the additive effect of the QTL, given as one-half of
the difference between the mean of the AA and BB groups.
The dominance genotype gd,i is coded as 1 if mouse i’s
genotype is heterozygous; otherwise it is 0. bd is the dominance
effect, given as the deviation between the mean of the

heterozygous group and the expected trait value assuming
an additive QTL. The ei accounts for all unmodeled variation
and is assumed to be distributed independently, N(0, s2), i¼ 1,
2, . . . , n. A likelihood-ratio test is performed to determine if
each marker is a QTL (H0: ba¼ bd¼ 0 vs. H1: ba 6¼ 0 or bd 6¼ 0).

Association in the AIL: We considered two regression
models for the analysis of the AIL. The first model was
identical to the one just described for the analysis of the F2.
That model is appropriate only when subjects are indepen-
dent, which is not the case in an AIL. The second model
addressed the nonindependence of subjects (due to related-
ness) by using a mixed model,

yi ¼ x9ib* 1 ga;iba* 1 gd;ibd* 1 gi 1 ei ; i ¼ 1; 2; . . . ; n ð2Þ

(Harris 1964), where gi is a random effect representing the
polygenic influence of subject i and asterisks are added, b*, b*a,
and b*d, to distinguish them from b, ba, and bd in Equation 1;
however, their meanings are the same. We assume the poly-
genic effects g¼ (g1, g2, . . . , gn)�Nn(0, S) with S¼ (sij) and
independent of e ¼ (e1, e2, . . . , en). Abney et al. (2000)
demonstrated that sij ¼ 2Fijs a

2 1 Dij,7sd
2 1 Dij,1 sh

2 1 (4Dij,1 1
Dij,3 1 Dij,5)Cov(a, d) 1 (Dij,1 1 Dij,2 � fifj)mh

2 , where Fij is the
kinship coefficient between mice i and j and Dij’s are
Jacquard’s condensed identity coefficients (Jacquard 1974)
that give the probability that a pair of mice have certain alleles
identical by descent. Jacquard’s condensed identity coeffi-
cients were calculated from the pedigree structure as de-
scribed above (see File S1 for further details). In matrix form,
Equation 2 can be denoted as

yi ¼ Xb* 1 gaba* 1 gdbd* 1 g 1 e:

The likelihood of Equation 2 under the alterative hypothesis is

Lðu1 j yÞ

¼ 1

ð2pÞn=2 jV j1=2 e�ð1=2Þðy�Xb*�gaba*�gdbd*Þ9V�1ðy�Xb*�gaba*�gdbd*Þ;

ð3Þ
where u1 denotes the regression parameters and variance
components in Equation 2 and V ¼ S 1 Ins2 with In being an
n 3 n identity matrix. Under the null hypothesis of no QTL,
Equation 3 reduces to

Lðu0 j yÞ ¼
1

ð2pÞn=2 jV j 1=2
e�ð1=2Þðy�Xb*Þ9V�1ðy�Xb*Þ: ð4Þ

We use a likelihood-ratio test statistic to test H0: b*a¼ b*d¼ 0 vs.
b*a 6¼ 0 or b*d 6¼ 0 at each marker. Our test statistic for marker
i has the form

Ti ¼ �2 ln
Lðû0 j yÞ
Lðû1 j yÞ

" #
: ð5Þ

The maximum-likelihood estimates (MLEs) of the variance
components and fixed effects were obtained using the Nelder–
Mead nonlinear optimization algorithm (Press et al. 1992).
Before performing tests to identify QTL, we first determined
the appropriate model for the polygenic effect and fixed
effects. This was done by calculating the log-likelihood of the
data for each permissible model using MLEs of the parameters
for that model, but not fitting the QTL (refer to ‘‘Maximum-
Likelihood Estimation’’ in File S1 for more information). We
used Bayes’ Information Criteria (BIC) to determine which
model was the most parsimonious with the data while ac-
counting for the improved fit from including a new parameter
(Lehmann 1997). For days 1 and 2 only the additive variance
component was included, whereas for day 3 both the additive
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and the dominant variance components were included. The
fixed effects sex and body weight were always included. Using
these models and MLEs, each marker was tested for
association.

Analysis of integrated F2 and AIL data: F2 data can provide
more statistical power for QTL detection whereas an AIL can
provide better resolution for fine mapping of QTL. Further-
more, increasing the total number of subjects can also increase
power to detect QTL. In an effort to improve both power and
accuracy, we performed a single analysis that incorporated
data from both the F2 and the AIL populations. Because only a
subset of the markers that were genotyped in the F2 were also
genotyped in the F34, and because 39 markers genotyped in
the F2 were not typed in the F34, it was necessary to impute a
significant number of genotypes. Furthermore, the five largest
gaps in the genetic map were between 9.9 and 15.6 cM. To
address these issues we used an interval mapping approach.
We used the model defined in Equation 2, but considered
both markers and an additional �2000 scanning loci. We
chose scanning loci such that the largest cumulative recombi-
nation rate between any two markers was not .0.05. The scan-
ning loci were imputed using the Haley–Knott methods (Haley

and Knott 1992). The F2 samples were treated as equally
related to one another and unrelated to the F34 mice. All
phenotypic data were scaled to have mean 0 and standard
deviation of 1 separately for the F2 and AIL. After scaling the
phenotypes the F2 and F34 data sets were combined. All
genotype, phenotype, and pedigree data are available online
(see File S2).

Estimating thresholds for genome-wide significance: De-
termining the correct genome-wide significance threshold is
complicated by two factors. First, when we analyze the AIL
using the regression model that ignores relatedness, the in-
dependence assumption is unlikely to be met, and therefore
the test statistics’ distribution, even under the null hypothesis,
is not known. Second, regardless of the model or population
used, the genotypes at the marker being tested are correlated
as a result of linkage disequilibrium (LD), and a simple cor-
rection like Bonferroni will be overly conservative. Given these
challenges, we considered simple permutation (O’Gorman

2005) and gene dropping (MacCluer et al. 1986) for es-
timating genome-wide significance thresholds in conjunction
with Equations 1 and 2. While using permutation to empiri-
cally determine the distribution of the test statistic is a common
approach in QTL mapping (Churchill and Doerge 1994), it
is not a valid strategy when the subjects are not equally related
because both the genotypes and the phenotypes are inter-
correlated and thus are not exchangeable units (Lehmann

1997). As described in the next paragraph, gene dropping
maintains these relationships by creating alternative geno-
types that are consistent with the genetic map and pedigree;
gene dropping does not make assumptions about indepen-
dence among subjects.

To perform gene dropping, we simulated genotypes given
the pedigree from our AIL and the genetic map that we
estimated from the F33 and F34 generations. We simulated
meioses that were consistent with the genetic map, using the
Kosambi map function, for each generation until the F34

generation had been reached. This procedure provides
simulated genotypes that preserve the familial relationship
among marker genotypes. Because the genotypes are simu-
lated, the null hypothesis is true for all genotypes obtained by
using gene dropping.

We explored different approaches to determining signifi-
cance thresholds by using simulations in which the null
hypothesis was correct by performing 500 iterations of the
following procedure:

1. We calculated relationshipmatrices for therealAIL pedigree.
2. We produced simulated phenotype data using Equation 2

with no QTL effects, incorporating additive (sa
2 ¼ 0.3),

dominant (sa
2 ¼ 0.2), and error variances (s2 ¼ 0.36) as

estimated from our observed data (data from day 3 were
used). Because we did not simulate any QTL effects,
phenotypes were determined only by relatedness and error.

3. We performed a genome scan using the real genotype data
and the simulated phenotype data generated in step 2.

4. We then performed 5000 permutations to assess the
significance of the test statistic from step 3 using both
Equation 1 (regression) and Equation 2 (mixed model).

5. In addition, we also performed 5000 iterations of the gene
dropping procedure to assess the significance of the test
statistic from step 3, using both Equations 1 and 2.

6. Steps 2–5 were repeated 500 times; after each iteration, we
recorded whether any marker would have been deemed
significant for either gene dropping (Equation 1 or
Equation 2) or permutation (Equation 1 and Equation
2). In Table 3 we refer to Equation 1 as ‘‘regression’’ and
Equation 2 as ‘‘mixed model.’’ Table 3 contains the pro-
portion of these 500 iterations in which the simulated data
would have been judged to contain a significant result.
Because the null hypothesis was true in all simulations,
the test statistic should return the expected type I error
rate; deviations indicate under- or overconservative test
statistics.

Software to perform all analyses described in this article is
publicly available at http://www.palmerlab.org.

RESULTS

For QTL mapping to be successful, polymorphic
alleles that influence the phenotype of interest must
segregate between the two inbred strains. To assess
whether this was likely to be the case, we examined the
phenotype of the inbred progenitor strains (SM/J and
LG/J); we also examined the phenotype of F1 mice,
which provides insight into whether dominant/reces-
sive alleles might be present. We found that locomotor
behavior in both the absence (days 1 and 2) and
presence (day 3) of methamphetamine (2.0 mg/kg)
was much greater in the SM/J relative to the LG/J
inbred mice. F1, F2, and AIL mice showed intermediate
levels of behavior (Figure 1A). As expected, the segre-
gating (F2 and AIL) mice showed much greater pheno-
typic variability than the inbred mice, reflecting random
assortment of QTL alleles in these populations (Figure
1A). For all subsequent analyses, traits were scaled to
have a mean of 0 and a standard deviation of 1 (this was
done separately for the F2 and the AIL).

We used genotype data from the 33rd and 34th AIL
generations to construct a genetic map for our markers
(Figure 1B) and found that it was generally in agree-
ment with other published maps and with the map
generated using our F2 population.

A key advantage of an AIL is that LD between markers
should be reduced relative to an F2 cross. As expected,
LD between markers (r2) in the AIL rapidly degraded as
a function of either genetic distance (Figure 1C) or
physical distance (data not shown).

1036 R. Cheng et al.

http://www.genetics.org/content/vol0/issue2010/images/data/genetics.110.116863/DC1/FileS2.zip
http://www.palmerlab.org
http://www.palmerlab.org


We used breeding records to construct the complete
pedigree from the inbred SM/J and LG/J strains to the
F34 mice that were the focus on this study; this pedigree,
which contains 5647 individuals, is shown in Figure 1D.
This pedigree information was essential both for the
calculation of identity coefficients and for gene dropping.

The first stage of our analysis used the 490 F2 mice to
identify QTL for behavior on days 1, 2, and 3. We used
single-marker regression to examine the relationship
between behavior and each SNP marker. These analyses
yielded multiple genome-wide significant QTL (Figure
2). Because all F2 mice are full-sibs with respect to one
another, there was no need to incorporate information
about the relationship among these mice into our

analysis. We used both permutation and gene dropping
to calculate genome-wide significance thresholds; as
expected, these two approaches to calculating a signif-
icance threshold yielded very similar results.

We identified a similar set of QTL for both days 1 and
2, when saline was administered; however, we identified
a very different set of QTL for day 3, when metham-
phetamine was administered (Figure 2). A major QTL
for activity in the absence of methamphetamine was
observed on chromosome 8 (LOD ¼ 8.16); this QTL
accounted for 10.12% of the variance on day 2. We used
a 2-LOD support interval in an effort to be conservative
in judging the outer boundaries of the identified QTL.
As expected, the 2-LOD support interval for this QTL

Figure 1.—Key parameters for SM/J, LG/J, and recombinant mice. (A) Box and whisker plots of locomotor behavior on days 1
and 2 when vehicle was administered and on day 3 when methamphetamine was administered. (B) The genetic map estimated
from recombinations between generation 33 and generation 34 of the AIL. (C) Linkage disequilibrium (LD) between makers (r2)
on the same chromosome vs. genetic distance (cM). (D) The pedigree of the AIL population from the F2 to the F34 generation.
Generations are arranged vertically, each very small box is an individual, and colored lines indicate relationships across gener-
ations.
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was broad (0.16–18.92 cM) and encompassed a 38.80-Mb
region. Several significant QTL were observed for res-
ponse to methamphetamine on day 3, including one on
chromosome 18 (LOD¼ 5.38) that accounted for 5.51%
of trait variance. This QTL had a broad confidence
interval (1.03–17.14 cM) and encompassed a 25.49-Mb
region. These results are summarized in Tables 1 and 2.

In preparation for the analysis of the AIL we in-
vestigated methods for addressing the complex genetic
relationships among members of an AIL. To this end, we
performed simulations to explore the effectiveness of
accounting for relatedness using a mixed model that
included identity coefficients for controlling type I
errors. We simulated phenotypes such that the null
hypothesis of no QTL present was correct. This pro-
duced simulated phenotypes that were correlated due
to the familial relationships among individuals. Both
gene dropping and permutation of the simulated data
were employed to estimate genome-wide significance
thresholds. For the gene dropping simulations, we used
the pedigree from our AIL to produce simulated geno-
types. When the mixed model was used, both gene

dropping and permutation effectively controlled the
type I error rate (Table 3). When we used simple regres-
sion, which ignores relatedness, gene dropping showed
a modest inflation of type I errors, while permutation
completely failed to control the type I error rate. On the
basis of these results we concluded that it was necessary
to use a mixed model to account for relatedness to
control type I errors (Table 3).

In the next stage of our analysis we used the 688 AIL
mice to identify QTL for behavior on days 1, 2, and 3.
Similar to the approaches used in our simulations, we
analyzed the AIL data using both the mixed model and
simple regression (Figure 3). Setting aside the ques-
tion of a significance threshold, the two models pro-
duced somewhat different results, as can be seen by
comparing the plots in Figure 3 or by examining the
difference between the LOD scores for each marker
(Figure S1). This observation is consistent with our
expectation that the mixed model would produce
more accurate results because it better accounts for
the true sources of trait variance. Similar to the simu-
lations, we used both simple permutation and gene
dropping to assess the significance of these results. For
the mixed model there was little difference in the
estimated significance thresholds between these two
approaches. In contrast, when we used simple regression,
permutation suggested a much lower threshold for
significance (Figure 3). The results from our simulations
(Table 3) suggest that the lower significance threshold set
by permutation is anticonservative.

The results of the analysis of the AIL mice using the
mixed model (Equation 2) identified a highly signifi-
cant QTL for activity on days 1 and 2 on chromosome 8
(Table 1). For behavior on day 2 this QTL was significant
(LOD ¼ 12.59) and accounted for 5.37% of trait var-
iance. The 2-LOD support interval was 0.33 cM (8.38–
8.70 cM), which corresponded to a 0.50-Mb region

TABLE 1

QTL on chromosome 8 for activity on day 2 (saline) using F2,
AIL, and integrated analysis

Population LOD % variance
2-LOD

support (cM)
2-LOD

support (Mb)

F2 8.16 10.12 18.76 38.80
AIL 12.59 5.37 0.33 0.50
Integrated 18.90 7.29 0.65 0.50

A significant QTL was identified on chromosome 8 using
F2, AIL, and the integrated analysis of both populations.
The SM/J allele was associated with greater locomotor activ-
ity; heterozygotes were intermediate but somewhat more sim-
ilar to LG/J homozygotes. The 2-LOD support intervals are
based on interval mapping. The support interval was smaller
in the AIL than in the integrated analysis when expressed in
centimorgans but not when expressed in megabases because
we did not attempt to interpolate the physical positions of un-
typed (scanning) loci.

Figure 2.—QTL identified using the F2 mice: QTL for lo-
comotor activity following saline administration on days 1
(top) and 2 (middle) or following methamphetamine admin-
istration on day 3 (bottom). Alternating colors denote odd- or
even-numbered chromosomes. The horizontal lines indicate
genome-wide significance of P , 0.05 based on either permu-
tation (dotted lines) or gene dropping (dashed lines).
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(16.61–17.11 Mb). That region contains only 1 known
gene: CUB and Sushi multiple domains 1 (Csmd1). In ad-
dition, we identified significant QTL on chromosomes
5 (LOD ¼ 5.98) and 18 (LOD ¼ 5.06; Table 2) for
methamphetamine-induced locomotor activity on day
3. These QTL accounted for 2.35 and 2.18% of trait
variance, respectively. The 2-LOD support interval for
the chromosome 5 QTL was 2.59 cM (62.87–65.46 cM),
corresponding to a 2.07-Mb region (117.46–120.11 Mb).
This interval contains .12 genes. For the chromosome
18 QTL the 2-LOD support interval was 0.87 cM (11.13–
12.01 cM), corresponding to a 1.56-Mb region (26.83–
28.40 Mb). This interval contains no known genes.

Finally, we sought to combine the power of our F2 with
the greater precision of our AIL by using an integrated
analysis of both data sets (Figure 4 and Figure S2, Figure
S3, and Figure S4). This approach used .5000 loci that
were a combination of all available physical markers and
‘‘scanning loci’’ that were chosen to fill gaps in the
genetic map. We used a mixed model to account for
relatedness and gene dropping to determine genome-
wide significance. Our combined analysis identified
multiple genome-wide significant QTL.

We observed a QTL on chromosome 8 for activity
following saline administration in both the F2 and the
AIL studies. The integrated analysis also detected this
QTL (LOD ¼ 18.90), which was estimated to account
for 7.29% of trait variance on day 2. The integrated
analysis identified a 2-LOD support interval of 0.65 cM
(8.38–9.03 cM; Table 1). The integrated analysis also
supported several QTL for methamphetamine-induced
locomotor activity, for example, on chromosome 11
(LOD¼ 9.18), which was significant in the F2 but not in
the AIL. This QTL accounted for 3.37% of trait variance.
The integrated analysis reduced the 2-LOD support in-
terval of this QTL to a 3.35-cM region (27.49–30.84 cM)
that corresponded to 6.39 Mb (46.30–52.70 Mb). An-
other QTL on chromosome 18 (LOD ¼ 10.50) was
significant in both the F2 and the AIL samples. This QTL
was estimated to account for 3.74% of trait variance when
using the integrated analysis. The integrated analysis

identified a 2-LOD support interval of 0.87 cM (11.13–
12.01 cM) that corresponded to 1.56 Mb (26.83–28.40 Mb;
Table 2); the 2-LOD support interval for this QTL
is similar to the results from the AIL alone. Thus, the
integrated analysis is most useful for QTL like the one
on chromosome 11, where the F2 provided the power to
detect the QTL and the AIL, while unable to detect the
QTL with genome-wide significance, contributes the
ability to significantly narrow the interval of this QTL.

DISCUSSION

We developed a method that accounts for relatedness
among subjects when analyzing an AIL and demonstrated
its ability to identify genome-wide significant, subcenti-
morgan QTL. We used simulations to show that failure to
account for relatedness led to a dramatic increase in type I
errors. Our combined analysis allowed us to identify small
chromosomal regions by taking advantage of the greater
power of an F2 and the greater precision of an AIL. This
approach can be applied to any quantitative trait in any
model organism and should enhance the ability to identify
quantitative trait genes (QTGs).

AILs have been used for fine mapping of QTL in a
number of species including mice (Iraqi 2000; Iraqi

et al. 2000; Wang et al. 2003a,b; Swanberg et al. 2005;
Zhang et al. 2005; Behnke et al. 2006; Yu et al. 2006,
2009; Norgard et al. 2009), rats (Jagodic et al. 2004;
Swanberg et al. 2005, 2009; Becanovic et al. 2006;
Bäckdahl et al. 2009), chickens (Tercic et al. 2009),
mosquitoes (Gomez-Machorro et al. 2004; Bennett

et al. 2005), and corn (Balint-Kurti et al. 2007). Whereas
F2 subjects are equally related and thus independent,
subjects in an AIL share complex and varied levels of
relationship with one another. This genetic relatedness
creates correlations in both the genotypes and the
phenotypes that should be accounted for in the statis-
tical model and when estimating the significance of the
resulting test statistic. Simple permutation tests
(Churchill and Doerge 1994), which have been used
in the vast majority of prior AIL studies to assess
significance, assume that all subjects are independent;
however, this assumption is violated in an AIL. Failing
to account for relatedness may increase type I (false
positive) errors (Peirce et al. 2008; Valdar et al. 2009);
our simulations showed that for our data set this in-
crease in type I errors was nontrivial (Table 3). This
problem is not unique to AILs; it applies to human
population isolates such as Hutterites (Newman et al.
2001) and Amish (McArdle et al. 2007), as well as to
model organisms like heterogeneous stocks, outbred
stocks, and wild accessions. Despite its broad signifi-
cance, this problem is not widely appreciated nor has it
been adequately addressed in the model organism
community.

The results from our study illustrate several important
concepts about fine mapping. As expected, some QTL

TABLE 2

QTL on chromosome 18 for activity on day 3 (2 mg/kg
methamphetamine), using F2, AIL, and integrated analysis

Population LOD % variance
2-LOD

support (cM)
2-LOD

support (Mb)

F2 5.38 5.51 16.11 25.49
AIL 5.06 2.18 0.87 1.56
Integrated 10.50 3.74 0.87 1.56

A significant QTL was identified on chromosome 18 using
F2, AIL, and the integrated analysis of both populations. The
LG/J homozygotes showed a greater response to metham-
phetamine; the heterozygotes and SM/J homozygotes showed
approximately similar responses, consistent with a recessive
LG/J allele effect.
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were detected by both the F2 and the AIL populations.
One such example is a region on chromosome 18 that
showed significant associations in the F2, AIL, and
combined analyses (Figure 4). The region implicated by
the F2 analysis was large and contained many potential
candidate genes. In contrast, the region implicated by
the AIL and the integrated analysis was more than an
order of magnitude smaller (Table 2). This region con-
tains no known genes; we infer that it may contain either
a polymorphism that alters gene expression or an un-
characterized transcript. Independent studies that as-
sess the phenotypic consequences of targeted genetic
manipulations would be necessary to prove that this
association is correct. This example illustrates the poten-
tial to generate extremely small and specific candidate
regions by using an AIL.

Not all QTL were significant in both populations. In
the case of chromosome 11, there was a significant QTL
detected in the F2, but not in the AIL (Figure 4);
however, the combined analysis identified a small,
genome-wide significant QTL that was much more
precisely resolved than in the F2 (Table 3). In this case,
the greater power of the F2 and greater precision of the
AIL synergized to identify a genome-wide significant
and narrow QTL.

The QTL on chromosome 17 was significant in the F2

but not in the AIL while the QTL on chromosome 5 was
significant in the AIL but not in the F2 (Figure 4). These
apparent inconsistencies are expected and illustrate
important concepts. Obviously, one explanation is that
the significant results mentioned above were due to
false positive (type I) errors. Alternatively, a false
negative (type II) error could have prevented detection
of a true QTL. While an AIL provides far superior
mapping precision, this precision comes at the cost of
power. This reduction in power is due in part to the
greater number of markers that must be tested to
account for the reduction in LD between markers.
Power in an AIL can also be reduced in specific chro-
mosomal regions either by genetic drift, which can
produce low QTL minor allele frequencies, or by poor
marker coverage of a specific region. The former prob-

lem can be mitigated by maintaining large population
sizes when creating an AIL. The latter concern will be of
diminishing importance as improvements in genotyp-
ing technology and related genomic resources become
available.

Alternatively, the disparate results observed on chro-
mosomes 5 and 17 may illustrate limitations of F2

populations. If multiple small QTL are close to one
another on a single chromosome, an F2 population may
either detect what appears to be a single QTL or fail to
detect any QTL, depending on the directions of the
QTL effects. In the first case, further efforts at fine
mapping (for example, with an AIL) will separate these
multiple QTL from one another; however, their in-
dividually small effect sizes will frustrate attempts to iden-
tify the underlying genes. In the second case, potentially
major QTL may not be discovered in an F2. Both of these
scenarios underscore the limitations of an F2 and the
advantages of an AIL.

In addition to identifying multiple QTL for the
response to methamphetamine, we also identified an
especially compelling QTL for locomotor behavior in
the absence of methamphetamine administration on
chromosome 8 (Figure S5). This QTL attained genome-
wide significance in both the F2 and the AIL on both
days 1 and 2, when no drug was administered. The F2

identified a broad QTL on chromosome 8; this interval
was reduced .50-fold by the AIL (Table 1) to a 500-kb
region that contains a single gene: CUB and sushi mul-
tiple domains 1 (Csmd1). This gene is highly expressed in
the developing and adult brain, especially in the
hippocampus, and is thought to be involved in neuronal
development (Kraus et al. 2006). Future studies are
underway that will directly manipulate Csmd1 and thus
provide independent evidence as to whether Csmd1 is a
QTG. The ability to efficiently obtain a genome-wide
significant association between a single gene and a com-
plex behavioral trait vividly demonstrates the potential
of this approach.

The success of our approach highlights the utility of
AILs, which was first proposed by Darvasi and Soller

(1995). In addition to revealing the potential of an AIL,

TABLE 3

Type I error rates for simulations of different models and tests for significance

Significance level

Model Significance test a ¼ 0.10 a ¼ 0.05 a ¼ 0.01

Mixed model Gene dropping 0.110 6 0.0140 0.066 6 0.0111 0.010 6 0.0044
Permutation 0.104 6 0.0137 0.064 6 0.0109 0.012 6 0.0049

Regression Gene dropping 0.136 6 0.0153a 0.072 6 0.0116 0.018 6 0.0059
Permutation 0.914 6 0.0125b 0.812 6 0.0175b 0.518 6 0.0223b

The type I error rates (mean 6 standard error) were estimated from 500 simulations with thresholds being
estimated from 5000 simulations separately for each model.

a The desired type I error rate falls outside of the 95% confidence interval.
b The desired type I error rate falls outside of the 99% confidence interval.
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our results also emphasize the importance of a statistical
model that correctly accounts for relatedness. Our
simulations showed that a simple regression model that
did not account for relatedness in conjunction with a
simple permutation test to estimate significance resulted
in extremely poor control of the type I error rate (Table
3). When we applied such an approach to our data,
many loci appeared to show significant associations
(Figure 3 and Figure S1); however, we presume that
these results contain an excess of type I errors. It is our
intuition that accounting for relatedness in the model
should also increase power because it more correctly
accounts for the relevant sources of variance; however,
this was not directly tested by our simulations. Because
these simulations used the pedigree from our AIL, they
do not address the more general question of whether
permutation in conjunction with mixed models would
perform well in other situations (but see Aulchenko

et al. 2007). On the basis of our data we conclude that,
for pedigrees similar to ours, regression followed by
simple permutation, which has been widely used by
other investigators to analyze AILs, is an inappropriate
strategy for the analysis of AILs.

This problem has been understood by human geneti-
cists for some time (McPeek 2000) and has recently
been noted by model organism geneticists (Peirce et al.
2008; Valdar et al. 2009). We emulated the approach of
Abney et al. (2000) that was developed for QTL map-
ping in Hutterites, a human population isolate that is
conceptually somewhat similar to an AIL. This approach
accounts for relatedness using a polygenic model that
includes additive, dominance, and inbreeding coeffi-

cients. While our AIL was bred with the goal of
minimizing inbreeding, all individuals share multiple
common ancestors. Therefore, dominance and in-
breeding should be considered when modeling the
polygenic effects. We used standard model selection
criteria to determine which of these variance compo-
nents to include in our model. To our knowledge this is
the first time that this approach has been applied to
model organisms.

Other models have been previously employed to
address similar issues. For example, a chicken AIL was
analyzed using a model in which the family mean is
included in the model to account for relatedness
(Jennen et al. 2005). A polygenic model that includes
only the additive genetic variance was used to account
for relatedness in complex pedigrees (Aulchenko et al.
2007; Valdar et al. 2009). A philosophically different
approach is to use model selection and model averaging
of multiple QTL models with the expectation that this
will account for relatedness (Valdar et al. 2009). Several
of these approaches have the advantage of not requiring
knowledge of the pedigree. We focused on this AIL
partially because the pedigree was known. This provided
a means of testing the importance of incorporating
pedigree information. Our methods can be extended to
use genotype data, rather than pedigree data, to estimate
identity coefficients. This would allow our approach to
be applied to other populations such as heterogeneous
stocks (Valdar et al. 2006), outbred stocks (Yalcin et al.
2004; Macdonald and Long 2007; Ghazalpour et al.
2008), or wild populations (Laurie et al. 2007), in which
full pedigree information is unavailable.

Figure 3.—QTL identi-
fied using AIL mice. QTL
are for locomotor activity
following saline administra-
tion on days 1 (top) and 2
(middle) or following meth-
amphetamine administration
on day 3 (bottom). The left
three panels show the re-
sults for a mixed model in
which relatedness was ac-
counted for while the right
panels show the results for
a regression model that did
not account for relatedness.
Alternating colors denote
odd- or even-numbered chro-
mosomes. The horizontal
lines indicate genome-wide
significance of P , 0.05
based on either permuta-
tion (dotted lines) or gene
dropping (dashed lines).
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Our results suggest that if relatedness is accounted for
in the model, then simple permutation would provide
an acceptable (though not optimal) means to control
false positive rates (Table 3). The present results do not
address whether this will be true in all cases; however,
Aulchenko et al. (2007) suggested that permutation is
broadly applicable in such situations. Peirce et al. (2008)
proposed a method called genome reshuffling for
advanced intercross permutation (GRAIP) for analyzing
an AIL in the absence of pedigree information. In
GRAIP, a regression model that does not account for
relatedness is used in conjunction with a nested permu-
tation approach. We also considered a simple regression
model in conjunction with gene dropping (Figure 3,
right), which is similar to GRAIP, but concluded that this
approach suffered from at least two weaknesses. First,
the results obtained from regression and our mixed
model were somewhat different (Figure 3 and Figure
S1), and it is our intuition that the mixed model should
provide better power because it more accurately ac-
counts for the true sources of variance. Second, re-
gression paired with gene dropping was not completely
satisfactory in controlling type I error rates (Table 3).
On the basis of these results we conclude that re-

latedness should be addressed in the model rather than
being viewed as purely a concern for estimation of
significance thresholds.

Most prior QTL studies in model organisms used a
multistage approach in which an initial course-mapping
step is followed up by one or more fine-mapping steps
(Darvasi 1998). We developed a procedure to integrate
data from F2 and AIL studies to facilitate such an
approach. In cases where phenotyping is expensive
relative to genotyping, it may be preferable to skip the
course-mapping step and to instead study only highly
recombinant subjects. As discussed above, course map-
ping sometimes identifies regions that contain multiple
small QTL (e.g., Figure 4, chromosome 17) and fine-
mapping studies may sometimes identify QTL that are
not observed in course mapping (e.g., Figure 4, chromo-
some 5). Both situations suggest that it may be prefer-
able to forgo course mapping in favor of fine mapping,
which would represent a significant paradigm shift.

When breeding an AIL, the goal is to minimize
relatedness and maximize the effective population size.
In practice relatively simple breeding programs are well
suited to this task (Rockman and Kruglyak 2008).
Certain model organisms (e.g., Drosophila) can easily be

Figure 4.—Plots showing detailed views of Haley–Knott’s interval mapping for methamphetamine response on day 3 using F2

(red), AIL (green), and integrated analysis (blue) in specific regions of the indicated chromosomes. Tick marks along the x-axis
indicate the location of physical markers that were successfully genotyped. These data are identical to those shown in more detail
in Figure S2, Figure S3, and Figure S4.
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maintained in very large numbers (Macdonald and
Long 2007). If individuals are drawn from a sufficiently
large population, relatedness can probably be ignored
(Voight and Pritchard 2005). When working with
mammalian model organisms, it is expensive and thus
impractical to maintain very large breeding popula-
tions. As a result, laboratory breeding colonies are
typically small, and experimental subjects share close
familial relationships. In these cases, accounting for
relatedness in the model will be essential to obtain
statistically robust results.

Whereas F2 crosses of inbred model organisms have
been extremely effective for identifying QTL, they are
inherently ill suited for identifying the underlying
QTGs. GWAS in humans have made it clear that pop-
ulations with large numbers of accumulated recombi-
nations are better suited for this purpose. GWAS in
humans are hindered by a multitude of rare variants
(Manolio et al. 2009). Some of the alleles that segregate
between the two inbred strains used to create our AIL
may be rare in ancestral wild populations; however, for
purposes of mapping QTL, AILs present a much simpler
situation in which all alleles that are polymorphic
between the two inbred strains should have relatively
high allele frequencies in the AIL, provided that drift or
inadvertent selection has not had a major effect (dis-
cussed further in File S1). Furthermore, human GWAS
are confounded by numerous environmental factors
that might interact with alleles and thereby reduce
power (Manolio et al. 2009). In contrast, model or-
ganisms provide superior control of environmental
factors. The extent to which these two advantages might
improve the results of QTL mapping studies in model
organisms remains to be determined.

In summary, we introduce a method of analyzing an
AIL that properly controls type I errors while retaining
enough power to identify single-gene intervals with
genome-wide significance. We identified small regions
that may underlie differences in behavior following
administration of saline or methamphetamine. Results
such as these would not be expected in similarly sized
human GWAS. This method should work across different
phenotypes and model organisms. Our approach com-
bines the superior resolution typical of human GWAS
and the experimental advantages of model organisms.
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