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ABSTRACT

Genetic linkage and association studies are empowered by proper modeling of relatedness among
individuals. Such relatedness can be inferred from marker and/or pedigree information. In this study, the
genetic relatedness among n inbred individuals at a particular locus is expressed as an n 3 n square matrix
Q. The elements of Q are identity-by-descent probabilities, that is, probabilities that two individuals share
an allele descended from a common ancestor. In this representation the definition of the ancestral alleles
and their number remains implicit. For human inspection and further analysis, an explicit representation
in terms of the ancestral allele origin and the number of alleles is desirable. To this purpose, we
decompose the matrix Q by a latent class model with K classes (latent ancestral alleles). Let P be an n 3 K
matrix with assignment probabilities of n individuals to K classes constrained such that every element is
nonnegative and each row sums to 1. The problem then amounts to approximating Q by PPT, while
disregarding the diagonal elements. This is not an eigenvalue problem because of the constraints on P. An
efficient algorithm for calculating P is provided. We indicate the potential utility of the latent ancestral
allele model. For representative locus-specific Q matrices constructed for a set of maize inbreds, the
proposed model recovered the known ancestry.

HIGH-THROUGHPUT techniques allow extensive
genotyping of individuals for thousands of SNP

markers (Gibbs et al. 2003) and thereby provide accurate
information about the genetic diversity within a pop-
ulation at many chromosomal loci. If two individuals
within this population carry the same DNA sequence at a
locus, and this sequence can be traced to the same
common ancestor, the individuals are said to be identi-
cal by descent (IBD) for this segment (Chapman and
Thompson 2003). Quite often, however, the ancestral
source of a chromosomal segment is ambiguous and
thus IBD relationships between haplotypes are given as
probabilities. Various methods have been described to
estimate the IBD probability of pairs of chromosomal
segments(MeuwissenandGoddard2001;Leutenegger

et al. 2003). When pedigree relationships are known,
these can be included to estimate IBD probabilities
(Wang et al. 1995; Heath 1997; George et al. 2000;
Meuwissen and Goddard 2000; Besnier and Carlborg

2007).
In quantitative genetic analysis we seek to find and

characterize associations between the large number of
SNPs that are now available for many organisms and

phenotypic variation for traits of interest (e.g., grain yield
and time to flowering). Many current methods devel-
oped for this purpose make use of IBD information. For
example, a locus-specific matrix of IBD probabilities can
be incorporated into restricted maximum-likelihood
(REML) procedures for fine mapping quantitative trait
loci (Bink and Meuwissen 2004) as well as for marker-
based genetic evaluation (Fernando and Grossman

1989) using mixed models. The IBD matrix takes the
role of a covariance matrix in the REML procedure.

Other approaches, however, require that chromo-
some segments (also referred to here as haplotypes or
alleles) are assigned to independent ancestors. These
approaches include regression approaches with genetic
predictors (Malosetti et al. 2006) and Bayesian oligo-
allelic approaches that sample the ancestral origin of
each chromosomal segment (Heath 1997; Uimari and
Sillanpaa 2001; Bink et al. 2008a). In the IBD matrix
representation the ancestral alleles and their number
remain implicit. For these approaches, the locus-specific
matrix of IBD probabilities must therefore be decom-
posed into a matrix that links the chromosomal segments
to independent ancestral alleles. This decomposition is
addressed in this article.

The individuals that we consider in this article are
inbred. For n inbred individuals the IBD matrix at a
given chromosomal position is thus n 3 n, because there
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is no need to distinguish between identical chromo-
somes. In diploid, outbred populations, each individual
would be represented by two haplotypes (alleles) and
the matrix would be 2n 3 2n (Fernando and Grossman

1989). This is feasible if any phase ambiguity can be
resolved. From now on, the term ‘‘individual’’ thus
means chromosomal segment or haplotype. Analo-
gously, ancestor will be shorthand for ancestral allele
(ancestral haplotype).

We propose two models of IBD matrix decomposition,
a simple threshold model (TIBD) and a more sophisti-
cated latent ancestral allele model (LAAM), that provide
(1) an estimate of the number of independent ancestral
alleles, (2) a concise, easy-to-interpret, summary of the
relatedness, (3) an explicit (probabilistic) representa-
tion of the descent of alleles, and (4) the ability to
sample alleles for each individual from a set of ancestral
alleles in such a way that the probability that a pair of
individuals shares the same allele corresponds to their
IBD probability.

The last two features of the model are essential for its
use in Bayesian oligo-allelic approaches to quantitative
trait locus (QTL) analysis (Uimari and Sillanpaa 2001;
Bink et al. 2008a).

STATISTICAL METHODS

Data and motivation: For a set of n inbred individuals,
let Q be an n 3 n square matrix with elements qij

denoting the probability that individuals i and j are IBD.
In our genetic context, the elements of Q could be the
IBD probability for a specific gene, marker, chromo-
somal segment, or haplotype. Equivalently, the Q matrix
could have values that are a weighted measure across
specific genomic segments or the whole genome. For
the scope of this article Q is taken to be measured at a
specific chromosomal locus.

An example of a Q matrix constructed for six
individuals is shown in Table 1A. Individual I1 has a
unique allele. The alleles of individuals I2–I4 descend
from a common ancestor. The individuals I5 and I6 are
IBD with probability 0.7. The IBD relationships dis-
played in this matrix can arise if the individuals inherit
their alleles from four common ancestral alleles, labeled
A1–A4 in Table 1B. Individual I1 inherits from the unique
ancestral allele A1 and individuals I2–I4 all inherit from
the ancestral allele A2 in Table 1. The IBD probability of
0.7 between individuals I5 and I6 may arise if I5 always has
a copy of the ancestral allele A3 and I6 has a copy of A3

with probability 0.7 and a copy of another ancestral allele
(named A4 in Table 1) with probability 0.3. We note that
the solution is not unique. For instance, an IBD
probability of 0.7 also arises with I5 receiving a copy
from A3 and A4 with probabilities 0.25 and 0.75 and I6

receiving a copy from A3 and A4 with probabilities 0.1
and 0.9, respectively, since 0.25 3 0.1 1 0.75 3 0.9¼ 0.7.

Furthermore, solutions with more than four ancestral
alleles would also give a perfect fit.

The goal of this article is to develop a model that has
an explicit, preferably probabilistic, representation for
the descent of the allele of each individual from a
common set of ancestral founders, but without further
usage of the pedigree and/or marker data. Because
there is no pedigree information beyond the informa-
tion contained within the matrix Q, the ancestral
founders of the intended model are unknown and
therefore ‘‘latent’’ as they can only be hypothesized.
The number of ancestral founders is also unknown, but
we hypothesize K ancestors from now on for some value
of K. The choice of the value of K is discussed later on.

We begin with a basic model of inheritance in which
the allele of each individual descends from one out of K
latent ancestral alleles. In this model the individuals can
be partitioned into K classes (ancestral alleles) and the
transitivity property applies: if the alleles for individuals
I1 and I2 are inherited from the same ancestor, and the
alleles for individuals I1 and I3 are inherited from the
same ancestor, then the alleles for individuals I2 and I3

must be inherited from the same ancestor.
TIBD model: The threshold model transforms the Q

matrix into a discrete St matrix by applying the following
rule

sij ¼ 0
sij ¼ 1

if qij , tIBD

otherwise;

where tIBD is the threshold, sij is the IBD status for
individuals i and j that can only take values 0 or 1, and as
defined above qij is the probability that individuals i and j
are IBD. By sliding tIBD between 0 and 1 we obtain
different St, some of which define a partition of
individuals with each class containing IBD individuals.
The partition with the least-squares fit to Q is taken as the
final model.

LAAM: In the LAAM we extend the basic inheritance
model with probabilities. Let P be an n 3 K matrix with

TABLE 1

Artificial 6 3 6 Q matrix for six individuals labeled I1–I6 (A)
and a 6 3 4 matrix P with ancestor classes labeled
A1–A4 (B), giving a perfect fit to the off-diagonal

elements of Q by the formula PPT

A. Q B. P

I1 I2 I3 I4 I5 I6 A1 A2 A3 A4

I1 1 0 0 0 0 0 I1 1 0 0 0
I2 0 1 1 1 0 0 I2 0 1 0 0
I3 0 1 1 1 0 0 I3 0 1 0 0
I4 0 1 1 1 0 0 I4 0 1 0 0
I5 0 0 0 0 1 0.7 I5 0 0 1 0
I6 0 0 0 0 0.7 1 I6 0 0 0.7 0.3
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K the number of latent ancestors (classes) and elements
pik being the probability that the allele of individual i
descends from ancestor k. Note that

pik $ 0 and

XK

k¼1

pik ¼ 1 ði ¼ 1; . . . ; n; k ¼ 1; . . . ; K Þ: ð1Þ

In this model we do not know whether the allele of
individual i is inherited from ancestor k, but only the
probability of this inheritance. On assuming indepen-
dence of inheritance for each pair of individuals, the
probability that individuals i and j inherited from the
same ancestor is, according to the model,

qij* ¼
XK

k¼1

Pði 2 classðkÞ ^ j 2 classðkÞÞ ¼
XK

k¼1

pikpjk ;

"i 6¼ j :

ð2Þ

Mathematically, the {qij*} are coincidence probabilities
induced by a latent class model with membership
probabilities P. Our aim is to find a matrix P such that
qij* is as close as possible to qij for all i 6¼ j in some well-
defined sense. To do so we minimize the loss

f ðPÞ ¼
Xn

i¼1

Xn

j¼i11

Lðqij ; qij*Þ ð3Þ

with L(a, b) a nonnegative loss function, such as least-
squares loss, L(a, b)¼ (a� b)2, and qij* a function of P as
defined in Equation 2. The best P, the one that
minimizes f(P), is the latent ancestor approximation
of the IBD matrix Q. Note that the columns of P can be
reordered arbitrarily without changing the approxima-
tion to Q.

If the loss is small, we have thus obtained an explicit
inheritance model for the alleles of the individuals that
accurately approximate the IBD probabilities in Q,
which was calculated from pedigree and/or marker
information. The descent probabilities of alleles of
individuals from latent ancestors are given in the matrix
P and the key identity to arrive at IBD probabilities is
Equation 2, which can also be written in matrix notation
as Q* ¼ PPT, while disregarding the diagonal elements
of Q*. Here Q* is the approximation of Q. In short-
hand, the latent ancestor model thus reads Q � PPT.
The decomposition cannot be obtained from an eigen
analysis (Gourlay and Watson 1973; Press et al. 2002)
because of the constraints on P.

A special case of Equation 2 is that the elements of P
are 0 or 1, resulting in elements of Q* being 0 and 1.
Then P represents a division of the individuals into
disjoint groups and the elements are indicators of group
membership. Such groups are easy to identify from Q
directly as all its elements are then (up to approxima-
tion error) 0 or 1 and transitivity holds. By consequence,

there is no need to apply more advanced methods such
as eigen analysis of Q (Noy-Meir 1973) or of the
Laplacian of Q (Newman 2006).

For overlapping groups, eigen analysis yields eigen-
vectors that cannot easily be transformed to probabili-
ties. For overlapping groups some elements of P are
between 0 and 1 (fuzzy or graded), and any form of fuzzy
clustering could be applied. Many such methods,
however, have no explicit underlying model. We in-
terpret the graded elements as probabilities, explicitly
use model (2), and develop methods to obtain the best
P to approximate the IBD matrix Q. Additive fuzzy
clustering (Sato and Sato 1994) has an explicit un-
derlying model and can be interpreted as a latent class
model by viewing the graded elements as probabilities
(Ter Braak et al. 2009). LAAM is the genetic version of
this model in which Q contains IBD probabilities and P
contains descent probabilities from latent ancestors
(classes).

Algorithm for the LAAM: We use least squares for
solving the latent ancestral allele model. The problem
then is to minimize the loss function

f ðPÞ ¼
Xn

i¼1

Xn

j¼i 11

ðqij � pT
i

pjÞ2; ð4Þ

where pT
i denotes the ith row of P, subject to the nK

nonnegativity and n equality constraints in Equation 1.
The loss can be reported in terms of the root mean
squared error (RMSE), defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f ðPÞ=ðnðn � 1ÞÞ

p
.

The loss function set forth in Equation 4 is not
convex, which raises the possibility of multiple local
minima, even beyond local minima generated by re-
arrangement of the columns of P. ter Braak et al.
(2009) presented two algorithms to solve Equation 4.
Both were able to find the best solution for n up to 100
and K up to 50. The first used a global optimization
method known as differential evolution whereas the
second, which was �O(n2) more efficient, used iterative
row-wise quadratic programming (IRW), as follows.

IRW algorithm:

Step 1. Initialize P; for example, simply fill each row with
random uniform numbers between 0 and 1, which are
then divided by their sum, to satisfy the constraints of
Equation 1.

Step 2. While f(P) decreases do the following: For i ¼
1, . . ., n minimize f(P) over the ith row pi, while keeping
the other rows of P fixed.

The IRW algorithm is efficient because updating the
ith row of P while keeping the other rows of P fixed leads
to a quadratic program (Ter Braak et al. 2009). In
appendix a we provide an algorithm for step 2 that is up
to a factor 2 faster than that presented in ter Braak et al.
(2009). It is based on an adaptation of the famous lasso
path algorithm (Efron et al. 2004; Rosset and Zhu

2007) that we call the nonnegative least-squares
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(NNLS)-path algorithm (appendix b). It is a direct
method for least-squares estimation of the coefficients
of a linear regression model subject to both positivity
and sum constraint on the coefficients. The algorithm
(Bink et al. 2010) was implemented in Matlab and is freely
available upon request for noncommercial purposes.

Methods to choose K: The choice of K in the LAAM
can be made in a variety of ways. ter Braak et al. (2009)
minimize the Akaike information criterion (AIC),
which for unknown variance is defined as AIC ¼
N log(f (P)) 1 2p* with N ¼ n(n � 1)/2, the number
of observations, and p* ¼ n(K � 1), the number of
parameters. An alternative approach, which we apply in
this article, is to set the number of ancestral classes equal
to its maximum (the number of individuals), estimate
the best fitting matrix P, and then determine how many
columns of the matrix P contain nonzero elements.

Summary statistics on P: The number of columns (K)
of P with positive column sum is the actual number of
latent ancestors. Some column sums may be very small
compared to others so that the effective number of the
latent ancestors is lower than K. This is because the sum
of the kth column of P, denoted by p1k, is the expected
number of individuals that inherit from the kth latent
ancestor. A measure for effective number of latent
ancestors is

Keff ¼
XK

k¼1

�p1k

n

�2

 !�1

(Hill 1973), which gives values between 1 and K. If
there is (almost) no genetic diversity among the
individuals (all IBD probabilities close to 1), Keff is
(close to) 1 and (almost) all individuals inherit from the
same latent ancestor. In such a case, association to
phenotypes cannot be detected. The other extreme is
that all ancestors have the same number of descendants
(p1k ¼ n/K), yielding Keff ¼ K. Note that 1/Keff is the
Simpson index (Simpson 1949), which can be inter-
preted as the probability that two randomly chosen
individuals inherit from the same ancestor.

The number of latent ancestors and the effective
number of latent ancestors can also be usefully defined

for the ith individual by the number of nonzero
elements in the vector pi and by Keff ;i ¼ 1=

PK
k¼1 p2

ik,
respectively. The certainty about the inheritance of a
particular individual in the set of n individuals under
consideration is expressed on a 0-to-1 scale by 1/Keff,i.

EXAMPLES

Two artificial examples: We now discuss the decom-
position of the two artificial examples in Tables 1 and 2.

For the example of Table 1, TIBD with tIBD ¼ 0.6
results in an S matrix that is identical to Q except that
the IBD probability between individuals I5 and I6 is 1.
This yields a three-class solution with minimum RMSE
(0.077). Each class is by definition a latent ancestor.
With tIBD¼ 0.8 we obtain a four-class solution with I5 and
I6 forming singleton classes, but this solution has higher
RMSE (0.181). LAAM using the IRW algorithm was able
to find a perfect fitting P (RMSE ¼ 0) with four classes
(Table 1B). IRW required between 5 and 10 iterations
depending on the initial configuration.

Table 2 shows another 6 3 6 example of Q. TIBD with
tIBD ¼ 0.6 yields the minimum RMSE (0.118) and three
groups of individuals, namely I1 1 I2, I3, and I4 1 I5 1 I6,
respectively (Table 2B). Note that TIBD does not yield
a partition for some values of the threshold. For exam-
ple, with tIBD ¼ 0.8 we obtain an inconsistent S matrix
(Table 2C); pair (I4, I5) and pair (I5, I6) are IBD while
pair (I4, I6) is not (Table 2C). This transitivity problem
may be solved by adaptation of the threshold. Increasing
the threshold to 0.85 yields a four-class solution with
RMSE ¼ 0.284 whereas decreasing the threshold to 0.6
yields the best solution shown in Table 2B.

The minimum RMSE values that we found with LAAM
were 0.254, 0.046, 0.022, 0.021, and 0.021 for two to six
classes, respectively. IRW was thus not able to find a
perfect fitting P, not even with six classes, which
happens when Q is measured with error. Table 3 shows
the solution with four classes. The classes A1 and A3

express the coancestry between individuals I1 and I2 and
between I4, I5, and I6. Class A2 expresses the uniqueness
of individual I3 and class A4 is needed to fit Q in more
detail. The solution for K¼ 5 essentially splits class A4 in

TABLE 2

Artificial 6 3 6 Q matrix for six individuals labeled I1–I6 (A) and threshold transformed matrices St for t ¼ 0.6 (B) and 0.8 (C)

A. Q B. S0.6 C. S0.8

I1 I2 I3 I4 I5 I6 I1 I2 I3 I4 I5 I6 I1 I2 I3 I4 I5 I6

I1 1 0.9 0.2 0 0.1 0 I1 1 1 0 0 0 0 I1 1 1 0 0 0 0
I2 0.9 1 0.1 0 0 0 I2 1 1 0 0 0 0 I2 1 1 0 0 0 0
I3 0.2 0.1 1 0 0 0 I3 0 0 1 0 0 0 I3 0 0 1 0 0 0
I4 0 0 0 1 0.8 0.7 I4 0 0 0 1 1 1 I4 0 0 0 1 1 0
I5 0.1 0 0 0.8 1 0.9 I5 0 0 0 1 1 1 I5 0 0 0 1 1 1
I6 0 0 0 0.7 0.9 1 I6 0 0 0 1 1 1 I6 0 0 0 0 1 1

1048 C. J. F. ter Braak et al.



two, yielding a slightly better fit. Table 3 also illustrates
the indexes derived from P. From the column sums of P
(last row) the classes A1 and A3 show many more offspring
than the other two classes. Because of this unevenness,
the overall effective number of ancestors is not 4 but 2.9.
The effective number of ancestors for individuals (Keff,i)
varies between 1 and 1.5. The certainty of descent (last
column of Table 3) is largest (1) for individual I2 that
inherits from ancestor A1 only and smallest (0.67) for
individual I4 that inherits from either A3 or A4. Individ-
uals I1 and I6 may inherit from three different ancestors,
but have a higher certainty than individual I4 because of
their very uneven descent pattern.

Case study at 12 representative loci: We also applied
TIBD and the LAAM to 12 matrices expressing the IBD
probabilities (Q) between 16 highly related elite inbred
maize genotypes at 12 independent loci. Each Q matrix
was calculated using a proprietary estimation method
on the basis of the available pedigree and marker in-
formation. The pedigree that gave rise to the 16 inbreds
totaled 142 inbred individuals and contained multiple
complex loops. The longest lineage for any of the 16
individuals used in our study to its ancestral founders
was nine generations. The markers that were used to
calculate the IBD probabilities were selected from
highly dense sets of markers of a variety of types, such
as SSR and SNP. The markers spanned the entire
genome and were positioned on proprietary genetic
maps. Within�1 cM of the 12 loci we had on average 4.3
markers; the low value was 1 marker and the high value
was 10 markers. Markers farther away also contributed
in the calculation of Q. We used a proprietary estima-
tion method to calculate Q, but numerous methods
exist for creating such matrices from marker and/or
pedigree data (see discussion).

This case study provides a unique opportunity to inves-
tigate whether the LAAM is able to reconstruct the allele
flow in the pedigree from Q alone. For this purpose we

compared the LAAM solution (P) consisting of descent
probabilities of the genotypes from latent ancestors, with
a matrix F consisting of descent probabilities of the ge-
notypes from the known founders of the pedigree. Each
F was calculated using the same methods and infor-
mation as Q. In fact, F and Q are disjoint parts of the
full IBD matrix for both founders and inbreds. At the 12
loci, there were between three and seven founders that
contributed to the genotypes of the 16 inbreds.

Figure 1 shows the TIBD fit St, the LAAM fit QP
* ¼PP9,

and the founder-based fit QF
* ¼ FF9. Clearly, TIBD fits

the data much worse than the LAAM and is therefore
disregarded in the next comparisons.

The LAAM provided a perfect fit (RMSE , 0.001) in 9
of the 12 IBD matrices between the 16 maize genotypes
(Figure 1). In 7 of these, the LAAM solution P is es-
sentially equal to the founder-based one (F). One ex-
ample of this is given in Figure 2; interchanging the first
and the fourth column of F yields the LAAM solution
matrix P. Note that the individuals were rearranged solely
to improve readability of the figures. The matrix Q shows
three major blocks of high IBD linked by individuals
(numbered 5 and 11) that may be IBD with two of them
(Figure 2). The LAAM solution matrix P represents
the three blocks as latent ancestors 1, 2, and 4. Individual
5 inherits with probabilities 0.73 and 0.27 from the first
and second, respectively, and individual 11 inherits with
probabilities 0.15, 0.60, and 0.20 from latent ancestors 2,
3, and 4. Individual 11 thus introduces an extra latent
ancestor (A3) as does individual 12 (last row), giving in
total five ancestors, which can thus be perfectly matched
with the known founders (Figure 2). The F matrix of
Figure 2 shows that for many individuals the origin of
the allele can be followed through the pedigree without
much ambiguity (descent probability .0.9) whereas
the allele origin for individuals 5, 11, and 12 remains
uncertain so that some of their descent probabilities are
intermediate between 0 and 1.

We now consider a case (locus 4 in Figure 1) where
the LAAM did not provide a perfect fit, but, judged on
RMSE, fitted better than the founder-based model

TABLE 3

Best-fitting 6 3 4 matrix P (A) with ancestors labeled A1-A4

for the Q matrix of Table 2, together with derived
indexes (B)

A. P B. No. ancestorsa

A1 A2 A3 A4 K0 Keff Cert

I1 0.88 0.09 0.03 0 3 1.3 0.79
I2 1 0 0 0 1 1 1
I3 0.12 0.88 0 0 2 1.3 0.80
I4 0 0 0.79 0.21 3 1.5 0.67
I5 0.02 0 0.98 0 2 1 0.97
I6 0 0.01 0.90 0.10 3 1.2 0.81

2.02b 0.98b 2.7b 0.31b 4 2.9 0.34

a K0 (Keff), (effective) number of ancestors; Cert, certainty
of descent.

b Column sum equals the expected number of offspring
from the latent ancestor.

Figure 1.—Error (RMSE) at 12 loci in the fit of Q by TIBD,
the LAAM, and the descent probabilities to known founders
in the pedigree.
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(Figures 3 and 4). The overall better fit is due to the
central block consisting of nine genotypes that have unit
IBD probabilities among one another. These individuals
inherit from a single latent ancestor in the LAAM,
whereas they inherit with probabilities 0.17 and 0.83
from founders 1 and 3, respectively. By consequence the

fitted IBD probability is correct (1.0) in the LAAM and
incorrect (0.72) in the founder-based model (Figure 4).
The reason for the difference is that these individuals
have a more recent common ancestor in the pedigree
(Figure 5). The difference is maximum (0.5) with the
descent probabilities given in Figure 5: the founder-

Figure 2.—IBD matrix Q and associated de-
scent probability matrices P and F at locus 1.
Note that interchanging columns 1 and 4 in F
gives matrix P.

Figure 3.—IBD matrix Q and associated de-
scent probability matrices P and F at locus 4.
Note that P and F are essentially different. Ances-
tors or founders with a column sum ,0.05 are
not shown.
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based model gives an IBD probability of 2(0.5)2 ¼ 0.5
whereas the true IBD is 1.0.

However, some IBD probabilities are fitted much
better in the founder-based model, in particular those
between individuals 16, 9, and 1 (top left block in Figures
3 and 4). We obtained a much better fit by representing
the group of individuals that are IBD with probability 1
by a single individual. The LAAM applied to the reduced
Q matrix gives a near perfect fit and yields latent an-
cestors that correspond well with the known founders
(Figures 6 and 7). Interestingly, the central block in
Figure 3, represented in Figures 6 and 7 by G2, may
inherit from two latent ancestors. Such a solution was
effectively ruled out as the LAAM solution of the full Q
matrix since it would induce too low intragroup IBD
probabilities.

We therefore also applied the LAAM to reduced Q
matrices in which any group of IBD individuals is
replaced by a single individual. Then, the LAAM gave
a near perfect fit at all 12 loci. The latent ancestors
found by the LAAM corresponded very well with known
founders with P � F, except at loci 10 and 12 where the
LAAM identified a more recent common ancestor and
so yielded fewer ancestors than founders (Figure 5).

DISCUSSION

This article proposes two models for approximating
an IBD matrix for a population of n inbred individuals.
The first model, the TIBD model, is straightforward to
implement and simple to interpret but shows limitations
in its ability to accurately approximate IBD matrices. The
second model, the LAAM, corrects the deficiencies of
the TIBD approach while still being computationally
tractable and easy to interpret. Moreover, the LAAM
was able to recover the known ancestors from real Q
matrices with negligible error.

In this article we applied the LAAM to small examples
that allowed us to verify the genetic validity of the
decomposition. ter Braak et al. (2009) successfully
applied the LAAM for n¼ 100 and K¼ 50 in simulations
for both highly structured and ill-structured Q matrices.
The estimated K differed by at most 3 from the true K.

Our new algorithm achieved the same in less time. van

Eeuwijk et al. (2010) analyzed 117 maize inbreds along a
1-cM grid throughout the genome using the LAAM and
found good agreement with the known ancestry. The
CPU time was�4 min per locus. The largest example so
far had n ¼ 600 and K ¼ 27.

A typical data analyst will presumably start from
marker data and possibly also from a genetic map and
a pedigree. The first step is then to choose an appropri-
ate method to estimate the relatedness among the
individuals in terms of IBD probabilities, either ge-
nome-wide or locus specific, and the second step is to
apply the method of this article, resulting in descent
probabilities of latent ancestors. The first step is far from
trivial although a number of methods exist for creating a
similarity matrix between individuals, as well as genome-
wide (Van De Casteele et al. 2001; Bink and Meuwissen

2004) and locus specific (Heath 1997; George et al.
2000; Meuwissen and Goddard 2001; Pong-Wong et al.
2001; Leutenegger et al. 2003; Besnier and Carlborg

2007). An advantage of our two-step approach is that the
analyst is free to choose his own preferred method in the
first step.

In association mapping numerous methods have
been proposed to detect population structure, of which

Figure 4.—Fitted IBD matrices at locus 4 cor-
responding to P (left) and F (right).

Figure 5.—A more recent common ancestor (M) explains
the mismatch between IBD between individuals I1 and I2 de-
rived from the founders F1 and F2 in the pedigree via 2 3 2
matrix F with all entries equal to 0.5 and that derived from
the latent ancestor A1 via 2 3 1 matrix P ¼ (1, 1)9.
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STRUCTURE (Pritchard and Rosenberg 1999;
Pritchard et al. 2000), EIGENSTRAT (Patterson

et al. 2006; Price et al. 2006), and multidimensional
scaling (Zhu and Yu 2009) are important examples.
What is the relationship with the LAAM and is there a
role for the LAAM in association mapping? Let us first
limit the discussion to STRUCTURE and the LAAM.
STRUCTURE works directly from the marker data and,
possibly, a genetic map (Pritchard et al. 2000), but not
a pedigree, and produces latent ancestral populations,
with linkage equilibrium and Hardy–Weinberg equilib-
rium within populations. The difference with the latent
ancestral alleles of the LAAM is that populations have
internal genetic variation whereas alleles have not. We
note that the output of STRUCTURE looks very sim-
ilar to our matrix P, but has a different meaning. In
STRUCTURE it contains, for each individual, the pro-
portions of its genome deriving from each of these
populations, whereas in the LAAM it contains each
individual’s descent probabilities from the latent ances-
tral alleles. If STRUCTURE were applied on the chro-
mosomal segment scale of our examples, it would
produce close-to-crisp output as recombination is low
on such a scale. The LAAM thus seems better suited than
STRUCTURE for the chromosomal segment scale.

STRUCTURE is thus primarily intended for the ge-
nome scale with latent classes representing admixture
or genetic background, whereas the LAAM is designed
for the chromosomal segment scale with latent classes
representing different allele origins that potentially
have different effects on the phenotype. The genome-
wide kinship matrix can be used to adjust these effects
for genetic background, even without decomposition
(Kang et al. 2008; Van Eeuwijk et al. 2010).

In comparison with EIGENSTRAT, the LAAM allows
the relationship matrix to be chosen, whereas it is
predetermined in EIGENSTRAT (Zhu and Yu 2009).
A comparison with (nonmetric) multidimensional scal-
ing is more difficult. In general, the LAAM is called
for if the output of the decomposition needs to be
probabilities.

On the potential role for the LAAM in association
mapping, we distinguish between the genome level
(genetic background) and the chromosomal segment
level (possible QTL effects). On the genome level, if we
could directly estimate the probability that any two
individuals are from the same population and collect
the estimates in Q, then the LAAM would be the method
of choice for finding the latent populations. However, in
practice Q is a genome-wide relatedness matrix such as

Figure 6.—Reduced IBD matrix Q and associ-
ated descent probability matrices P and F at locus
4, with G2 representing the central block of indi-
viduals in Figures 3 and 4. Note that P and F are
similar, except for the descent of individuals 5
and 14. Ancestors or founders with a column
sum ,0.05 are not shown.

Figure 7.—Fitted reduced IBD matrices at lo-
cus 4 corresponding to P (left) and F (right), giv-
ing RMSE 0.024 and 0.035, respectively.
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an identity-by-state allele-sharing kinship matrix (Bink

et al. 2008b; Kang et al. 2008). Then LAAM could be
useful for small K, but our method to choose K would
not, as it would produce far too many clusters. The
reason is that latent ancestors are assumed to be unique
genotypes without internal variability. In this context K
could be decided upon by another method, such as from
a plot of RMSE against the number of classes, with K
being the value where the decrease in RMSE tapers off.
On the chromosomal segment level, the estimated Q is
locus specific and integrates the information of a series
of markers close to the locus. LAAM classes then replace
the marker information in association mapping. The
potential of this two-step approach over marker-based
approaches such as fastPHASE (Scheet and Stephens

2006) will likely depend on the availability of pedigree
information.

The key identity in the LAAM is Equation 2, which
gives the IBD probability of two individuals, i.e., the
probability that they inherit the allele from the same
ancestor, as a function of descent probabilities from
latent ancestors. The function is derived by assuming
independence among the ancestors and among indi-
viduals given their ancestors. This assumption makes the
model interpretable, but also constrains what can be
fitted. This is the reason that a perfect fit is not always
possible. In our application to maize genotypes we ob-
tained a suboptimal fit when the data contained groups
of IBD individuals. The group of closely related individ-
uals forced the LAAM to consider them as a latent
ancestor with unit descent probabilities for these indi-
viduals (Figure 3). A near-perfect fit was obtained when
such groups were replaced by a single representative.
After reduction the group can have nonzero descent
probability for more than a single latent ancestor
(Figure 6). We advise that this reduction should always
be performed prior to analysis as it improves the fit and
does not make sampling from the model more difficult.
In the example of Figure 6 it just means that the draw of
an ancestor for G2 applies to all the individuals of that
group, so that they are always IBD. In practice, one may
wish to merge close-to-IBD individuals, because of error
in the IBD probability estimates.

In our current implementation of the LAAM, the re-
duction step is therefore slightly generalized as follows.
We use UPGMA agglomerative clustering (Sneath and
Sokal 1973) to merge individuals until the average
between-cluster IBD is smaller than a predetermined
threshold and then use the LAAM algorithm on the
reduced Q. The generalization may be viewed as an
integration of TIBD and the LAAM, with TIBD taking
care of high IBD probabilities and the LAAM taking care
of the intermediate ones. We also stress that the LAAM
solution does not need to be perfectly fitting to be
useful.

We believe that the utility of the LAAM is manifold.
We name a few such utilities:

1. The matrix P is much smaller in size than the matrix
Q if K > n, which makes it easier to deal with both for
human inspection and for computer representation.

2. The matrix P gives an explicit probabilistic represen-
tation of descent of alleles of individuals from a set of
latent ancestral alleles. The elements of P have a clear
meaning; they are the descent probabilities of the n
individuals at a specified locus with the K latent
ancestral alleles.

3. Each row of P is associated with a specified individual
and indicates the number of ancestors that effectively
contributed to the genotype of that individual at a
specified locus.

4. The value of K (Keff) that gives a good approximation
to Q indicates the (effective) number of ancestors
that actually contribute to the genotype of the
individuals at a specified locus.

5. In many cases in which a genotyped pedigree is
available the latent ancestors can be identified as
being the most recent common ancestors in the
pedigree.

6. The matrix P makes it possible to sample or draw
ancestors for each of the n individuals in such a way
that the probability that individual i and j have a
common ancestor is their identity-by-descent proba-
bility for all i 6¼ j (i¼ 1, . . . , n; j¼ 1, . . . , n). Each such
sample is an explicit possible way of descent of the
individuals from the set of latent ancestors.

Utilities 2 and 6 are of foremost importance in re-
gression approaches with genetic predictors (Malosetti

et al. 2006) and in oligo-allelic Bayesian methods (Bink

et al. 2008a; Van Eeuwijk et al. 2010) for quantitative
trait locus identification that cannot work with the
matrix Q directly.
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APPENDIX A: ALGORITHM FOR SOLVING THE LATENT ANCESTRAL ALLELE MODEL

This appendix describes step 2 in the IRW algorithm in the main text for solving the latent ancestral allele model
(Bink et al. 2010). We are given an n 3 n IBD matrix Q and wish to find an n 3 K matrix P such that Q � PPT. The
problem thus is to minimize the loss function

f ðPÞ ¼
Xn

i¼1

Xn

j¼i 11

ðqij � pT
i

pjÞ2; ðA1Þ

where pT
i denotes the ith row of P, subject to the nK nonnegativity and n equality constraints

pik $ 0 and
XK

k¼1

pik ¼ 1 ði ¼ 1; . . . ; n; k ¼ 1; . . . ; K Þ: ðA2Þ

In fitting the ith row we minimize f(P) over pi, while keeping the other rows of P fixed. Let qi denote the ith column of
Q without qii and P�i denote matrix P after deleting row i. The fitting of pi amounts to

minimize kqi �P�ipik2 subject to the constraints pi $ 0 and pT
i 1 ¼ 1; ðA3Þ

where 0 and 1 denote vectors of appropriate lengths with all zero and unit elements, respectively. This is a quadratic
program but with the difficulty that P–i is singular, because each row of P–i sums to unity. Without the constraints the
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least-squares solution would not be unique. However, with the equality constraint, the number of independent
parameters is reduced from K to K � 1. The difficulty can therefore be solved easily as follows.

As each row of P sums to unity, a column of P can be deleted as we show now. We delete the last column, i.e., column
K. With the (K � 1) vector b ¼ ðpi1; pi2; : : : ; piðK�1ÞÞT, we can write

pi ¼ ½bT ; 1� bT 1ðK�1Þ�T ¼ Cb 1 d ðA4Þ

with K-vector d ¼ ð0 : : : 0; 1ÞT, with the ‘‘1’’ in position K, and K 3 (K � 1) matrix

C ¼ IK�1

�1K�1

� �
;

where IK�1 is a (K�1) 3 (K�1) identity matrix and 1K�1 is a (K�1) vector of ones. Then by inserting (A4) into (A3) for
both pi and each row of P–i and by defining the (N� 1) 3 (K� 1) matrix X with elements xjk ¼ pjk � pjK and the N� 1
vector y with elements yj ¼ qij � pjK for j ¼ 1, . . . , i � 1, i 1 1, . . . , N and k ¼ 1, . . . , (K � 1), we arrive at the following
equivalent problem: find b to

minimize
���y � Xb

���2
subject to bk $ 0 and

XK�1

k¼1

bk # 1: ðA5Þ

After having found the solution to problem (A5), we obtain the solution to problem (A3) by back transformation of
(A4), namely pik ¼ bk for k ¼ 1, . . . , K � 1 and piK ¼ 1�

PK�1
k¼1 bk .

There are several ways to solve problem (A5) because it is a standard quadratic program (Gill et al. 1981). We
mention in particular the Least Squares with Inequality constraints (LSI) algorithm by Lawson and Hanson (1974),
which uses two other of their algorithms; LSI calls the Least Distance Programming (LDP) program that in its turn
calls the NNLS program. This sequence of call appears rather inefficient as (A5) is almost a NNLS problem in itself.
The only difference with an NNLS is the sum constraint (

PK�1
k¼1 bk # 1). In appendix b we propose a new, direct

algorithm for the NNLS problem with sum constraint. The algorithm (NNLS-path) is an adaptation of the lasso-path
algorithm invented by Efron et al. (2004) and further improved and generalized by Rosset and Zhu (2007).

The NNLS-path algorithm starts with b ¼ 0, and thus with piK ¼ 1, and step by step increases the sum over the b
coefficients until the sum is equal to 1 or, if the unconstrained NNLS solution has sum t* , 1, to t*. By consequence, piK

decreases to 0 or a positive value. The number of steps can be decreased by rearranging the P matrix such that piK is the
maximum of all pik for a given i. This is done before each particular row is fitted. This completes the description of step
2 of the IRW algorithm.

APPENDIX B: NNLS-PATH ALGORITHM

This appendix describes a lasso-path approach to nonnegative least squares with sum constraint (Bink et al. 2010).
Some algorithms for finding lasso solutions (Tibshirani 1996) are based on nonnegative least squares with a sum

constraint. This problem was originally solved using standard quadratic programming techniques (Tibshirani 1996).
Efron et al. (2004) developed a very efficient new algorithm for finding lasso solutions, which was further improved
and generalized by Rosset and Zhu (2007). This algorithm is known as the lasso-path algorithm. In this appendix we
turn things around and use the lasso-path algorithm for obtaining an efficient algorithm for nonnegative least squares
with a sum constraint. We take Rosset and Zhu (2007) as our starting point and use their notation:

The data are the n 3 p design matrix X ¼ ðx1; : : : ; xnÞT and response vector y ¼ ðy1; : : : ; ynÞT.
The unknown regression coefficient vector is b ¼ ðb1; : : : ; bpÞT , which is required to be nonnegative; that is,

bj $ 0 "j ¼ 1; : : : ; p.
L(. , .) is a convex nonnegative loss functional.
J(.) is a convex nonnegative penalty functional with J(0)¼ 0. In this appendix we use J ðbÞ ¼

Pp
j¼1

����bj

����. Because bj $ 0,
this is equivalent with J ðbÞ ¼

Pp
j¼1 bj .

The problem we consider is to find

b̂ðtÞ ¼ arg minb Lðy;XbÞ subject to bj $ 0 "j and J ðbÞ# t: ðB1Þ

In the latent ancestral allele model t ¼ 1. For the least-squares loss functional problem
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Lðy; ŷÞ ¼
Xn

i¼1

ðyi � ŷiÞ2:

(B1) is the NNLS problem with a sum constraint.
We also need =LðbÞ, the derivative of L with respect to b with ŷ ¼ Xb. In the least-squares case,

=LðbÞ ¼ �XT ðy � XbÞ:

The proof of Theorem 2 of Rosset and Zhu (2007) shows the relation of the lasso solution with the NNLS problem
with a sum constraint and can trivially be simplified to it by deleting (or zeroing) all b�j terms (which indicate negative
regression coefficients). We modified their Algorithm 1 accordingly, using the notation that A is the set of active
variables, AC is its complement, and g ¼ ðg1; : : : ; gpÞT is a p-vector, with gA the elements of g belonging to set A. As all
active variables will have an equal gradient, we use for this common value also the shorthand =LðbÞA. Steps involving
‘‘d3’’ in Rosset and Zhu (2007) are removed as they deal with the cases beyond least squares.

The algorithm for the nonnegative least-squares problem with a sum constraint (NNLSpath) is as follows:

1. Initialize:
bj ¼ 0 ; gj ¼ 0; "j ¼ 1; : : : ; p, so that J ðbÞ ¼

Pp
j¼1 bj ¼ 0.

Calculate minð=LðbÞÞ, the minimum of the gradient vector =LðbÞ and the variable jmin for which the minimum is
attained.

If minð=LðbÞÞ , 0, set l ¼ �minð=LðbÞÞ ¼ �=LðbÞjmin
and A ¼ fjming ¼ argminj =LðbÞj ; else set l ¼ 0.

2. While (l . 0 and J ðbÞ, t):
a. Calculate a (new) direction

gA ¼ ðXT
A XAÞ�11A;

where XA is the matrix containing the columns of X corresponding to the variables in A, and 1A is a ones vector of the
size of set A, and the elements of g not belonging to set A are set to 0.

b. Calculate the step length d to be taken in this direction:
d ¼ minðd1; d2; lÞ, where
d1 ¼ min fd . 0 : =Lðb 1 dgÞj ¼ =Lðb 1 dgÞA; j;Ag (equal gradient values attained); if no such variable is
found d1 ¼ ‘.
d2 ¼ minfd . 0 : ðb 1 dgÞj ¼ 0; j 2 Ag (hit 0); if no such variable is found d2 ¼ ‘.

c. Take step b)b 1 dg.
d. If d ¼ d1, then add to set A the variable attaining equality at d.

If d ¼ d2, then remove from set A the variable attaining 0 at d.
If d ¼ l, then do nothing.

e. Modify l: l)l� d.
3. After step 2: if J ðbÞ, t, exit; otherwise set J ðbÞ ¼ t by changing b by

b)b�
�Xp

j¼1

bj � t
�

g
.Xp

j¼1

gj :

This is the end of the algorithm.
After each run we check numerically whether the algorithm yielded the global minimum by verifying the Karush–

Kuhn–Tucker (KKT) conditions. These conditions are as follows:

for variables in the active set A: �=LðbÞj ¼ l $ 0 for j 2 A

and for variables in the set AC : �=LðbÞj # l for j;A: ðB2Þ

These conditions hold true by design of the algorithm. We describe now explicitly the calculations implied by 2b of the
algorithm in the least-squares case. For calculating

d1 ¼ minfd . 0 : =Lðb 1 dgÞj ¼ =Lðb 1 dgÞA; j;Ag;

we must find for each j;A a value of d such that
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=Lðb 1 dgÞj ¼ =Lðb 1 dgÞA: ðB3Þ

The left-hand side of (B3) is

=Lðb 1 dgÞj ¼ �ðXT ðy � Xðb 1 dgÞÞÞj ¼ �ðXT ðy � XbÞÞj 1 ðXT XÞTj dg ¼ =LðbÞj 1 ðXT XÞTj dg

and the right-hand side of (B3) is simply

=Lðb 1 dgÞA ¼ �ðXT ðy � Xðb 1 dgÞÞÞA ¼ �ðXT ðy � XbÞÞA 1 ðXT XÞAdgA ¼ =LðbÞA 1 dðXT XÞAðXT
A XAÞ�11A

¼ �l 1 d

as ðXT XÞA ¼ XT
A XA. Solving of (B3) for d gives

d ¼
l 1 =LðbÞj

1� ðXT XÞTj g
for j;A: ðB4Þ

Variables for which 1� ðXT XÞTj g ¼ 0 are assigned d ¼ ‘; such variables do not need to be included in the active set
A, as they satisfy condition (B2) for all new l� d $ 0. The solution for d1 is the minimum positive value of so calculated
d’s. In these formulas ðXT XÞj is the jth column of the XT X matrix.

Calculating

d2 ¼ minfd . 0 : ðb 1 dgÞj ¼ 0; j 2 Ag ðhit 0Þ

amounts to calculating

d ¼ �bj=gj for all j 2 A:

The solution for d2 is the minimum positive value of so calculated d’s.
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