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BACKGROUND: Parthenogenetic embryonic stem cells (PESCs) may have future utilities in cell replacement therapies since they are
closely related to the female from which the activated oocyte was obtained. Furthermore, the avoidance of parthenogenetic development
in mammals provides the most compelling rationale for the evolution of genomic imprinting, and the biological process of parthenogenesis
raises complex issues regarding differential gene expression.

METHODS AND RESULTS: We describe here homozygous rhesus monkey PESCs derived from a spontaneously duplicated, haploid
oocyte genome. Since the effect of homozygosity on PESCs pluripotency and differentiation potential is unknown, we assessed the similarities
and differences in pluripotency markers and developmental potential by in vitro and in vivo differentiation of homozygous and heterozygous PESCs.
To understand the differences in gene expression regulation between parthenogenetic and biparental embryonic stem cells (ESCs), we con-
ducted microarray analysis of genome-wide mRNA profiles of primate PESCs and ESCs derived from fertilized embryos using the Affymetrix
Rhesus Macaque Genome array. Several known paternally imprinted genes were in the highly down-regulated group in PESCs compared
with ESCs. Furthermore, allele-specific expression analysis of other genes whose expression is also down-regulated in PESCs, led to the identi-
fication of one novel imprinted gene, inositol polyphosphate-5-phosphatase F (INPP5F), which was exclusively expressed from a paternal allele.

CONCLUSION: Our findings suggest that PESCs could be used as a model for studying genomic imprinting, and in the discovery of novel

imprinted genes.
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Introduction

Pluripotent stem cells closely resembling embryonic stem cells (ESCs)
can be isolated from diploid parthenogenetic embryos generated by
artificial activation of metaphase Il (MIl) arrested oocytes in which
the genetic material in the second polar body is retained (Mitalipov
et al, 2001; Kim et al., 2007a; Dighe et al., 2008). Recently, we
reported the generation of several rhesus monkey parthenogenetic
embryonic stem cells (PESCs) lines with stable, diploid female karyo-
types that were morphologically indistinguishable from biparental, fer-
tilized controls, expressed key pluripotency markers and
demonstrated broad differentiation potential (Dighe et al., 2008).
Interestingly, we observed high levels of heterozygosity in all PESC
lines at approximately 67% of gene loci that were polymorphic in the

oocyte donors as a result of recombination during meiosis. Most
PESCs were also heterozygous in the MHC region as they carried hap-
lotypes identical to the egg donor females, indicating that they could
provide histocompatible cells suitable for autologous transplantation.
In the mouse, homozygous parthenogenetic embryos and PESCs can
also be generated by artificial activation of MIl oocytes under con-
ditions that do not interfere with second polar body segregation
(Hoppe and llimensee, 1977; Markert and Petters, 1977). The result-
ing haploid genome is then experimentally diploidized by fusing 2-cell
stage blastomeres. Here, we describe similar homozygous rhesus
monkey PESCs derived from a spontaneously duplicated, haploid
oocyte genome. Since the effect of homozygosity on PESCs pluripo-
tency and differentiation potential is unknown, we assessed the simi-
larities and differences in pluripotency markers and developmental
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potential by in vitro and in vivo differentiation in two genetically distinct
PESC lines.

Although ESCs derived from fertilized embryos have been studied
by global gene expression profiling, comparisons between biparental
ESCs and PESCs have been limited to the analysis of marker
expression and differentiation potential (Kim et al, 2007a; Dighe
et al., 2008). Therefore, a major question still remained; are PESCs dis-
tinct or equivalent to ESCs in terms of global gene expression pat-
terns! To address this question, we compared genome-wide
expression profiles of monkey ESCs and PESCs. Furthermore,
because the transcriptome of PESCs might be affected by genetic
background, both heterozygous and homozygous cell lines were
profiled.

In contrast to their fertilized counterparts, PESCs with both alleles
of maternal origin should lack expression of paternally imprinted
genes. Thus, we hypothesized that the transcriptional profiling of
PESCs could aid in the identification of novel paternally expressed
imprinted genes. Indeed, several known paternally expressed
imprinted genes in humans (Morison et al., 2005) were among the
most down-regulated genes in PESCs when compared with biparental
ESCs. We also selected 12 highly down-regulated putative-imprinted
genes in PESCs and analyzed their imprinting status by allele-specific
expression analysis. We identified one novel paternally imprinted
gene, INPP5F, which was exclusively expressed from a paternal allele.

Conversely, PESCs with two sets of maternal chromosomes should
display up-regulation of maternally imprinted genes due to biallelic
expression. However, expression levels of known maternally
expressed imprinted genes in PESCs were similar to control ESCs
suggesting that parthenotes may not be suitable for screening of
novel maternally imprinted genes.

Materials and Methods

Animals

Adult rhesus females were used for oocyte collections. Throughout the
study period the animals were maintained in facilities fully accredited by
the American Association for the Accreditation of Laboratory Animal
Care and all experimentation was conducted in accordance with the
guidelines contained within the Guide for the Care and Use of Laboratory
Animals, the ONPRC Institutional Animal Care and Use Committee,
Office of Laboratory Animal Welfare, and USDA.

Parthenogenetic activation, fertilization
by intracytoplasmic sperm injection
and embryo culture

Controlled ovarian stimulation and oocyte recovery has been described
previously (Dighe et al., 2008). Oocytes, stripped of cumulus cells by
mechanical pipetting after brief exposure (I min) to hyaluronidase
(0.5 mg/ml), were placed in chemically defined, protein-free hamster
embryo culture medium (HECM)-9 medium at 37°C in 5% CO,, 5% O,
and 90% N, until further use. Fertilization by intracytoplasmic sperm injec-
tion (ICSI) and embryo culture were performed as described (Mitalipov
et al., 2006). Briefly, sperm were diluted with 10% polyvinylpyrrolidone
(1:4; Irvine Scientific, Santa Ana, CA, http://www.irvinesci.com), and a
5-pl drop was placed in a micromanipulation chamber. A 30-ul drop of
TH3 was placed in the same micromanipulation chamber next to the
sperm droplet, and both were covered with paraffin oil. The

micromanipulation chamber was mounted on an inverted microscope
equipped with Hoffman optics and micromanipulators. An individual
sperm was immobilized, aspirated into an ICSI pipette (Humagen, Charlot-
tesville, VA, http://www.humagenivf.com) and injected into the cytoplasm
of a metaphase Il-arrested (MIl) oocyte, away from the polar body. After
ICSI, injected oocytes were placed in four-well dishes (Nalge Nunc Inter-
national Co., Naperville, IL, http://www.nalgenunc.com) containing
protein-free HECM-9 medium covered with paraffin oil and cultured at
37°Cin 6% CO,, 5% O, and 89% N,.

For parthenogenetic activation, unfertilized MIl oocytes were exposed
to 5uM ionomycin  (Calbiochem, San Diego, http://www.
emdbiosciences.com) for 5 min followed by a 5-h incubation in 2 mM 6-
dimethylaminopurine. Oocytes were then placed in four-well dishes
(Nalge Nunc International, Naperville, IL, http://www.nalgenunc.com)
containing HECM-9 medium and cultured at 37°C in 5% CO,, 5% O,
and 90% N,. Embryos at the 8-cell stage were transferred to fresh
plates of HECM-9 medium supplemented with 5% fetal bovine serum
(FBS) (HyClone, Logan, UT, http://www.hyclone.com) and cultured for
a maximum of 9 days, with medium change every other day.

ESC and PESC derivation and culture

Zonae pellucidae of expanded blastocysts were removed with brief pro-
tease (0.5%) treatment, and inner cell masses (ICMs) were isolated
using immunosurgery (Mitalipov et al., 2006). ICMs were plated onto
Nunc four-well dishes containing mitotically inactivated mouse embryonic
fibroblasts (mEFs) and ESC culture medium consisting of Dulbecco’s modi-
fied Eagle’s medium/Ham’s F-12 medium (DMEM/F12; Invitrogen, Grand
Island, NY) supplemented with 15% FBS (Hyclone, Logan, UT), 0.1 mM
B-mercaptoethanol (Sigma, St. Louis, MO), [% non-essential amino
acids (Invitrogen) and 2 mM L-glutamine (Invitrogen). ICMs that attached
to the feeder layer and initiated outgrowth were manually dissociated
into small cell clumps with a microscalpel and replated onto new mEFs.
After the first passage, colonies with ESC-like morphology were selected
for further propagation, characterization and low-temperature storage.
Medium was changed daily, and ESC colonies were split every 5—7 days
by manual disaggregation and replating collected cells onto dishes with
fresh feeder layers. Cultures were maintained at 37°C in 3% CO,, 5%
O, and 92% N,. Rhesus ESC lines ORMES-9 and ORMES-22 (Oregon
Rhesus Macaque Embryonic Stem) and rPESC-2 (rhesus parthenogenetic
embryonic stem cell) lines used in this study were produced in our labora-
tory and described earlier (Mitalipov et al., 2006; Byrne et al., 2007; Dighe
et al., 2008).

Human ESC lines HI and BGO2 used in this study were cultured under
the same conditions as rhesus ESCs, except that 20% Knock Out Serum
Replacement (KSR; GIBCO) was used instead of FBS in the culture
medium supplemented with 4 ng/ml FGF2 (Sigma).

In vitro and in vivo differentiation of ESCs and
PESCs

The differentiation methods were performed as previously described
(Byrne et al., 2006; Mitalipov et al., 2006; Sparman et al., 2009). For
embryoid body (EB) formation, entire colonies were loosely detached
from feeder cells and transferred into feeder-free, six-well, ultra-low
adhesion plates (Corning Costar, Acton, MA) and cultured in suspension
in stem cell medium for 5—7 days. To induce cardiac differentiation, EBs
were plated into collagen-coated six-well culture dishes (Becton
Dickinson, Bedford, MA) to allow EB attachment and cultures were main-
tained in medium for 2—4 weeks. For teratoma production, 3—5 million
undifferentiated cells from each cell line were harvested and injected
into the hind leg muscle of 4-week old, SCID, beige male mice using an
18 g needle. Six to eight weeks after injection, mice were euthanized
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and teratoma tumors were dissected, sectioned and histologically charac-
terized for the presence of representative tissues of all three germ layers.

Immunofluorescence procedures

Immunofluorescence protocols have previously been described (Byrne
et al., 2006; Mitalipov et al., 2006; Sparman et al., 2009). Undifferentiated
and differentiated PESCs were fixed in 4% paraformaldehyde for 20 min
and permeabilized with 0.2% Triton X-100 and 0.1% Tween-20.
Non-specific reactions were blocked with 10% normal serum (Jackson
ImmunoResearch). Cells were then incubated for 40 min with primary
antibodies, washed three times and exposed to secondary antibodies con-
jugated with fluorochromes (Jackson ImmunoResearch) for 40 min. Next,
cells were co-stained with 2 pg/ml 4’,6-diamidino-2-phenylindole (DAPI,
Sigma-Aldrich) for 10 min, whole-mounted onto slides and examined
under epifluorescence microscopy. Primary antibodies for OCT4,
SSEA-4, TRA-1-60 and TRA-1-81 were from Santa Cruz Biotechnology.

Cytogenetic analysis

Cytogenetic analysis was performed as previously described (Byrne et al.,
2006). Briefly, mitotically active PESCs in log phase were incubated with
120 ng/ml ethidium bromide for 40 min at 37°C, 5% CO,, followed by
120 ng/ml colcemid (Invitrogen) treatment for 20—40 min. Cells were
then dislodged with 0.25% trypsin, and centrifuged at 200 g for 8 min.
The cell pellet was gently resuspended in 0.075 M KClI solution and incu-
bated for 20 min at 37°C followed by fixation with methanol:glacial acetic
acid (3:1) solution. Cytogenetic analysis was performed on metaphase
cells from each ESC line following standard GTW-banding procedures.
Images were acquired using the Cytovision Image Analysis System
(Applied Imaging, Santa Clara, CA).

Microsatellite analysis

Microsatellite or short-tandem repeat (STR) genotyping was performed as
previously described (Sparman et al., 2009). DNA was extracted from
blood or cultured cells using commercial kits (Gentra, Minneapolis,
MN). Six multiplexed PCR reactions were set up for the amplification of
44 markers representing 29 autosomal loci, | X-linked marker
(DXS22 685) and |5 autosomal, MHC-linked loci. Based on the published
rhesus monkey linkage map (Rogers et al., 2006), these markers are dis-
tributed in about |9 chromosomes. Two of the markers included in the
panel, MFGT21 and MFGT22 (Domingo-Roura et al., 1997), were devel-
oped from Macaca fuscata and do not have a chromosome assignment.
PCRs were set up in 25wl reactions containing 30—60 ng DNA,
2.5mM MgCl,, 200 uM dNTPs, X PCR buffer Il, 0.5U Amplitaq
(Applied Biosystems) and fluorescence-labeled primers in concentrations
ranging from 0.06 to 0.9 uM, as required for each multiplex PCR.
Cycling conditions consisted of 4 cycles of | min at 94°C, 30's at 58°C,
30 s at 72°C, followed by 25 cycles of 45 s at 94°C, 30 s at 58°C, 30s
at 72°C and a final extension at 72°C for 30 min. PCR products were sep-
arated by capillary electrophoresis on ABI 3730 DNA Analyzer (Applied
Biosystems) according to the manufacturer’s instructions. Fragment size
analysis and genotyping was done with the computer software STR and
(available at http://www.vgl.ucdavis.edu/informatics/STRand/). Primer
sequences for MHC-linked STRs 9P06, 246K06, 162BI7(A and B),
I51L13, 268P23 and 222118 were designed from the corresponding
rhesus monkey BAC clone sequences deposited in GenBank (accession
numbers ACI148662, ACI48696, ACI148683, ACI48682, ACI48698
and ACI148689, respectively). Loci identified by letter ‘D’ prefix were
amplified using heterologous human primers.

Methylation analysis of imprinted genes

The methodology for methylation analysis has been previously described
(Mitalipov et al., 2007; Sparman et al., 2009). Briefly, gDNA was subjected
to bisulfite treatment using a CpG Genome Modification Kit (Chemicon
International) according to the manufacturer’s protocol. The sequence,
annealing temperature and PCR cycle number of each primer pair were
as previously reported (Mitalipov et al., 2007). PCR products were
cloned and individual clones were then sequenced with an ABI 3100 capil-
lary genetic analyzer (Applied Biosystems) using BigDye terminator
sequencing chemistry (Wen, 2001). Sequencing results were analyzed
using Sequencher software (Gene Codes Corporation).

Qualitative and quantitative expression
analysis

Total RNA was extracted using Trizol reagent (Invitrogen, Carlsbad, CA)
according to the manufacturer’s instructions and further purified using
RNeasy spin columns (QIAGEN, Chatsworth, CA). Final RNA concen-
trations and purity were determined by spectrophotometry. The integrity
of RNA samples was determined using an Agilent 2100 Bioanalyzer
(Agilent Technologies, Palo Alto, CA). Total RNA was treated with
DNase | before cDNA preparation using SuperScript Il First-Strand
Synthesis System for reverse transcription-polymerase chain reaction
(RT—PCR) (Invitrogen) according to the manufacturer’s instructions.
The first-strand cDNA was further amplified by PCR using individual
primer pairs for specific genes (Table SlIl). All PCR samples were analyzed
by electrophoresis and visualized on a transilluminator.

Quantitative real-time PCR (qPCR) analysis of all imprinted, XIST and
telomere length genes has been previously described (Cawthon, 2002;
Mitalipov et al., 2007; Sparman et al., 2009). Information regarding
sequences and annealing temperatures for each primer can be found in
Table SllI. gPCR was performed on total RNA isolated from each PESC
line, IVF-derived ORMES-22 and fibroblasts (Mitalipov et al., 2006). The
cDNAs were synthesized from 800 ng of total RNA sample with Super-
Script Ill reverse transcriptase (200 U/ul) (Invitrogen) using oligo(dT)
primers. qPCR was performed on an ABI 7500 Fast Real-time PCR
System with the SDS 1.4.0 program and using the ABI TagMan Fast Uni-
versal PCR master mix (Applied Biosystems). To test for genomic DNA
contamination, all gPCR reactions included a pilot ‘~RT’ control with
GAPDH probes and primer set. All reactions were analyzed in duplicates
of three biological replicates. For each reaction, we included 5-fold
dilutions of pooled cDNA to develop standard curves. The number of
amplification cycles required for the fluorescence signal to reach a deter-
mined cycle threshold level (CT) was recorded for every sample and an
internal standard curve. The RNA equivalent values for genes were calcu-
lated using the standard curve method followed by normalization with
endogenous housekeeping GAPDH equivalent values derived from the
same internal standard curve (Byrne et al, 2006). Relative telomere
length was measured using primers Tell and Tel2 for telomeres and
36B4 for acidic ribosomal phosphoprotein PO (RPLPO) used as a single-
copy gene reference (Table SlIl). To determine the CT value, two separate
PCR runs were performed for each sample and primer pair. For each run a
standard curve was generated using a reference genomic DNA isolated
from IVF-derived ESC diluted to 0.06—40 ng per well (5-fold dilution). Cal-
culation of the relative telomere/single-copy gene ratio (T/S value) and
statistical analysis with SDS v. |.l software (Applied Biosystems) was
used to determine the standard curve and CT values.

Microarray data analysis

Microarray assays were performed at the OHSU Gene Microarray Shared
Resource core. RNA samples were converted to labeled cRNA and
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hybridized to GeneChip Rhesus Macaque Genome Arrays (Affymetrix,
Inc.). Gene-Chip operating system version |.4 software (Affymetrix) was
used to process images and generated probe level measurements (.cel
files). Microarray data, including CEL and CHP files, can be accessed at
the Gene Expression Omnibus (GEO) from http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi’token=tjsddkusgemowbk&acc=GSE|7964.  The
information containing microarray analyses can be found in Data SI—S5.
Processed image files were normalized across arrays using the robust mul-
tichip average algorithm (Irizarry et al., 2003) and log transformed (base 2)
to perform direct comparisons of probe set values between samples. Gen-
eSifter (VizX Labs, Seattle, WA) microarray expression analysis software
was used to identify differentially expressed transcripts. For a given com-
parison, one cell line was selected as the baseline reference, and tran-
scripts that exhibited various fold change (ANOVA, P < 0.05; Benjamini
and Hochberg correction for false discovery rate) relative to the baseline
were considered differentially expressed. To facilitate in-depth compari-
sons, processed image files were normalized with the robust multichip
average algorithm and log transformed (base 2) using the StatView
program. Corresponding microarray expression data were analyzed by
pairwise differences determined with the student’s t-test (P < 0.05).

Allele-specific expression analysis

Characteristics of the single nucleotide polymorphisms (SNPs) employed
for allele-specific expression analysis, PCR primers and conditions were
previously described in detail (Fujimoto et al., 2005; Fujimoto et al.,
2006). Expressed alleles were designed using Primer 3 software (http://
frodo.wi.mit.edu) based on rhesus monkey consensus sequences obtained
from GenBank. PCR products were treated with Exonuclease 1/Shrimp
alkaline phosphatase (ExoSAP-IT kit, USB) prior to sequencing. Sequen-
cing results were analysed using Sequencher software (Gene Codes Cor-
poration, Ann Arbor, MI). The relative positions of novel polymorphic
sites for 12 genes are shown in Table IV. For characteristics of SNPs in
human INPP5F, the following primers for PCR amplification were designed
based on human consensus sequences obtained from GenBank:
hINPP5F-F;  5-CGGTCCCAGTCTCTTAGCAG-3’, and hINPP5F-R;
5-CAACCTGGACCATGGAACTT-3'. Expressed alleles were deter-
mined with the same primers used in PCR amplification.

Statistical analysis

Microarray analysis was statistically analyzed using ANOVA and the stu-
dent’s t-test. For quantitative analysis of maternally and paternally
expressed imprinted genes, Xist expression, and telomere length measure-
ments, statistical analysis with SDS v. |.| software (Applied Biosystems)
was used.

Results

Genetic and epigenetic profiles of
heterozygous and homozygous PESCs

During routine genotyping of rhesus monkey ESC lines derived from
in vitro fertilized (IVF) embryos (ORMES series, Mitalipov et dl.,
2006), we discovered that ORMES-9 displayed complete homozygos-
ity across all analyzed loci. Initially, we employed a panel of 44 micro-
satellite markers for parentage analysis demonstrating that both the
sperm and the egg donors for ORMES-9 carried 35 heterozygous
loci (Table Sl). Surprisingly, ORMES-9 was homozygous within all
examined microsatellite loci that were all inherited from the egg
donor with no contribution from the sperm, suggesting that this cell
line resulted from a parthenogenetic embryo. To further corroborate

this finding, we preformed an SNP analysis with a panel of 60 known
SNPs localized to the 3’ ends of rhesus monkey genes (Ferguson et dl.,
2007). Results confirmed homozygosity of ORMES-9 with only one
allele inherited from the female (Table SII). This was an unusual
finding since ORMES-9 originated from a blastocyst produced in vitro
by ICSI. On other hand, conventional PESCs derived by the retention
of the second polar body are highly heterozygous due to meiotic
recombination (Dighe et al., 2008). ORMES-9 exhibited a normal
diploid female detectable
abnormalities.

In embryos and ESCs produced by fertilization, imprinted gene
expression occurs exclusively or predominantly from one of the par-
ental chromosomes. However, in parthenotes, expression of pater-
nally imprinted genes that are normally silenced by passage through
the female germline is not expected, since both alleles are of maternal
origin. To further confirm the parthenogenetic nature of ORMES-9,
we conducted expression analysis of several known maternally and

karyotype with no cytogenetic

paternally expressed imprinted genes. Expression levels of nine
imprinted genes [H 19, Ubiquitin protein ligase E3A (UBE3A), Pleckstrin
homology-like domain family A member 2 (PHLDAZ2), Cyclin-dependent
kinase inhibitor 1C (CDKNIC), Tumor protein p 73 (TP73), GNAS
complex locus (GNAS), Homeobox protein DLX-5 (DLX5), Probable
phospholipid-transporting ATPase VA (ATPI0A) and Solute carrier family
22 member 18 (SLC22A18)] predominantly expressed from the
maternal allele were similar to those of previously reported rhesus
PESCs, rPESC-2 (Dighe et al., 2008) and IVF-derived ORMES-22
(Fig. IA). However, transcripts of paternally expressed Necdin
(NDN), Zinc-finger gene 2 (ZIM2), Small nuclear ribonucleoprotein poly-
peptide N (SNRPN), and MAGE-like 2 (MAGEL2) were absent in both
ORMES-9 and rPESC-2 but not in biparental ORMES-22 (Fig. |A).
In addition, expression levels of sarcoglycan, epsilon (SGCE), Paternally
expressed 3 (PEG3), Paternally expressed 10 (PEGI0), and Mesoderm-
specific transcript homolog protein (MEST) were significantly down-
regulated in ORMES-9 and rPESC-2 when compared with biparental
controls (Fig. |A). These results are broadly consistent with the con-
clusion that ORMES-9 originated from a parthenogenetic embryo.
Interestingly, high levels of paternally imprinted DIRAS family,
GTP-binding RAS-ike 3 (DIRAS3) and insulin-like growth factor 2 (IGF2)
were observed in both ORMES-9 and parthenogenetic rPESC-2
(Fig. 1A).

Imprinting is generally associated with regulatory regions or imprint-
ing centers (ICs) that consist of differentially methylated domains. We
performed methylation analysis of two previously described regions,
namely, paternally methylated IGF2/H |9 and maternally methylated
SNURF/SNRPN ICs in ORMES-9 using a bisulfite sequencing assay
(Dighe et al., 2008). In the control biparental ORMES-22, both methyl-
ated and unmethylated alleles (clones) were detected within the IGF2/
H 19 IC comprising 27 individual CpG sites (Supplementary Data, Fig.
SIA). In contrast, no methylated clones were observed in ORMES-9
and rPESC-2 (Supplementary Data, Fig. SIA). Conversely, both
ORMES-9 and rPESC-2 lines were heavily methylated within the
SNURF/SNRPN IC, whereas ORMES-22 contained methylated and
unmethylated clones (Supplementary Data, Fig. SIB). These data
add another line of evidence supporting the monoparental origin of
ORMES-9.

Expression of X (inactive)-specific transcript (XIST), a non-coding
nuclear RNA, has been implicated in the process of X chromosome
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Figure 1 Imprinted gene expression, X-inactivation and telomere length in PESCs. (A) Expression of known maternally (upper panel) and paternally
(lower panel) expressed imprinted genes in ORMES-9 as assessed by quantitative (q)PCR. *Expression levels of imprinted genes that were significantly
down-regulated in PESCs when compared with biparental controls. (B) X-Inactivation status of primate PESCs determined by expression of XIST. The
data represent average fold change relative to GAPDH from three biological replicates. (C) Measurement of relative telomere length in undifferentiated

PESCs by qPCR analysis. The data represents the mean + SEM (n = 4).

inactivation because of its localization within the inactivation center on
the silenced X chromosome (Brown et al., 1991). Thus, its expression

is routinely used as an indicator of X-inactivation in female cells.

Monkey female somatic cells as well as undifferentiated ESCs display
strong XIST expression consistent with X-inactivation (Sparman
et al., 2009). However, the status of X-inactivation in PESCs is



1932

Sritanaudomchai et al.

unknown. To address this matter, we measured levels of XIST
expression in parthenogenetic ORMES-9, rPESC-2 and IVF-derived
female ORMES-22. Both ORMES-9 and rPESC-2 displayed high
levels of XIST comparable to ORMES-22 suggesting that X-inactivation
had occurred in parthenogenetic XX ESCs (Fig. |B). In contrast, XIST
transcripts were low to undetectable in XY ESCs (Fig. |B).

Morphologically, ORMES-9 was indistinguishable from other ESCs
derived from fertilized embryos and expressed markers of primate
pluripotent stem cells including OCT4, stage-specific embryonic
antigen (SSEA-4), tumor rejection antigen (TRA)-1-60 and TRA-1-81
(Supplementary Data, Fig. S2A). Induced in vitro differentiation resulted
in various phenotypes including spontaneously contracting cell aggre-
gates that expressed markers specific for cardiomyocytes and
muscle tissue (Supplementary Data, Fig. S2B). When injected into
immune-compromised mice, ORMES-9 gave rise to cell lineages
representative of all three embryonic germ layers, further demonstrat-
ing its broad differentiation potential (Supplementary Data, Fig. S2C).

Telomeres are DNA—protein complexes at the ends of eukaryotic
chromosomes that are progressively incised with each cell division in
somatic cells leading to replicative senescence (Maser and DePinho,
2002). Maintenance of telomere length and unlimited proliferative
potential in ESCs is sustained by ribonucleoprotein complex telomer-
ase (TERT). To provide an additional pluripotency assay, we analyzed
the relative telomere length in PESCs in comparison to somatic cells
and ESCs derived from fertilized embryos. Both rPESC-2 and
ORMES-9 displayed elongated telomere length comparable to IVF-
derived ESCs while skin fibroblasts exhibited significantly shortened
telomeres (Fig. 1C).

Transcriptional profiling

To define the transcriptional signature of PESCs, we conducted micro-
array analysis of both ORMES-9 and rPESC-2 lines in comparison to
IVF-derived ORMES-22 and adult monkey male skin fibroblasts using
the Affymetrix Rhesus Macaque Genome array. Three types of com-
parisons were performed: (i) three biological replicates of each sample
were compared against each other, (i) each ESC line was compared
against skin fibroblasts; and (i) each PESC line was compared with
each other and to IVF-derived ESCs. For each comparison, the
detected signal for each probe set was plotted in a scatter graph
and the correlation value was calculated. When the biological repli-
cates of each cell type were compared, 99% transcriptional correlation
was observed (Fig. 2A and Data Sl), suggesting that minimal technical
variations were introduced during collection/preparation of RNA
samples and subsequent hybridization. Comparison of PESCs to the
fibroblasts resulted in a significantly lower transcriptional correlation
(Fig. 2B), however, high similarity was observed between PESCs and
IVF-derived ESCs (Fig. 2C).

In ORMES-9 and rPESC-2 cell lines, 9722 probe sets were signifi-
cantly up-regulated (>3-fold difference; ANOVA, P < 0.05) and
10 940 probe sets were down-regulated relative to skin fibroblasts.
Analysis of up-regulated genes in parthenogenetic and control IVF-
derived ESCs relative to fibroblasts revealed that 5167 probe sets
overlapped. We selected 50 genes with the highest fold changes
from this group. Several known pluripotency genes were on the top
of this list including POU class 5 homeobox | (POU5FI), SRY (sex-
determining region Y)-box 2 (SOX2), Lin-28 homolog B (LIN28B),

Nanog homeobox (NANOG), Claudin 6 (CLDN6), Nuclear factor
(erythroid-derived 2)-like 3 (NFE2L3), Gamma-aminobutyric acid A recep-
tor, beta 3 (GABRB3) and Podocalyxin-like (PODXL) (Table | in bold).
These genes were highly expressed in both parthenote lines with com-
parable fold changes.

As described above, in monoparental PESCs, a subset of imprinted
genes normally expressed from the paternal allele are silenced or sig-
nificantly down-regulated. Here, we used transcriptome analysis of
PESCs to corroborate these observations. We also hypothesized
that PESCs can be used to screen for novel paternally imprinted
genes. Analysis of the microarray data identified 197 genes that
were down-regulated (<2-fold change, P < 0.05) in both ORMES-9
and rPESC-2 lines when compared with biparental ORMES-22 (Data
S2). Of these, 25 with the highest fold change were selected for
further analysis (Table Il). We randomly picked Sorting nexin 5
(SNX5), Forkhead box F2 (FOXF2), Insulin-like growth factor binding
protein 5 IGFBP5) and Homeobox D4 (HOX4D) from this group and
validated their microarray expression levels by qPCR (Supplementary
Data, Fig. S3). Interestingly, eight genes in this group were well-known
paternally expressed imprinted genes [SNRPN, Pleiomorphic adenoma
gene-like | (PLAGLI), PEG3, NDN, PEGIO, GNASI antisense
(NESPAS), Nucleosome assembly protein I-like 5 (NAPIL5) and
MAGELZ2] (Table Il, in bold). These results suggest that the transcrip-
tional variation observed between parthenogenetic and biparental ESC
samples is biological in origin. Comparisons of parthenogenetic cell
lines to the biparental ESCs also identified 316 probe sets/genes
that were significantly up-regulated (>2-fold change, P < 0.05) in
both parthenotes (Data S3). A group of 25 genes from this category
with the greatest fold change is presented in Table Ill. PESCs with
two sets of maternal chromosomes might be expected to show
up-regulation of maternally imprinted genes due to biallelic expression.
However, in agreement with our qPCR data, no known maternally
expressed imprinted genes were present in this group.

Finally, we compared expression profiles of rPESC-2 and ORMES-9
in an effort to define differences between heterozygous and homozy-
gous parthenotes. In the ORMES-9 line, 4626 probe sets were signifi-
cantly up-regulated (> 5-fold difference; t-test, P < 0.05; Data S4) and
3762 probe sets were down-regulated (Data S5) relative to rPESC-2.
The majority of the ontologically identified genes in this comparison
are associated with cellular, metabolic, biological and developmental
processes (Data S4, S5).

Allele-specific expression analysis
of candidate imprinted genes

As indicated above, several known imprinted genes were among the
top 25 down-regulated genes (Table Il). We reasoned that the
remaining genes in this group could represent novel paternally
imprinted genes. To define the imprinted status of candidate genes,
we initially screened a panel of IVF-derived biparental ESC lines
(ORMES series, (Mitalipov et al., 2006; Sparman et al., 2009) and
their respective parents for informative SNPs. We designed PCR
primers within 3’'UTR ends for |6 genes in this cohort based on the
availability of rhesus monkey consensus sequences in GenBank. At
least one informative SNP was identified for 12 of the |6 genes in
several analyzed ORMES cell lines (Table 1V). However, SNPs were
not found for Forkhead box F2 (FOXF2) and similar to ELAV-like 2
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Figure 2 Microarray expression analysis of PESCs. (A) Comparisons between biological replicates of the same cell line; (B) between PESCs or ESCs
and fibroblasts; (C) between PESCs (rPESC-2 and ORMES-9) and IVF-derived ESCs (ORMES-22). X and Y axes indicate gene expression values for

each compared cell line, r is correlation value with 95% confidence.

isoform 3 (LOC708195) in any of the cell lines analyzed. Additionally,
rhesus macaque sequences for Chromosome 3 open reading frame 52
(C30RF52) and Methyltransferase 10 domain containing (METT10D)
were unavailable, and primers designed based on human sequences
failed to amplify any PCR product. These outcomes precluded
further allele-specific analysis of these four genes.

Next, we sequenced cDNA samples in corresponding informative
ESC lines. We determined that in all three ESC lines heterozygous
for INPP5F (C/T), expression was monoallelic. Moreover, parental
analysis of the males and females that contributed their alleles to
these ESC lines demonstrated that the expressed allele was exclu-
sively of paternal origin in all three cell lines (Table IV and Fig. 3A).
We further analyzed two human ESC lines, HI and BGO02 and

determined that both were heterozygous for INPP5F (A/G) and
expression of this gene in both human cell lines was also monoallelic
(Fig. 3B). Similarly, we determined that Homeobox D4 (HOXD4) and
Actin, alpha, cardiac muscle | (ACTCI) were expressed from the
paternal alleles in ORMES-5 (Fig. 3A). However, in two other infor-
mative cell lines, expression of these genes was biallelic (Table V).
ACTCI| was also biallelically expressed in informative human BG02
cells based on a G/A polymorphism located in exon 7 (data not
shown). Parent-specific expression analysis of nine other genes in
this group demonstrated that all were expressed from both alleles.
Interestingly, expression of Forkhead box DI (FOXDI) was biallelic in
ORMES-23 but monoallelically expressed from the maternal chromo-
some in ORMES-22.
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Table | Genes with the greatest average fold change in monkey PESCs compared with skin fibroblasts.

Number

Affymetrix probe set ID

Gene name

Gene
symbol

Gene expression fold change*

ORMES-22

O 0O N N 1 ANWN

SIS

I3
14

I5
16

17
18
19
20
21
22
23
24
25
26
27
28

29
30

31

32
33
34
35

36
37
38

39
40

MmuSTS.2862.1.S1_at
MmuSTS.2285.1.S1 _at

MmugDNA.27729.1.S1 _at

MmugDNA.15267.1.S1 _at
MmugDNA.14543.1.SI _at

MmugDNA.33796.1.S1_s_at
MmugDNA.32128.1.S1_at

MmugDNA.38382.1.SI _at
MmugDNA.35853.1.SI _at

MmugDNA.34153.1.S1_at

MmuSTS.3557.1.S1 _at
MmuSTS.3741.1.S1 _at

MmunewRS.875.1.S1_at
MmuSTS.1929.1.S1 _at

MmugDNA.17159.1.S1_s_at

MmuSTS.4813.1.S1_at

MmugDNA.20743.1.SI _at
MmugDNA.33563.1.S1 _at
MmuSTS.214.1.S1 _at
MmugDNA.19659.1.S1 _at
MmugDNA.I5717.1.S1 _at
MmuSTS.4486.1.S1_at
MmuSTS.2870.1.S1 _at
MmuSTS.4090.1.S1_at
MmugDNA 42677.1.S1 _at
MmugDNA.17017.1.S1_at
MmugDNA.31410.1.S1_at
MmugDNA.35790.1.S1 _at

MmugDNA.12610.1.SI_at
MmugDNA. 14842.1.S1 _at

MmuSTS.1323.1.S1 _at

MmugDNA.33242.1.S1_at

MmugDNA.30027.1.SI _at
MmugDNA.10115.1.S1_at
MmugDNA.41979.1.S1 _at

MmugDNA.21032.1.51_at
MmugDNA.13233.1.51 _at
MmugDNA.14104.1.SI_at

MmugDNA.42748.1.S1 _at
MmuSTS.3925.1.S1 _at

Secreted phosphoprotein |

POU class 5 homeobox |
SRY (sex-determining region Y)-box 2
RNA-binding protein with multiple splicing 2

Leucine rich repeat neuronal |

Lin-28 homolog B

Nanog homeobox

Hypothetical protein LOC696162

Prominin |
Claudin 6

DNA (cytosine-5-)-methyltransferase 3 beta

Protein tyrosine phosphatase, receptor-type, Z

polypeptide |
Neuroligin 4, Y-linked

v-myc myelocytomatosis viral-related oncogene,

neuroblastoma derived

Nuclear factor (erythroid-derived 2)-like 3

Gamma-aminobutyric acid A receptor,

beta 3

Fraser syndrome |

Similar to histone cluster 3, H2a

Zic family member 3

Interleukin 17 receptor D

Putative neuronal cell adhesion molecule
Similar to SRY (sex-determining region Y)-box 3
Epithelial cell adhesion molecule

Left-right determination factor 2

Similar to developmental pluripotency associated 4

Orthodenticle homeobox 2

Hypothetical protein LOC722607

Solute carrier family 7 (cationic amino acid
transporter, y+ system), member 3

CD200 molecule

Cysteine-rich secretory protein LCCL domain

containing |

Similar to desmoplakin isoform Il

Podocalyxin-like
KIAA0746 protein
Activin A receptor, type IIB

Sortilin-related receptor, L(DLR class) A

repeats-containing
Actin-binding LIM protein |
Brain expressed X-linked 2

Protein phosphatase |, regulatory (inhibitor)

subunit 1A

Chromosome 9 open reading frame 58

Similar to sal-like 2

POUSFI
SOX2
RBPMS2
LRRN
LIN28B
NANOG
LOC696162
PROM
CLDNé
DNMT3B
PTPRZI

NLGN4Y
MYCN

NFE2L3
GABRB3

FRAS
LOC693768
ZIC3
ILI7RD
PUNC
LOC696412
EPCAM
LEFTY2
LOC706631
0TX2
LOC722607
SLC7A3

CD200
CRISPLD

LOC694860
PODXL
KIAAO746
ACVR2B
SORLI

ABLIM |
BEX2
PPPIRIA

C9ORF58
LOC708367

142
127

124
119

109
109
106
105
103
97
96
96
95
93
92
90

89
85

78
78
77
76
75

75
71
67

64
59

rPESC-2 ORMES-9
267 307
262 265
332 272
208 267
166 178
210 179
153 185
292 368
141 169
172 224
200 188
220 135
176 134
109 102
138 198
115 82
142 129
121 109
138 89
83 127
73 77
51 54
155 156
55 165
116 109
158 125
109 163
138 144
89 96
60 62
19 140
109 99
79 53
102 85
74 90
70 71
77 79
65 66
85 6l
69 69

Continued
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Table I Continued

Number Affymetrix probe set ID Gene name Gene Gene expression fold change*
symbol ORMES-22 rPESC-2 ORMES-9
41 MmuSTS.1436.1.S1 _at Similar to proto-oncogene tyrosine-protein kinase LOC717810 55 64 I
LCK (p56-LCK) (Lymphocyte cell-specific
protein-tyrosine kinase) (LSK) (T cell-specific
protein-tyrosine kinase)
42 MmugDNA.16646.1.S1_at Par-6 partitioning defective 6 homolog beta PARD6B 52 59 70
43 MmugDNA.29316.1.S1_at Chromodomain helicase DNA binding protein 7 CHD7 51 6l 58
44 MmugDNA.36148.1.S1 _at Cytochrome P450, family 26, subfamily A, CYP26AI 50 62 75
polypeptide |
45 MmugDNA.21560.1.S1_s_at CD24 molecule CD24 49 73 56
46 MmuSTS.3354.1.S1 _at Hypothetical protein LOC697860 LOC697860 49 66 55
47 MmugDNA.31898.1.S1_s_at Apolipoprotein E APOE 49 55 75
48 MmugDNA.1925.1.S1_at Similar to frizzled 5 LOC710796 48 86 83
49 MmugDNA.14234.1.S1 _at Cyclin D2 CCND2 48 52 52
50 MmugDNA.18039.1.S1 _at DNA (cytosine-5-)-methyltransferase 3 alpha DNMT3A 41 41 43

Bold fonts represent known pluripotency genes. *The fold change was calculated for each stem cell line versus the level of expression for a particular gene in adult monkey skin fibroblasts.
ORMES-9 and ORMES-22 represent Oregon Rhesus Macaque Embryonic Stem-9 and -22, respectively, and rPESC-2 represent rhesus parthenogenetic embryonic stem cell.

Discussion

Therapeutic potential and controversies surrounding ESCs as well as
experimentally induced pluripotent stem cells derived by reprogram-
ming of somatic cells using somatic cell nuclear transfer or iPS
approaches have been widely discussed. However, a third alternative
approach—parthenogenesis—has been considered as suboptimal and
sidelined from the stem cell debate. PESCs are unique because their
derivation does not involve destruction of viable embryos or genetic
transformation using transgenes. Therefore, interest in PESCs has
mainly centered on their potential role in cell replacement therapies
and their advantages over other alternative pluripotent stem cells
including: (i) high efficiency of derivation, similar to their IVF counter-
parts; (i) source of histocompatible cells (in terms of both nuclear and
mitochondrial genomes) for autologous transplantation to egg donors;
and (jii) preclusion of most ethical issues associated with the destruc-
tion of potentially viable embryos. However, concerns remain
whether or not differentiation and engraftment of PESCs is robust
considering the potentially disrupted expression of many paternally
imprinted genes. Also, it has yet to be determined whether homozyg-
osity in parthenotes within critical genomic regions compared with
IVF-derived cells might affect cell function. Loss of heterozygosity
may influence cell survival and differentiation. For example, cells may
express multiple genetic defects because all of the recessive mutant
alleles on the affected chromosome are unmasked. However, based
on our previous observations in the rhesus monkey and published
reports in mouse and human PESCs (Kim et al., 2007a; Kim et dl.,
2007b; Revazova et al., 2007; Dighe et al., 2008), the majority of
loci in parthenotes are heterozygous, having undergone meiotic
recombination prior to derivation. Such phenomenon may have influ-
enced their high differentiation potential, which is indistinguishable
from biparental controls. The discovery of a highly homozygous
parthenote cell line presented a unique opportunity to study the

effect of zygosity status on differentiation potential and imprinted
gene expression in primate PESCs. Since conventional parthenotes
created by retention of the second polar body display a significant
degree of heterozygosity (Dighe et al., 2008), the homozygosity
observed in ORMES-9 suggests that diploidization has occurred after
completion of meiosis, possibly during the first mitotic division. An
explanation for the mechanism responsible for restoration of a
diploid state for this phenomenon is currently unavailable. We recently
discovered another homozygous ESC line produced from a fertilized
embryo suggesting that spontaneous parthenogenesis following ICSI
is not a rare event (unpublished data). Moreover, description of a
homozygous parthenote ESC line derived from a human zygote dis-
playing a single pronucleus following conventional IVF supports the
notion that ICSI or conventional IVF procedures can induce partheno-
genetic oocyte activation without a paternal genetic contribution from
the sperm (Lin et al., 2007).

We found that, similar to rPESC-2, expression of most paternally
imprinted genes was down-regulated or absent in the homozygous
ORMES-9 cell line. Methylation analysis also demonstrated the lack of
paternal imprints in these cells. These results are broadly consistent
with the conclusion that ORMES-9 is of parthenogenetic origin. We
show here that homozygous parthenote ESCs are similar to previously
described parthenote cells and biparental ESCs derived from sperm-
fertilized embryos with respect to expression of common pluripotency
markers, self-renewal and the capacity to generate cell derivatives
representative of all three germ layers in vivo and in vitro (Mitalipov
et al., 2006; Dighe et al., 2008). Hence, it is reasonable to speculate
that loss of heterozygosity does not interfere with PESC pluripotency.
However, whether this proves to be the case for all parthenote-derived
cells could well depend upon the presence of mutations within homo-
zygous genes in specific cell lines. Further evaluations of in vitro and in vivo
differentiation ability of PESCs compared with ESCs must be carried out
to fully assess the phenomenon of homozygosity.
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Table Il Highly down-regulated genes in PESCs compared with ESC controls.

Number  Affymetrix Probe Set ID  Gene name Gene Gene expression fold change*
smbol  pescy  ommess
(heterozygous  (homozygous
parthenote) parthenote)
| MmugDNA.26310.1.S1_at Small nuclear ribonucleoprotein polypeptide N SNRPN 161 107
Mmu.16433.2.5|_at Collagen, type lll, alpha | COL3AI 25 29

3 MmuSTS.1142.1.S1_at Similar to pleiomorphic adenoma gene-like PLAGLI 17 18
| isoform 2

4 MmugDNA.12446.1.S1_at Paternally expressed 3 PEG3 14 15

5 MmuSTS.1946.1.S1_at Necdin NDN 14 14

6 MmugDNA.38558.1.S1_at Paternally expressed 10 PEGI0 13 13

7 MmugDNA.36408.1.S1_at Carbonic anhydrase Ill, muscle specific CA3 6 9

8 MmuSTS.1960.1.S1 _at Forkhead box DI FOXDI 8 8

9 MmugDNA.23547.1.S| _at Sorting nexin 5 SNX5 8 7

10 MmugDNA.21169.1.S1_at Similar to chondroitin betal ,4 LOC703703 7 8
N-acetylgalactosaminyltransferase 2

Il MmugDNA.19752.1.S1 _at Forkhead box F2 FOXF2 8 6

12 MmugDNA.11688.1.S|_at Chromosome 3 open reading frame 52 C30RF52 5 5

13 MmugDNA.1188.1.S1_at GNASI antisense NESPAS 4 5

14 MmugDNA.15601.1.S1_at Methyltransferase 10 domain containing METTI0D 4 5

15 MmugDNA.40734.1.S1 _at Actin, alpha, cardiac muscle | ACTCI 4 5

16 MmugDNA.3198.1.S1 _at Serpin peptidase inhibitor, clade E (nexin, plasminogen  SERPINE[ 4 5
activator inhibitor type |), member |

17 MmugDNA.42888.1.S1 _at Insulin-like growth factor binding protein 5 IGFBP5 4 4

18 MmugDNA.35544.1.S1_at Nucleosome assembly protein I-like 5 NAPILS 4 4

19 MmugDNA.35385.1.S1 _at Homeobox D4 HOXD4 4 4

20 MmugDNA.33494.1.S1 _at Similar to ELAV-like 2 isoform 3 LOC708195 5 3

21 MmugDNA.10922.1.S|_at Inositol polyphosphate-5-phosphatase F INPP5F 4 4

22 MmugDNA.31587.1.S1 _at Protein tyrosine phosphatase, receptor type B PTPRB 4 4

23 MmugDNA.29862.1.S1 _at Centrosomal protein 68 kDa CEP68 4 3

24 MmuSTS.1453.1.S1_at MAGE-like 2 MAGEL2 3 3

25 MmugDNA.17878.1.S1 at Transmembrane 4 L Six family member |9 TMA4SF19 3 3

Bold fonts are known paternally expressed imprinted genes. *The fold change (decrease) was calculated for PESCs versus the level of expression for a particular gene in the conventionally
derived ORMES-22. ORMES-9 and ORMES-22 represent Oregon Rhesus Macaque Embryonic Stem-9 and -22, respectively and rPESC-2 represent rhesus parthenogenetic embryonic

stem cell.

Expression profiling revealed that primate PESCs are, in general,
transcriptionally similar to ESCs derived from fertilized embryos but
divergent from somatic cells. Both strongly express genes implicated
in the maintenance of pluripotency, self-renewal, genome surveillance,
and cell fate determination in pluripotent stem cells (Sperger et dl.,
2003; Abeyta et al., 2004; Byrne et al., 2006). However, we show sig-
nificant differences between the transcriptomes of [VF-derived ESCs
and parthenotes. The availability of this global transcriptional signature
provides a database that will be an important reference for preclinical
testing of PESCs in non-human primates. Perhaps, interpretation of dif-
ferentially expressed genes in parthenotes will provide insights into the
role of such differences in cell differentiation. Recent evidence suggests
that, due to the striking similarities between pluripotent stem cells, dis-
tinguishing PESCs from those derived from fertilized or cloned
embryos will require unequivocal demonstration of genetic homozyg-
osity in selected regions using sensitive genome-wide fingerprinting

analyses (Kim et al., 2007b). Several differentially expressed genes
between parthenote and biparental cell lines identified in this study
may potentially serve as markers of parthenogenetic cells.

As predicted, a list of down-regulated genes in parthenotes includes
many known imprinted genes that are normally expressed from the
paternal allele. Thus, expression profiling could serve as a sensitive
assay to validate known imprinted genes in ESCs and to discover
novel paternally imprinted genes. Identification of novel imprinted
genes is particularly challenging because monoallelic expression may
occur only in one of several possible isoforms, only in particular
tissues, or only during particular stages of development. In addition,
imprinting of some genes is not absolute, i.e. predominant expression
from one of the parental alleles and lower expression levels from the
other. Several approaches have been developed to predict or to dis-
cover imprinted genes in various tissues including computational
methods and expression profiling of tissues carrying uniparental
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Table 111 Highly up-regulated genes in rhesus PESCs compared with ESC controls.

Number  Affymetrix Probe Set Gene name Gene Gene expression fold change™®
1D symbol /pEsc-2 ORMES-9
(Heterozygous (Homozygous
parthenote) parthenote)

| MmugDNA.36272.1.S1_at DCMP deaminase DCTD 101 78

2 MmunewRS.938.1.S1 _at 2-deoxyribose-5-phosphate aldolase homolog  DERA 93 88

3 Mmu.12751.1.S1_at Grancalcin, EF-hand calcium binding protein GCA 26 31

4 MmugDNA.31564.1.S1_at SH3 domain containing, Ysc84-like | SH3YLI 27 24
(S. cerevisiae)

5 MmugDNA.10404.1.S|_at Sperm-associated antigen |16 SPAGI6 13 12

6 MmugDNA.22282.1.S|_at WD repeat and FYVE domain containing | WDFY| 8 14

7 MmugDNA.3238.1.51_s_at MARVEL domain containing 3 MARVELD3 13 13

8 MmuSTS.857.1.S1 _at Similar to phosphatidylinositol DSCRS 9 ]
N-acetylglucosaminyltransferase subunit P
isoform |

9 MmuSTS.1343.1.S1_at Adipose differentiation-related protein ADFP Il

10 MmugDNA.34151.1.S1_at Dynein, light chain, Tctex-type 3 DYNLT3 9

Il Mmu.l1151.1.S1_s_at Similar to NADP-dependent leukotriene B4 LTB4DH 7
| 2-hydroxydehydrogenase
(I5-oxoprostaglandin |3-reductase)

12 MmugDNA.22506.1.S1_s_at  Kynureninase (L-kynurenine hydrolase) KYNU 7

I3 MmugDNA.43436.1.S|_at Metallopeptidase with thrombospondin type ~ ADAMTS[9 6 6
| motif, 19

14 MmuSTS.3395.1.S1 _at Similar to T16G12.5 LOC704499 6 7

I5 MmugDNA.30285.1.S1_at Chromosome | open reading frame |15 CIORFII5 6 6

16 MmugDNA.22401.1.S|_at Goosecoid homeobox GSC 6 5

17 MmugDNA.40626.1.S1 _at Leucine-rich repeat-containing G LGRS 6 4
protein-coupled receptor 5

I8 MmuSTS.2514.1.S1 _at Similar to hematopoietically expressed LOC699012 5 5
homeobox

19 MmugDNA.40512.1.S1_at Chromosome |9 open reading frame 12 CI90RFI2 4 5

20 MmugDNA.12480.1.SI _at Transmembrane protein 14A TMEM I 4A 5 4

21 MmugDNA.32146.1.SI _at Chromosome 7 open reading frame 46 C70RF46 4 5

22 MmugDNA.12099.1.S1 _at Transducer of ERBB2, | TOB 4 5

23 MmugDNA.15661.1.S1_at Forkhead box A2 FOXA2 4 4

24 MmunewRS.87.1.S1_x_at Similar to zinc-finger protein 528 LOC720206 4 4

25 MmugDNA.42482.1.SI _at Chromosome |4 open reading frame 135 CI40RFI35 4 3

*The fold change was calculated for PESCs versus the level of expression in the conventionally derived ORMES-22 line. ORMES-9 and ORMES-22 represent Oregon Rhesus Macaque
Embryonic Stem-9 and -22, respectively and rPESC-2 represent rhesus parthenogenetic embryonic stem cell.

disomies (Schulz et al., 2006; Luedi et al., 2007). Novel imprinted
genes have also been identified by assaying monoparental parthenoge-
netic or androgenetic mouse fetuses (Kobayashi et al., 2000; Mizuno
et al., 2002). Here we analyzed the imprinting status of 12 significantly
down-regulated candidate genes in primate parthenotes. All but three
were expressed biallelically in biparental ESCs suggesting that these
genes are not imprinted or have undergone imprint loss. Allele-specific
expression analysis demonstrated strictly paternal expression of
INPP5F, an inositol phosphatase gene, in rhesus monkey [VF-derived
ESCs. Previous studies indicated that mouse and human INPP5F_v2,
a splicing variant of INPP5F, is imprinted in the brain and fetal spinal
cord tissue but biallelically expressed in other tissues (Choi et dl.,

2005; Wood et al., 2007). INPP5F_v2 uses an alternative transcrip-
tional start site within intron |5 of parental INPP5F and thus has a
unique alternative first exon, but shares four exons and part of the
last exon with INPP5F. Using primers specific to INPP5F and
INPP5F_v2, we demonstrated that both genes are expressed in
monkey and human ESCs. Allele-specific analysis based on the SNP
located within the shared untranslated region in the last exon
between INPP5F and INPP5F_v2 3’UTR end showed that expressed
transcripts were exclusively of paternal origin. Similar analysis of two
human ESC lines confirmed that INPP5F is also monoallelically
expressed in these cells. Studies using knockout mice suggested that
Inpp5f is a functionally important modulator of cardiomyocyte size



Table IV Summary of allele-specific expression analysis of highly down-regulated genes in PESCs.

Gene Genebank accession number SNP and position ORMES-I ORMES-4 ORMES-5 ORMES-7 ORMES-21 ORMES-22 ORMES-23

INPP5F FJ932755 C/T, 15 Paternal Paternal Paternal

HOXD4 F932754 A/G 264 - - Paternal -
FJ932754 C/G 298 - Biallelic Paternal Biallelic

ACTCI F997273 G/C 162 - Paternal - - - -
F997273 A/G 182 - - - Biallelic - -
F997273 A/G 211 Biallelic - - - - -

COL3AI FJ932748 A/T 314 Biallelic -
F)932748 A/G 328 Biallelic -
F)932748 T/G 333 Biallelic -

CA3 FJ932749 T/C 427 Biallelic - -

FOXDI FJ932750 G/T77 Maternal Biallelic

SNX5 FJ932751 C/T 100 Biallelic Biallelic
FJ932751 A/C 245 Biallelic Biallelic
FJ932751 A/G 320 Biallelic Biallelic

LOC703703 FJ932752 C/T24 Biallelic Biallelic -
FJ932752 A/G 461 - Biallelic -

SERPINE | F997274 G/T 42 Biallelic - - -
F997274 C/T 172 Biallelic - - Biallelic

IGFBP5 F932753 G/T 39 - Biallelic -
FJ932753 T/C59 - Biallelic -
FJ932753 T/G 222 Biallelic Biallelic -

PTPRB FJ932756 A/G 169 Biallelic

CEP68 FJ932757 C/A 201 Biallelic

ORMES- | through -23—IVF-derived rhesus monkey ESC lines (ORMES series) (Mitalipov et al., 2006; Sparman et al., 2009). -’No informative SNPs were found. The absence of results indicates that screening for presence of SNPs was not
conducted. ORMES represent Oregon Rhesus Macaque Embryonic Stem. ‘SNP and position” indicates the nucleotide polymorphism and position based on Genebank sequences.
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Figure 3 Allele-specific expression analysis of candidate imprinted genes and transcriptional organization of the INPP5F locus. (A) Chromatograms
demonstrating paternal expression of INPP5F, ACTCI and HOXD4 in ORMES-5 cells. Polymorphic nucleotide positions in chromatograms are identified
by arrows. For INPP5F, the paternal gDNA was C/T heterozygous while the maternal allele was T/T homozygous. Paternal, C allele was exclusively
expressed as detected by cDNA sequencing. Similarly, G/C polymorphism was investigated for ACTC/ showing that expressed G allele in ORMES-5 is
of paternal origin. HOXD4 expression was also monoallelic from the paternal allele based on two SNPs (A/G and C/G) in ORMES-5. (B) Chromato-
grams showing monoallelic expression of INPP5F in two human ESC lines HI and BG02 based on a G/A polymorphism. (C) Schematic representation
(not drawn to scale) of human INPP5F and INPP5F_v2. Horizontal bars indicate amplified regions to differentiate expression of INPP5F and INPP5F_v2.
“*The position of a G/A polymorphism. (D) Expression of INPP5F and INPP5F_v2 transcripts in monkey ORMES cell lines and (E) human ESC lines
assessed by RT—PCR. The expected size of PCR products for INPP5F and INPP5F_v2 was 466 bp and 299 bp, respectively. Y’, ‘S’ and ‘R’ in the
sequences labeling at the top of the chromatograms represent C/T, G/C and A/G polymorphisms, respectively.
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and cardiac response to stress (Zhu et al., 2009). However, until now
the imprinting status of INPP5F remained unknown.

Two other candidate imprinted genes, HOXD4 and ACTCI/, were
also monoallelically expressed from the paternal allele in one particular
cell line, ORMES-5, while expression was biallelic in two other ESC
lines. We previously reported dysregulation of imprinted H/9 and
IGF2 leading to biallelic expression in monkey ESC lines (Fujimoto
et al, 2006). Interestingly, ORMES-5 was the only cell line that
showed normal maintenance of imprinting and maternal expression
of HI9. Thus, it is possible that HOXD4 and ACTCI represent
imprinted genes that are susceptible to environmental stress during
in vitro culture resulting in loss of imprinting in some ESC lines.

Overall, we define here the transcriptional signature of primate
PESCs and similarities and differences in comparison to IVF-produced
ESCs, which will provide valuable information for future experiments
related to PESCs development and identification. Furthermore, by
using allele-specific expression analysis of a panel of down-regulated
genes in PESCs, we identified a novel imprinted gene. Additional
imprinted genes may be identified using this gene expression database
and subsequent procedures.
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