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Abstract

This paper presents a new algorithm for constrained intensity-modulated radiotherapy (IMRT)
planning, made tractable by a dimensionality reduction using a set of plans obtained by fast,

unconstrained optimizations. The main result is to reduce planning time by an order of magnitude,
producing viable five field prostate IMRT plans in about 5 min. Broadly, the algorithm has three
steps. First, we solve a series of independent unconstrained minimization problems based on
standard penalty-based objective functions, ‘probing’ the space of reasonable beamlet intensities.
Next, we apply principal component analysis (PCA) to this set of plans, revealing that the high-
dimensional intensity space can be spanned by only a few basis vectors. Finally, we parameterize
an IMRT plan as a linear combination of these few basis vectors, enabling the fast solution of a

constrained optimization problem for the desired intensities. We describe a simple iterative
process for handling the dose—volume constraints that are typically required for clinical
evaluation, and demonstrate that the resulting plans meet all clinical constraints based on an
approximate dose calculation algorithm.

1. Introduction

Intensity-modulated radiotherapy (IMRT) plans can precisely irradiate a target while
simultaneously protecting normal tissues (Ling et al 2004, Palta et al 2004). In common
clinical practice, IMRT plans are obtained by minimizing an unconstrained objective
function formed as a weighted sum involving several competing clinical objectives specified
by the physician. While modern algorithms can minimize such objective functions quickly,
there is no guarantee that the desired constraints will be exactly satisfied for a given set of
objective function parameters. This results in an iterative loop of optimization with a given
set of parameters, dose calculation, planner evaluation and new parameter selection that may
take an hour for a simple site such as the prostate, and upwards of 5 h for a head and neck
case. A more natural formulation would be a constrained optimization problem that
explicitly produces a plan satisfying all the clinical constraints; however, the number of
variables in such problems is typically huge, and the optimization process is typically very
slow.

This paper presents a new algorithm for constrained IMRT planning that leverages the speed
and ease of unconstrained optimizations, and introduces a dimensionality reduction step that
makes true constrained optimization tractable. Broadly, the algorithm has three steps. First,
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we solve a series of independent unconstrained minimization problems based on standard
penalty-based objective functions. The resulting plans can be viewed as “probing’ the space
of reasonable beamlet intensities (though it is unlikely that any individual plan will satisfy
all the constraints). Next, we apply principal component analysis (PCA) to this set of plans,
revealing that the high-dimensional intensity space can be spanned by only a few basis
vectors. Finally, we parameterize an IMRT plan as a linear combination of these few basis
vectors, enabling the fast solution of a constrained optimization problem for the desired
intensities. We describe a simple iterative process for handling the dose—volume constraints
that are typically required for clinical evaluation.

The main benefit of the proposed approach is to reduce the time to produce a viable plan in a
principled manner that should extend to more difficult sites. Our results show that only
about 50 unconstrained plans need to be explored in the probing phase, requiring about 5
min of computation on a standard desktop computer. The principal component analysis
results in a constrained optimization problem over 20 or fewer coefficients that requires only
a few seconds to solve. We present results for the prostate site here, with the expectation that
the framework will be generally applicable to sites such as the head and neck where the
planning process is much more time consuming. In a busy clinic, long planning times place
a severe stress on available resources, and can result in treatment delays, acceptance of sub-
optimal plans or—in the worst case—errors due to time pressure. Thus, reduction of
planning times is an important clinical goal.

The paper is organized as follows. We first review related work in section 2. In section 3.1,
we describe our mathematical formulation for unconstrained optimization in prostate IMRT
planning. We focus on the clinical planning procedure applied at Memorial Sloan-Kettering
Cancer Center (MSKCC). In section 3.2, we apply Monte Carlo (MC) simulation and
principal component analysis (PCA) to decrease the dimensionality of the intensity space. In
section 3.3, we formulate the objective function for constrained optimization in the reduced-
order space, and describe our special considerations for dose—volume constraints (DVCs).
Sections 4.1 and 4.2 present the results of dimensionality reduction and constrained
optimization on a 36 patient dataset using approximate dose calculations. A 10 patient
subset is then evaluated clinically for acceptability following full dose calculation in section
4.3. Section 5 concludes the paper with discussion and ideas for future work.

2. Related work

A widely used approach for the IMRT optimization problem is to combine all the clinical
criteria specified by the physician into a scalar value using a weighted sum that reflects the
relative penalty for not satisfying each criterion. Each weighted term in the scalar objective
is a soft constraint, meaning that it can be violated during optimization. Such an
unconstrained formulation is easy to implement and can be optimized quickly using gradient
information. Newton’s methods (Wu and Mohan 2000) and conjugate gradient (CG)
algorithms (Spirou and Chui 1998) are the two prevalent gradient methods for optimizing
IMRT objective functions, which can be dose based (Wu and Mohan 2000, Bortfeld et al
2004), dose-volume based (Wu and Mohan 2000, Bortfeld et al 2004, Langer 1990), or
biology based (Bortfeld et al 2004, Wu et al 2002). However, the result of a single
unconstrained optimization is not guaranteed to satisfy the clinical criteria. Planners need to
choose an appropriate set of parameters (e.g., weight factors), usually by trial and error, to
represent the compromises between competing objectives. The inverse planning process of
obtaining a clinically acceptable IMRT plan for a difficult site can take several hours,
largely due to the manual process of adjusting the parameters in the objective function
(Bedford and Webb 2003, Bortfeld et al 2004, Spirou and Chui 1998).
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Explicitly formulating the criteria as constraints provides more direct control and a higher
degree of ‘steerability’ of the treatment plans (Palta et al 2004). The constrained approach
optimizes one criterion while keeping all others within constraints; hence, no artificial
parameters are required. Researchers have reported the application of linear programming
(Wu et al 2000, Rosen 1991), mixed integer programming (Lee et al 2002, Langer 1996)
and simulated dynamics (Hou and Wang 2003) in radiotherapy. However, due to the fact
that IMRT optimization typically involves thousands of intensity variables and constraints,
these techniques require large numbers of iterations to search for feasible regions, and are
too slow to be used in the clinic. Wilkens et al (2007) proposed a faster technique based on
pre-emptive goal programming that followed a user-defined hierarchy for successively
adding lower priority constraints; however, defining the constraint order and hierarchy for a
given site and set of planning goals is a challenging task. Furthermore, dose—volume
constraints (DVC) that require ‘no more than q% of the volume may exceed a dose Dy, are
difficult to deal with in constrained optimization, since they do not specify which particular
voxels should have the dose limit Dgy. Lee et al (2002) introduced binary integer variables
(0 or 1) to flag violating voxels for DVCs. While this approach rigorously defines the
constraint, it is extremely time consuming to solve. Hou and Wang (2003) imposed dose
limits for certain voxels according to the dose distribution obtained by a previous
optimization. The method was applied using a differential-equations-based approach called
simulated dynamics, the extensive application of which is still to be evaluated in routine
treatment planning.

A third approach to IMRT planning poses the problem as a multi-objective optimization
problem, allowing the planner to choose from a family of Pareto-optimal plans (that is, plans
in which no criterion can be improved without worsening the others). Monz et al (2008)
described how the space of such plans could be navigated using an intuitive interface. Halabi
et al (2006) showed that dose—volume constraints could be accommodated in a multi-criteria
framework using a good heuristic approximation that enabled a linear programming
approach. While multi-criteria optimization frameworks still require a reasonably large
number of pre-computed plans to be generated on the Pareto front (each of which takes
several minutes to compute), recent results indicate that the Pareto front is spanned by a
relatively small number of plans (Craft and Bortfeld 2008).

One common problem in IMRT planning is the large number of degrees of freedom
involved in optimization, and the reduction of this dimensionality has been addressed by
several researchers. Markman et al (2002) parameterized the set of beamlet intensities using
a smaller number of radial basis functions. It is unclear how to choose an appropriate set of
basis functions for any given case, or how the approach would scale up to IMRT planning
problems with a large number of beamlets. Carlsson et al (2006) parameterized the
intensities using a few dominant eigenvectors from the Hessian matrix of the objective
function. As we show below, the eigenvector decomposition of the Hessian matrix is not a
highly effective tool for dimensionality reduction, and hence the quality of the resulting dose
distribution may be compromised. In our own previous work (Lu et al 2007), we applied
sensitivity analysis to identify key parameters of an unconstrained IMRT objective function
that have a strong impact on the resultant dose distribution. We then applied an outer loop
over the sensitive parameter set to find the parameters such that the minimizer of the
corresponding objective function gave the best score of a scalar function of plan quality.
While this method quickly produced plans that generally satisfied the clinical constraints, it
still suffered from (1) using a scalar-valued objective function to approximate a
fundamentally hard-constrained problem, and (2) requiring training data to identify the
sensitive set, assuming a generalizable class solution for the treatment site. The algorithm
described below has neither shortcoming.
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3. Materials and methods

We obtained clinical five field, 86.4 Gy IMRT plans for 36 prostate cancer patients from
MSKCC, all created by experienced planners; the access to these data was approved by the
MSKCC Privacy Review Board. The five beam directions are shown in figure 1; this class
solution was used for all the cases we analyzed. These hand-tuned clinical plans were
referred to as ground truth. Our reduced-order constrained optimization used the same CT
data and beam directions. All dose calculations described in this section used a truncated
pencil beam calculation to reduce computation time, as we previously described in Lu et al
(2007). The approximate dose calculation uses the same truncated kernel in use at MSKCC
during optimization. This differs from the dose calculation used for clinical evaluation
chiefly in that the long-range scattered dose is not included. While the full dose calculation
was not available at RPI, an estimate of the contribution of the long-range scattered dose
was derived from the ratio of the approximate dose calculation to the full doses for the
intensities in the clinical plan, and this correction applied for subsequent optimizations. The
approximate and full dose calculations therefore agree for the clinical intensities.

The current MSKCC clinical evaluation protocol requires that the plan satisfies the
following conditions; (1) for the PTV, Vg5 = 87% and Dyax < 111%, (2) for the rectal wall,
Vg7 < 30%, V54 < 53% and Dyax < 99%, and (3) for the bladder wall, V54 < 53%. All doses
are expressed as percentage of the prescription dose, and the notation Vy, means the structure
volume percentage receiving at least x% of the prescription dose.

3.1. Unconstrained optimization

To “probe’ the space of intensities for a given patient, we initially use a quadratic dosebased
objective function subject to unconstrained optimization (Spirou and Chui 1998, Ling et al
2004). For the kth target, the corresponding objective function term is

Nk Nk Nk

1 2
Ftargetkzﬁk Z(Di - Dpresk) +Wmink Z(Di - Dmink)2 -0 (Dmink - Di) +Wmaka(Di - Dmalxk)2 -0 (Di - Dmaxk) 5
i=1 i=1 =1 w

where N is the number of points in the target, and D; is the dose to the ith point in the
target. Dpreg is the prescription dose, and Dyyjny and Dpay, are the minimum and maximum
dose allowed without penalty. Wpin, and Wmay, are the penalties (weights) for under- and
over-dosing, and ® (x) is the Heaviside function. The choice of the parameter set Py =
{Dpresi: Dminy: Dmaxir Wming: Wmaxi} Completely specifies the objective function for target k.
A similar objective function term is defined for each organ at risk (OAR), which also
includes parameters Dgy, and wgy, that define the dose-volume-histogram (DVH)
constraints:

Nay,
1 k

Ni
FOAR.:_ Wmaka(Di - Dmaxk)2 -0 (Di - Dmaxk) Wy, Z(Di - dek)z -0 (Di - dek) s
¢ Nk i=1 i=1 @)

where the sum in the second term is carried out over the lowest Ny, doses that are greater
than Dgy,, and Ngy, is the minimum number of point dose changes required to bring the kth
organ into compliance with the DVH constraint (Spirou and Chui 1998).

The overall unconstrained intensity optimization problem is thus formulated as
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Nmrgsl NOAR
I'=arg min Z Fuager, (D (1), P) + Z Fo, (D), P)
=1 k=1 (3
where P = {Pj, j = 1,..., Ngarget: Pk, k=1, ..., Noar} is the set of about 20 dose limits and

weights for all the optlmlzatlon structures that defines the objective function3. The
optimized dose distribution uses a linear model:

D= Ayl

L

M=

(4)

where Ayjj is the dose coefficient from the jth beamlet to the ith voxel.

Given a fixed set of parameters P, the CG algorithm can effectively optimize (3) by utilizing
gradient information. For the objective function specified in (1), the derivative of F with
respect to the jth beamlet I is

aFtarget
ol;
N N N
dD; 0D; oD;
Z D Dprcs 01; +Wmin; (Di - Dmin) -0 (Dmin - Di) : 0_I;+Wmax; (D Dmax) ) (D Dmax) 0]
(5)

D _A..
where 77:=A;j.

Using the CG algorithm, the unconstrained optimization usually converges in 5son a
Pentium 4 2.66 GHz, 4 GB RAM PC. However, as described in section 2, the optimized
dose distribution does not necessarily satisfy the clinical criteria. The parameters P have to
be carefully chosen, usually by trial and error, since they are inherently imprecise and un-
intuitive. Figure 2(a) illustrates the typical clinical planning process using unconstrained
optimization. Automatic methods of parameter selection have been proposed in Xing et al
(1999), Lu et al (2007). The problem is that the optimized dose distribution D* in (3) and
(4)is not differentiable with respect to P; thus, stochastic algorithms are usually used for
parameter optimization, which are relatively inefficient in terms of speed.

In our new approach, the parameter-based unconstrained optimization is used for
constructing an intensity space that contains possible solutions, as illustrated in figure 2(b).
We then apply PCA to find the true embedding of solutions in this space, i.e., to decrease its

3We note that in this phase of the algorithm and the PCA analysis discussed in section 3.2, we use expanded PTV and rectal wall
structures that are slightly larger than the corresponding anatomical structures. These ‘dummy’ structures are used by MSKCC
planners to guide their particular optimization algorithm to a more clinically desirable solution. The main constrained optimization
problem discussed in section 3.3, and evaluation of the resulting plans are computed based on dose to the true PTV and rectal wall.
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dimensionality. The final solution is obtained by constrained optimization, which is
computationally feasible when searching in the reduced space.

3.2. Dimension reduction in the optimized intensity space

In current clinical practice, after several trial-and-error guesses, the planner reaches a set of
parameters such that optimizing the corresponding unconstrained cost function results in a
clinically acceptable plan. Here, we are interested in the effect of changing P on the
resulting optimized intensity I* in (3). Intuitively, the number of degrees of freedom for I*
should be much less than the total number of beamlets.

After minimizing using a fixed parameter setting P;, we stack the resulting intensities from
all the beamlets into a column vector I;. Given N optimized intensity distributions {l4, I, ...,
In} resulting from different combinations of P, the dimensionality of the intensity space can
be reduced by linear or nonlinear feature extraction methods. Here, we use principal
component analysis (PCA) (Shawe-Taylor 2004) for the reduced-order approximation.
Mathematically, PCA is an orthogonal linear transformation that maps the data to a new
coordinate system, such that the dimension with the kth greatest variance is oriented to lie on
the kth coordinate (i.e., the kth principal component). The projection directions are obtained
from the eigenvalue decomposition of the covariance matrix defined by C = 1T, where I [I;
Io ... IN]; that is

Cvi=dyv; Ay 22> 2 Ay. (6)

If we normalize the eigenvectors to have unit length and project | into a subspace Uk
spanned by the first K eigenvectors vy, ..., Vg, the variance of the projection can be shown to
satisfy

N K

. 2
> lIProj,, (1)IP=)"A;
i=1 i=1

(7)

Since the total variance in the data is ZN;—; A;, we can then choose the K eigenvectors that
capture a desired percentage T of the total variation:

K
2 A

]
= >T%.
N

A
i=1 (8)

The linear transformation that projects the M-dimensional I; into the K-dimensional
subspace Uy is simply

E=VTL, I=Vé&, )

where V =[vy v, ... vk], and &; contains the transformed coordinates.
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We note that although traditional PCA approaches usually center the data to have zero mean
before analysis, the derivation above does not necessarily require centering (Shawe-Taylor
2004). We directly apply PCA to the un-centered data, so that the mapping between two
spaces in (9) is exactly linear, without any translation.

To generate the set of N optimized intensity distributions for PCA, we use Monte Carlo
simulation based on random sampling. First, we determined the natural range of parameters
P in (3) from the values observed over the database of 36 plans. Then, N sets of parameters
from this range are generated by Latin hypercube sampling, which is a particular case of
stratified sampling that achieves a better coverage of the space of input parameters (Saltelli
et al 2004). The selection of N is discussed in section 4.2. For each set of parameters, we
minimize the corresponding IMRT cost function (3) using the CG algorithm. The resulting
intensity profiles are grouped together and reduced in dimensionality using PCA.

Related dimensionality reduction methods to our approach have been proposed recently.
Alber et al (2002) studied the second-order properties of the unconstrained objective
function F. The Hessian matrix H is defined as

O
Y (9[,‘(9[j ’ (10)

where I* is the optimized intensity, and I; refers to the ith beamlet. The IMRT degeneracy
problem (i.e., the phenomenon that different intensity distributions can lead to nearly
identical dose statistics) is related to the small eigenvalues of H. Also, the eigenvectors for
the large eigenvalues span the subspace of | where F(I) changes rapidly, which corresponds
to difficult trade-offs between targets and OARs. Carlsson et al (2006) further parameterized
the intensities | by a few dominant eigenvectors from the Hessian, i.e., I = Vp &, which is the
to (5), the same as (9) except that V|, contains p dominant eigenvectors from H. According
Hessian in (10) can be written in the matrix form:

N (11)

which depends on the dose coefficients Ajj, the current dose distribution Dj and the
parameter settings (Wmin, Wmax.» €tc). Hence, the lengthy Monte Carlo simulation is avoided,
but the Hessian may vary as the unconstrained optimization proceeds or the parameters are
altered. Due to the difficulty in computing the volatile D, both papers suggest a
simplification that only considers the eigenvectors from AT A, the covariance of the dose
coefficient matrix. We will compare our approach to these alternatives in section 4.1.

3.3. Constrained optimization in the reduced space

Given the reduced space that captures the effective degrees of freedom in the intensity
variables, our next task is to find a clinically acceptable solution. A natural formulation is to
minimize the deviations from the prescription dose in the target (PTV), while keeping other
dose statistics within the constraints specified by the clinical criteria. Without dose—volume
constraints, the constrained optimization is defined as

minZ:(Dl.Tmgel -D,.. )2
i (12)
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Target Target Target Target Target .
DIE=N N AT g, D < DI < DRt vie T
jok (13)

D?AR:ZZAgARVi &, DO < DOAR i
k

i (14)

1,~=ZV,~,~§k > VjeB,
k (15)

where the minimization is taken over the K-d coordinates in the reduced space: &, &, ...,
Ek. T, O and B are the sets of target voxels, OAR voxels and original N-d beamlet intensity
variables, respectively. Constraint (15) specifies that the back-projected intensities in the
original space should be non-negative.

To accommodate the dose—volume constraints, e.g., Vg7 < 30% and Vs4 < 53% for the rectal
wall, we use a similar idea proposed by Hou and Wang (2003) for simulated dynamics, i.e.,
we iteratively perform constrained optimization with different dose limits. The DVC that
Vg7 < 30% can be enforced by applying hard constraints at 87% of the prescription dose on
a set of voxels that make up 70% of the structure. Initially, we have no idea about which
particular voxels should be limited to 87%, and the first run of optimization is free of DVCs.
We then determine a particular voxel set by sorting the optimized dose distribution. The
DVC is imposed as a hard constraint on the coldest 70% volume of voxels, and the second
optimization proceeds. An underlying assumption is that the relative low-to-high dose
ordering does not change substantially between two runs of optimization. This procedure is
described in algorithm 1 for an OAR with a maximum dose limit and several DVCs.

To solve the constrained problem, we use the commercial solver CPLEX, well suited for
large-scale implementations of linear programming algorithms.

Algorithm 1. Imposing a set of dose—volume constraints

Input: maximum dose Dpyax for OAR, dose-volume constraints Vp; <V1%, ..., Vp, <
Vn%. Dj and V; are sorted so that D > ---... = Dy, Vq --... £V

Process: in the first iteration, set the dose limit for each OAR voxel to Dyax.

repeat
Solve the constrained problem.
Calculate and sort the doses in descending order.
if dose—volume constraints are already satisfied then
break;
else
Update the dose limit for each voxel according to the dose—volume
constraints.
Dmax is assigned to the voxels currently in the volume percentage of 0-—
Vi% (i.e.,
the hottest voxels), Dj to the voxels currently in V1-V2%, and so on.

Phys Med Biol. Author manuscript; available in PMC 2010 July 20.
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end if
until between two iterations, the intensities or dose limits stay unchanged
or differ by a
small amount.

4.1. Dimensionality reduction

For each patient, we first randomly generated N = 500 parameter combinations as described
above, minimized the corresponding unconstrained cost function and obtained the value of
the intensity variables. Figure 3(a) shows the eigenvalue distribution for patient 1 after
applying PCA to the combined intensity space. The first eigenvalue is omitted since it
mainly relates to the sample average in un-centered PCA. The remaining eigenvalues are
normalized by the maximum eigenvalue and visualized in the log scale. We can see that
only a few (< 20) eigenvalues were well distinguished (with a relative value greater than
0.1%) in the spectrum, indicating that the number of degrees of freedom was much less than
the number of samples. Figure 4 visualizes the eigenvectors corresponding to the two
greatest eigenvalues, as well as the clinical intensity distributions. We note that these
principal eigenvectors are qualitatively different from those generated by Alber et al since in
our case the entire plan is built up from combinations of these modes, while in Alber et al
(2002), the eigenvectors represented changes from a nominal plan and could be more easily
visually identified with aspects of target-OAR competition.

Next, for each patient we selected the number of eigenvectors so that over 99% of the
variance is captured:

J=1 (16)

Figure 3(b) illustrates the result for all 36 patients. Generally, 7-10 principal components
were required to describe most of the variance. Therefore, in the following section, we
safely used a 20-dimensional space for constrained optimization. We note that while this
paper was being prepared for publication, Craft and Bortfeld (2008) made a similar
observation—i.e., that viable intensities lie in a relatively low-dimensional subspace.

To compare our approach with other dimensionality reduction techniques in the literature,
we minimized the unconstrained cost functions with two sets of parameters: the default
setting defined in the protocol template and the clinical setting after trial-and-error
adjustment. Using (10), two different Hessians were computed from the optimized dose
distributions. A third simplified Hessian was computed as AT A, i.e., it only depended on the
interactions between the beams and the patient’s geometry. For each patient, we applied the
PCA approach to each of these matrices, as well as the Monte Carlo covariance matrix that
forms the basis for our algorithm. After eigenvalue decomposition, the K dominant
eigenvectors were used to span a reduced space Uk. We projected each clinical intensity
vector | into the different spaces, and measured the quality of approximation in terms of the
projection residual:

Phys Med Biol. Author manuscript; available in PMC 2010 July 20.
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Il = Proj, (D]
Dim (/) (17

where Dim(l refers to the dimensionality of I.

Figure 5 compares the projection residuals for the four dimensionality reduction methods. In
all cases, as we include more eigenvectors in Uk, the projection becomes more similar to the
original intensity vector. Using Monte Carlo simulation and PCA, the projection residual
decreased much faster and to a much smaller level than any of the other approaches,
indicating that our method is most effective for dimensionality reduction. Comparing the
two Hessians with different parameter settings, we found that the eigenvectors from the
‘clinical Hessian’ seem better suited to reconstructing intensities that meet the clinical
constraints, indicating the importance of parameter selection for Hessian-based methods.
The simplified Hessian (AT A) has interesting properties. For the first 100 eigenvectors it
behaved the worst, but the performance gradually approached that of the “clinical Hessian’
as more modes were included. It appears to be a fair alternative method for dimensionality
reduction, since neither Monte Carlo simulation nor parameter selection is required.
However, a much larger number of eigenvectors would be required for acceptable
performance, compared to the Monte Carlo approach.

4.2. Constrained optimization

Considering that all the clinical plans at MSKCC are obtained through minimization of (3)
with a suitable parameter set, we can reasonably assume that sampling the intensity space
obtained from unconstrained optimization provides a good basis for the search for a
clinically acceptable solution. The constrained optimization drives the solution toward the
protocol goals, while the search space for intensities has a very limited number of degrees of
freedom due to the reduced-dimensional PCA. We note that the intensities from constrained
optimization might not coincide with those from the clinical plans (e.g., due to IMRT
degeneracies). For the purpose of the experiment, we assume that the quality of the plan is
defined entirely by the degree to which the clinical constraints are satisfied.

In the first part of this experiment, we generated 100 samples from Monte Carlo simulation,
and approximated the intensity space using 20 eigenvectors. For a typical prostate case and a
Dell PC workstation (Pentium 4 2.66G, 4G RAM), the constrained optimization converged
in 15 s on average, after 5 min spent in dimensionality reduction.

Figure 6 shows dose—volume histograms resulting from both the clinical and proposed
reduced-order constrained optimization for patient 15, for whom we had full dose
calculations for both methods. We show DVHs for the three constrained structures—the
PTV, rectal wall and bladder wall, together with the six DVH evaluation points that
determine the constraints applied through (13) and (14). All six constraints—Vgs and Dynax
for the PTV, Dmax, Vg7 and Vg4 for the rectal wall, and Vg4 for the bladder wall—are met.

Figure 7 summarizes the results for all 36 patients based on these evaluation points as well
as the PTV minimum dose. The corresponding results of the clinical planning process are
also plotted. These plan statistics were all computed using the approximate dose calculation
method described in Lu et al (2007) that was used throughout the algorithm. Note that the
planner almost always normalizes the clinical plan so that the PTV Dyyax is 110%.
Compared to the clinical plans, the constrained optimization significantly decreased
DPTV .ax While keeping a slightly higher DPTV in: that is, PTV homogeneity was improved
by our method. Across all the patients, the mean value of DPTV ., decreased from 110
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(clinical) to 106.5, and the mean value of DPTV i, increased from 80.9 to 83.3. The overall
statistics of PTV coverage (i.e., VPTVgs) in both cases were similar (94.4 and 94.8,
respectively). For OAR protection, an interesting result is that our method pushed
prectwall -~ to the exact protocol limit of 99, while human planners usually normalize the
plan to approximately achieve this goal. This observation shows the power of constrained
optimization: the plan’s outcome is directly related to the choice of clinical criteria. As
discussed in section 3.3, we maximize the PTV coverage while keeping the OAR doses
under constraints. After optimization, certain OAR constraints are fully active, so that the
PTV doses can reach far beyond the clinical goals. If the roles of PTV and OAR were
reversed in the problem formulation, we would expect VPTVgs and DPTV i, to be straight
lines around the clinical limits. We also observe that the dose—volume constraints, e.g.,
vrectwall; ) ang ybladwall, can be effectively imposed by algorithm 1. The Vrectwall;, wags
pushed to the limits of 53% in 30 out of 36 cases, and the remaining 6 had low rectum doses
without compromising the PTV coverage.

The second part of this experiment varied the number of samples used for Monte Carlo
simulation, and the number of eigenvectors used in optimization. Since most of the
computational time is spent in repeated runs of unconstrained optimization, whether a large
number of samples is required or not becomes critical in evaluating our approach. Figure
8(a) compares VPTVgs and DPTV i, resulting from constrained optimization using different
numbers of samples. For patient 1, we took 20, 50, 100, 250 and 500 samples, respectively.
With 20 samples, VPTVqs failed to meet the clinical requirement. However, starting from the
next level (50), the two PTV constraints were fully satisfied, and the optimization did not
benefit significantly by increasing the number of samples. This indicates the value of our
approach: only a very limited number of runs of unconstrained optimization is required to
extract the search space. Another issue is how the dimensionality of the search space affects
the constrained optimization. Figure 8(b) compares VPTVgs using different numbers of
eigenvectors. The PTV coverage generally increased as more degrees of freedom were
allowed, and the improvement became insignificant after K = 10, which corresponds to the
previous observation that 7-10 eigenvectors were enough to describe most of the variance.
In our experiments, we used K = 20 since no additional increase of computational cost was
observed.

4.3. Clinical validation

The constrained optimization described here delivers plans that meet clinical constraints as
precisely as possible according to the dose calculation algorithm used within the
optimization. To evaluate the efficacy of the optimization using a different dose calculation
method is in principle inconsistent. While our constrained optimization and the steps
(sections 3.1 and 3.2) that determine the input PCA modes employ an approximate dose
calculation method (Lu et al 2007), clinical plans at MSKCC are assessed using the more
accurate in-house dose calculation algorithm that fully accounts for scatter.

There are two other differences between our automated optimization and the plannerdriven
methods that produce the ground-truth clinical plans. First, in determining whether a plan is
clinically acceptable, the planner or physician may apply unstated constraints; for example,
they may reject a plan with a hot spot in unspecified normal tissue. Additionally, even
without such manual supervision, the unconstrained optimization based on (1)—(3) combined
with the class solution beam directions may naturally meet the tolerance limits for a
particular normal tissue, making it unnecessary for (2) to include a term for that tissue in
almost all situations. However, it is important to check that our automated planning methods
do not violate clinical requirements that are either unstated or normally satisfied during
‘manual’ planning.
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To examine this possibility, the incident beam intensity was calculated using the fluence
matrices generated by the automated method, and the resulting patient dose distribution was
calculated with the full dose calculation and reviewed by an expert treatment planner. This
experiment was performed for 10 of the 36 plans described above. After the first four
patients, we found that two constraints used for plan evaluation but not explicitly stated in
the clinical optimization guidelines were violated: that the maximum femoral head dose be
less than 68 Gy and that the mean PTV dose be greater than 100%. The femoral head
maximum dose was exceeded in three cases and the mean PTV dose requirement was
violated in all of them. In manual planning with unconstrained, weight-based optimization,
the maximum femur dose is almost always satisfied without including an OAR term for the
femurs in the score function. The constrained optimization including constraints on the
maximum femur dose and mean PTV dose was performed for these and an additional six
patients. The dose distributions determined with the approximate dose calculation algorithm
satisfied the new as well as the original constraints. Upon applying the full dose calculation
with new fluence matrices, five cases were found to be acceptable, while violations by 0.5—
1.5% of one or two clinical evaluation criteria were found for the other five patients. We
attribute these problems to the differences in dose calculation algorithms.

5. Discussion and conclusions

In this paper, we combined the advantages of two different optimization approaches to find a
clinically acceptable solution for prostate IMRT. Fast unconstrained optimizations are used
to probe a small number of samples in the parameter space. By applying PCA, the low
number of degrees of freedom in the parameters is converted into a low number of degrees
of freedom in the intensities, and the latter are much easier to deal with when solving the
constrained problem. The constrained optimization enables the planner to directly control
the dose limits and dose—volume constraints, and becomes computationally feasible in the
reduced intensity space. The impact is that a true constrained optimization problem over the
intensity values can be solved very quickly—in about 15 s—after spending about 5 min per
patient in the ‘probing’ phase. We believe that the methodology can be straightforwardly
applied to other sites and has high potential for making constrained optimization a viable
clinical planning tool.

Our experiments have shown that the principal eigenvectors spanning the space of feasible
plans cannot be directly predicted for a given patient’s geometry; therefore, Monte Carlo
simulation and PCA must be applied for every patient. This does not necessarily weaken our
approach: only a very limited number of samples are required, and the computational cost is
minor compared to hours of manual adjustment. We note that the number of samples we use
to construct the space is generally small enough that it is unlikely that the ‘best’ sample will
fulfill the clinical constraints and provide an immediate solution. However, we showed that
these Monte Carlo samples do a good job of constructing a space that can be effectively
explored by constrained optimization. If the constrained optimization cannot arrive at a
feasible solution for a given patient, there may be no alternative but to tune some of the
constraint parameters to obtain a clinically acceptable plan. However, this adjustment is
much simpler and faster than the typical adjustment in unconstrained optimization, since
only dose limits and not importance factors need to be investigated, and the constrained
optimization algorithm itself is very fast given the PCA modes.

We wish to stress that additional constraints, over and above those used at present in weight-
based optimization, may be necessary. Our experience with the femoral head maximum
doses indicates that the constrained and weight-based optimizations distribute dose
differently. One cannot assume that a normal tissue limit that is ‘accidentally’ satisfied
without requiring an explicit term in the objective function for weight-based optimization
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will be similarly satisfied by constrained optimization. Ultimately, the planner should try to
encapsulate measures of clinical acceptability as explicit dose or dose—volume constraints
whenever possible. A further area of future work is to investigate and improve the character
of the dose distributions produced by the proposed method. Figure 6 reveals that the
constrained optimization makes different trade-offs about dose—especially for the OARs—
than a human planner would, although both plans satisfy the clinical constraint points on the
DVH curves and would be acceptable by the physician. It may be necessary to impose
additional DVVH constraints as reliable complications models that cover the whole DVH
become available.

When using constrained optimization, it is important to use the same method of dose
calculation for both optimization and evaluation, as the full scatter dose can contribute
several percent to a small, centrally located structure such as the urethra. Further work is
needed to determine if a full dose calculation is needed at the level of the Monte Carlo
sampling procedure, where it would have strong implications for speed, or only at the point
of constrained optimization in the reduced parameter space. If it is only required at the
optimization phase, it might be possible to employ a two-loop strategy such as that described
by Lu et al (2007) to reduce optimization time.

A key advantage of the proposed approach (e.g., in contrast to our previous work Lu et al
(2007)) is that no training data are required, and that the space of probed plans is customized
to a given patient. We are hopeful that this approach will produce greater clinical impact in
sites that are more difficult to plan than the prostate (such as head and neck cancers) due to
non-standard beam arrangements and highly variable target/OAR shapes and positions.
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Figure 1.
The five beam directions for the analyzed plans.
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Figure 2.

Clinical planning and our proposed method. (a) In the clinic, a planner manually adjusts a
set of patient-specific parameters P defining an unconstrained cost function F, and optimizes
F using an automatic algorithm (shaded box). (b) Our approach consists of three steps:
Monte Carlo simulation, principal component analysis and constrained optimization. Monte
Carlo simulation generates multiple samples of parameters Py, ..., P, for an unconstrained
cost function F. The resulting optimized intensities lie in the space of possible solutions.
Using PCA, we identify a reduced space, which is subsequently explored by constrained
optimization (no parameters involved) for the final solution.
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Figure 3.
(@) The normalized eigenvalue distribution for patient 1, in the log scale. (b) The number of
eigenvectors required to capture the major variance (= 99%).
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Comparison of the four dimensionality reduction methods based on projection residual.
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Comparison of dose—volume histograms for the clinical plan and the plan from constrained
optimization, both for patient 15.
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