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Summary
We propose a simple method for evaluating agreement between methods of measurement when
the measured variable is continuous and the data consists of matched repeated observations made
with the same method under different conditions. The conditions may represent different time
points, raters, laboratories, treatments, etc. Our approach allows the values of the measured
variable and the magnitude of disagreement to vary across the conditions. The coefficient of
individual agreement (CIA), which is based on the comparison of the between and within-methods
mean squared deviation (MSD) is used to quantify the magnitude of agreement between
measurement methods. The new approach is illustrated via two examples from studies designed to
compare (a) methods of evaluating carotid stenosis and (b) methods of measuring percent body
fat.
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1. Introduction
In studies designed to assess the agreement between methods of measurement, multiple
observation are often made with each method on the same subject. These observations can
be considered as replicated measurements if the observations with the same method on the
same subject are conditionally independent and identically distributed. In this case it is
assumed that the subject’s true value of the measured quantity remains unchanged across the
measurements made by the same method. On the other hand, agreement studies may be
designed such that multiple matched observation with two (or more) methods are conducted
on each subject under specific ‘conditions’ where the subject’s true value may change across
conditions. The observations are then considered as matched repeated measurements. The
‘conditions’ may correspond to different time points, raters, laboratories, devices,
treatments, etc. For example, in a study designed to compare imaging methods for assessing
carotid stenosis (Barnhart and Williamson, 2007) the same three raters used each of the
imaging methods to determine the carotid stenosis of each patient. Here the three raters
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correspond to three ‘conditions’ under which measurements have been made. Chinchilli et
al. (1996), Choudhary (2008), and King et al. (2007a,b) analyzed data from a study in which
percentage body fat was estimated using two methods: (1) skinfold calipers, and (2) dual
energy x-ray absorptiometry (DEXA), on adolescent girls. Measurements were taken in an
initial visit at age 12 years and in subsequent visits which occurred every six months. In this
case the ‘condition’ is the girl’s age.

The focus of this article is on evaluation of agreement between methods of measurements
from matched repeated observations. We assume that all the measurements are made on the
same interval scale, hence we can evaluate the extent of agreement between methods via the
differences between measurements made on the same subject with different methods. In
addition, we assume that a subject’s true value may change across the levels of the variable
corresponding to the conditions, and that the magnitude of agreement between methods may
vary across conditions. We are interested in (a) assessment of condition-specific agreement
between measurement methods, (b) investigating the effect of the condition on the
magnitude of agreement between methods, and (c) if we conclude that agreement between
methods remains unchanged across conditions then we also may be interested in an overall
measure of the extent of agreement. We are not interested in the agreement between
measurements taken under different conditions as the true value of the measured variable on
a subject may vary across the conditions. In the carotid stenosis example, the main interest is
in comparing the imaging methods when used by the same rater. We do not investigate the
agreement between the raters in this example. In the body fat example, one is mainly
interested in the agreement between the skinfold calipers and DEXA measured on the same
girl in the same visit.

As stated in a recent review paper by Barnhart et al. (2007a), future research is needed on
assessing agreement with repeated measurements because previous works on this topic have
been limited to scaled agreement indices using the concordance correlation coefficient
(CCC) (Chinchilli et al. (1996) and King et al. (2007a,b)), unscaled agreement indices using
the total deviation index (TDI) (Choudhary, 2008), and limits of agreement (LOA) (Bland
and Altman, (2007)). In this work we focus on an alternative scaled index for assessing
agreement, the coefficient of individual agreement (CIA), that may be preferable to the CCC
because it does not depend on the between-subject variability, as elaborated by Barnhart et
al. (2007a,b). The CIA has been introduced by Barnhart et al. (2007c), and Haber and
Barnhart (2008), and has been applied to data with replicated measurements only. In this
work we will show how to estimate the CIA from data with matched repeated measurements
across conditions when there are no replications at each condition. If there are replications at
each condition, we can accomplish goals (a) (c) by applying the methods described in
Barnhart et al. (2007c) and Haber and Barnhart (2008). However, in this work we assume
that there is a single observation for each method × condition combination, so that our
previous methods (Barnhart et al. (2007c) and Haber and Barnhart (2008)) cannot be used.
In general, the CIA compares the disagreement between methods to the disagreement
between replicated measurements made by the same method on the same study subject. The
agreement between methods is considered acceptable if the variability between observations
made with different methods on the same subject is not much larger than the variability
between observations with the same method on this subject. Hence, good individual
agreement implies that replacing one method by another or using the methods
interchangeably does not substantially increase the within-subject variability. The reciprocal
of the CIA is interpreted as the relative increase in the variability of the measurements made
on the same subject if the methods were used interchangeably. In our previous papers
(Barnhart et al. (2007c) and Haber and Barnhart (2008)) we suggested that the CIA should
be at least 0.8 in order to claim ‘good’ agreement. This means that using the measurement
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methods interchangeably does not increase the variability of measurements made on the
same subject by more than 25%.

The CCC and CIA are scaled agreement indices attaining values in the intervals [−1,1] and
[0,1], respectively. The CCC is based on the comparison of the between-methods and the
between-subjects variability Hence it depends on the heterogeneity of the population with
respect to the measured variable (Atkinson and Nevill (1997), Barnhart et al. (2007b)) and
therefore comparisons of CCCs from different studies may not be valid. The CIA, on the
other hand, uses the within-methods variability, , as a benchmark to which between-
methods variability is compared. In our opinion, the latter is a more appropriate comparison
as the within-methods disagreement is related to the performance of the measurement
methods, while the between-subjects variability does not reflect any aspect of the
measurement process and may vary between populations or samples. A detailed comparison
of the two types of scaled agreement coefficients can be found in Barnhart et al. (2007b).
Alternatively, one may use an unscaled measure of agreement, such as the total deviation
index (Choudhary (2008), Lin et al. (2002)). Using an unscaled agreement index requires
setting acceptable bound that may not be easy in practice. A thorough review of different
approaches, including CCC, CIA and TDI, to evaluation of agreement between observers or
measurement methods can be found in Barnhart et al. (2007a).

The key concept in the CIA is the use of the variability between readings of the same
method on the same subject as a reference for assessing the disagreement between different
methods. First, one must make sure that this within-method (error) variability, , is
‘reasonably small’. Barnhart et al (2007b) suggested to compute the repeatability coefficient

(Bland and Altman (1999)), , and check whether it is less than or equal to an
acceptable value within which the difference between two readings by the same method
should lie for 95% of the subjects. Second, as illustrated in our previous papers (Barnhart et
al. (2007c) and Haber and Barnhart (2008)), the within-method variability can be estimated
if there are true replications. Those papers did not address the issue of estimating  when
there are no replications. The main purpose this paper is to use the repeated measurements in
order to estimate , and thus to estimate CIA, by fitting a reasonable model using matched
repeated measures in the absence of replications.

In our previous papers (Barnhart et al. (2007c) and Haber and Barnhart (2008)) we
considered two situations: (1) one of the methods of measurement is considered a reference,
or gold standard, to which the other method is compared, and (2) none of the methods is
considered as a reference. In this work we focus on the second situation. We assume that the
magnitude of agreement is measured by the mean squared deviation (MSD), defined as the
mean of the squared difference between two readings made on the same subject under the
same condition. For the sake of simplicity, we first present the new statistical techniques in
the context of assessing the agreement between two measurement methods and later show
how this approach can be extended to the case of multiple methods. The models and
methods for the case where the ‘conditions’ correspond to the levels of a categorical factor,
such as raters or laboratories, are described and illustrated in Section 2. In section 3 we
consider the case where the factor representing the ‘conditions’ is continuous, such as time,
age or temperature. Section 4 presents generalizations to the case of more than two
measurement methods.
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2. Conditions correspond to the levels of a categorical factor
In this Section we consider the case where each of N subjects is evaluated by two
measurement methods under the same K (K ≥ 2) conditions. As stated in the introduction,
the ‘conditions’ may correspond to different time points, laboratories, raters, treatments, etc.
We assume that the observed variable is continuous and that the true value of this variable
on a given subject may change from one condition to another. We denote the measurements
with the two methods by Y1 and Y2. The disagreement between the methods is quantified by
the mean squared deviation (MSD), defined as:

where the expectation is over all the study subjects. The coefficients of individual agreement
(see Barnhart et al. (2007c) and Haber and Barnhart (2008)) compare MSD(Y1,Y2) to the
MSD of two replicated observations made with same method under the same conditions.
Therefore we denote by MSD(Yj,Yj ′) the mean squared deviation between two (hypothetical)
replicated observations made with method j (j = 1,2) under the same condition. For the case
where none of the methods is considered as a reference, the coefficient of individual
agreement is defined as:

(1)

In our previous papers (Barnhart et al. (2007c) and Haber and Barnhart (2008)) this
coefficient was denoted by ψN.

Since the data considered here do not include replicated observations, Y j and Y j ′, made
with same method on the same subject under the same condition, we cannot apply the
approach of Barnhart et al. (2007c) and Haber and Barnhart (2008), who used the replication
variances for estimation of MSD(Yj,Yj ′) (j = 1,2). Instead, we propose to estimate MSD(Yj,Yj
′) from a simple linear model. Denote by Yijk the observations with the j -th method on the i -
th subject under the k -th conditions. In order to estimate these MSD’s, we use the following
mixed ANOVA model:

The α ’s are the subjects’ random effects while the β ’s and γ ’s are the fixed effects of the
methods and the conditions, respectively. We assume that the random main effects,
interactions and errors are independent and normally distributed with mean 0 and

. Regarding the fixed effects, we
make the common assumption that the sum of the coefficients over every index is zero, i.e.,
Σjβ j = Σkγ k = Σj (βγ) jk = Σk (βγ) jk = 0.

It is important to note that this model allows the measurements Yijk for the same subject-
method combination (i, j) to vary across the m conditions. If we consider two (hypothetical)
replicated observations, Y j and Y j ′, that could be made by method j on the same subject
under the same condition then:
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From the above model it is evident that the disagreement between the two observers may
depend on the condition. The MSD(Y1,Y2) for the k -th condition can be obtained from the
parameters of our model as follows:

Using the definition (1) we now can obtain the coefficient of individual agreement under the
k -th condition as:

Estimation and testing
Fitting the mixed model that we use to estimate the coefficients of individual agreement can
be done via standard statistical software packages. We used SAS proc MIXED for this
purpose. It may also be of interest to test the hypotheses of homogeneous agreement, ψ1 =
… = ψm, which is equivalent to (βγ) j1 = … = (βγ) jm for j = 1,2. If this hypothesis is
supported by the data then the common value of all the condition-specific ψ’s can be
estimated by fitting the simpler form of the mixed model which does not include the
method-by-condition interaction terms (βγ). Confidence intervals for the estimated
coefficients can be computed using the delta method or the nonparametric bootstrap.

Example 1
We now illustrate the method using data from a carotid stenosis screening study. The goal of
the study was to compare magnetic resonance angiography (MRA) for noninvasive
screening of carotid artery stenosis with invasive intra-arterial angiogram (IA). Two MRA
methods were considered: two-dimensional time of flight (MRA-2D) and three-dimensional
time of flight (MRA-3D). Each of three raters determined the percent of carotid stenosis
using each of the three imaging methods. Thus, a total of nine observations were made on
each study subject. Our analysis is based on the 55 study subjects for whom all 9 readings
were available. Percent stenosis was measured in both the left and right carotid artery of
each subject. We will use here only the data from the left arteries. For more information on
the study, including graphical displays of agreement between methods and between raters,
the reader is referred to Barnhart and Williamson (2001). The stenosis data can be copied
from: www.sph.emory.edu/observeragreement/

Barnhart et al. (2007c) used this data to estimate the coefficients of individual agreement
between the three methods where the raters were consider as independent replications. Here
we re-estimate the coefficients under the more realistic assumption that each rater has her/
his own effect on the observed measurements. Thus, we consider the raters as ‘conditions’.

Table 1 presents rater-specific estimates of the CIA’s for the left artery data, along with their
delta-method-based 95% confidence intervals, for all three pairs of methods. The table also
presents the overall estimate of ψ under the assumption that the coefficients for the three
raters are equal. The overall estimates can be interpreted as pooled (or summary) estimates
of the coefficients across the three raters under the assumption that the disagreement
between methods is homogeneous. These pooled estimates are not very meaningful unless
the differences between methods are indeed homogeneous across raters. In Table 1,
whenever the upper limit of a CI exceeded 1, it was set to 1.000.
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As we stated in the Introduction, it is important to check the repeatability coefficient

 for each of the methods. In the context of the present example, this coefficient is
a 95% upper bound for the absolute difference of two readings made by the same rater with
the same imaging method. The coefficient should be relatively small, so that we feel
comfortable when using the intra-method variability as a reference to which we compare the
inter-method variability. The repeatability coefficients corresponding to the three
comparisons in Table 1 are 51.5, 49.0 and 63.0 percent, respectively, which are likely to be
higher than acceptable values for the absolute difference of two measurements of carotid
stenosis performed with the same method on the same patient. Hence, from a practical point
of view the estimates in Table 1 are likely to overestimate the actual magnitude of individual
agreement.

From Table 1 we can learn that the agreement between the IA method and each of the MRA
methods, which was the focus of the original study, is very poor. The comparison of the two
MRA methods produces higher estimates of CIA’s, in the range 0.81–0.86. However, since
we saw in the previous paragraph that these estimates are likely to be inflated due to an
unacceptable repeatability coefficient, one may doubt whether the agreement between the
two MRA methods is indeed reasonably good.

3. Conditions correspond to a continuous factor
In this Section we assume that matched repeated measurements are performed under
conditions that correspond to the values of a continuous variable. The most common
situation involves measurements made at different time points, hence we will refer to the
variable defining the repeated measurement as ‘time’ and assume that the subjects’ true
values are a linear function of time.

Suppose that pairs of observations (Yi1 (t), Yi2 (t)) were made with two methods of
measurement on subject i at each of m ≥ 2 different time points, t. (These time points do not
have to be the same for all subjects). As we did in Section 2, we begin by fitting a linear
mixed model to the observed measurements:

As before, the random effects {αi }, {(αβ)ij },{δi }, {eij (t)} are independent with zero means

and: . For the fixed effects we set
β1 + β2 = η1 + η2 = 0. The mean squared differences are as follows:

W now can obtain the CIA as a function of time as follows:

Proc MIXED in SAS can again be used to estimate the parameters in the mixed model and
provide an estimate of the function ψ (t). The hypotheses η1 = η2 can be tested in order to
check whether the CIA does not change significantly over time.
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Example 2
In the Young Women Health Study (Lloyd et al., (1993)) percentage body fat was estimated
using skinfold calipers and dual energy x-ray absorptiometry (DEXA) on a cohort of
adolescent girls. Skinfold caliper and DEXA measurements were made in an initial visit, at
age 12 years, and in eight subsequent visits, which occurred every six months. Agreement
between the two methods of measurements has been evaluated via the concordance
correlation coefficient (CCC) (Chinchilli et al., (1996), King et al., (2007a,b)) and via the
total deviation index (TDI) (Choudhary, 2008). Here we estimate the coefficients of
individual agreement, using observation from 651 visits of 91 girls. We will use a girl’s
actual age as the ‘condition’ (t) since the visits did not occur exactly at ages 12.0, 12.5, 13.0
etc.

Fitting the model to this data yields the following estimates:

, β ̂1 = −9.3808, γ ̂ = −0.2546, η ̂1 = 0.6074.
The t statistic for the hypothesis η1 = 0 is 14.9, hence the data do not support the hypothesis
of a time-independent CIA. The repeatability coefficient is 4.8, which can be considered an
acceptable 95% bounds for the within-methods error.

Using the above estimates we can write the estimated function ψ (t):

Figure 1 displays the estimated coefficients along with their delta-method-based CI’s for
12–16 years old girls, which is the range of ages in the data. We see that agreement between
the two methods improves with age up to 15.5 years. As stated in the introduction, we
suggested that agreement be considered ‘acceptable’ only if the relevant coefficient of
individual agreement exceeds 0.8 (Barnhart et al. (2007c), Haber and Barnhart (2008)).
Since the estimates of the CIA remain below 0.6 and their upper CI’s remain below 0.8, we
conclude that the agreement between the DEXA and the skinfold calipers is not acceptable
for girls aged 12–16 years. For comparison, Chinchilly et al. (1996) reported an estimated
CCC of 0.42 for this data (their method does not assume that agreement may change with
age). King et al. (2007a,b) used only the data from the first three visits of each girl and
reported values in the range 0.48–0.67 for their weighted repeated measurements CCC.
Choudhary (2008), who analyzed the full dataset using a tolerance interval approach,
concluded that ‘the agreement between the methods appears best around age 15–17’, and
that ‘on the whole, the agreement between the skinfold and DEXA methods does not seem
good enough to justify their interchangeable use’. These conclusion are similar to ours.

4. The case of more than two methods of measurement
When there are more than two measurement methods, the overall coefficients of individual
agreement can be obtained from the pairwise MSD’s as shown in Barnhart et al. (2007c).
Denote the observations made with J ≥ 3 methods Y1, Y2, …, YJ. When the conditions
correspond to the levels (k) of a categorical factor, an overall coefficient of individual
agreement for the k – th condition is:
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Where MSD(Yj, ) is the mean squared deviation between two replicated observations made
by method j under the same condition and MSDk (Yj,Yj′) is the mean squared deviation
between measurements by methods j and j′ under the k − th condition.

5. Discussion
We presented a simple method for assessing agreement between two or more methods of
measurement based on repeated measurements matched on a factor whose levels are
considered as conditions. We advocate the use of the coefficient of individual agreement
rather than the concordance correlation coefficient, as the latter depends on the between-
subjects heterogeneity (Atkinson and Nevill (1997), Barnhart et al. (2007b), Haber and
Barnhart (2008)). Our approach allows the true values of the measured variable and the
magnitude of disagreement to vary across conditions or over time.

We use the terms ‘methods’ and ‘conditions’ broadly here. For example, in the carotid
stenosis study (Example 1) we considered the imaging methods as ‘methods’ and the human
raters as ‘conditions’ because we were interested is the agreement between the imaging
methods based on readings by the same rater. Alternatively, we could treat the raters as
‘methods’ and the imaging methods as ‘conditions’ and assess the agreement between raters
when they are using the same imaging method.

We used SAS Proc MIXED, which assumes that all the measurements are normally
distributed, for the analyses of the data in Examples 1 and 2. The SAS codes are available
from the first author. It is important to note that the CIA’s can be estimated using the
method of moments from the various ANOVA mean squares without making the normality
assumption. We also wrote R programs for the analysis of the carotid stenosis and the body
fat data. These programs are available at XXX and can be used by readers who do not have
SAS.

The coefficients of individual agreement can also be defined and estimated when the
observations are binary (Haber et al. (2007)). The methods introduced in this work can also
be applied to repeated binary data, for example by using generalized linear mixed models.
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Figure 1.
Estimated coefficients of individual agreement for body fat data with 95% confidence
intervals based on the delta method
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Table 1

Estimated coefficients of individual agreement for carotid stenosis (left artery) data with confidence intervals
based on the delta method.

Comparison 1: Y1 = IA, Y2 = MRA-2D

ψ̂ 95% CI

Rater 1 0.547 (0.373, 0.722)

Rater 2 0.555 (0.383, 0.727)

Rater 3 0.588 (0.435, 0.741)

Overall* 0.581 (0.430, 0.733)

Comparison 2: Y1 = IA, Y2 = MRA-3D

ψ̂ 95% CI

Rater 1 0.415 (0.265, 0.565)

Rater 2 0.432 (0.284, 0.580)

Rater 3 0.441 (0.303, 0.580)

Overall* 0.427 (0.294, 0.559)

Comparison 3: Y1 = MRA-2D, Y2 = MRA-3D

ψ̂ 95% CI

Rater 1 0.861 (0.692, 1.000)

Rater 2 0.866 (0.707, 1.000)

Rater 3 0.815 (0.640, 0.989)

Overall* 0.852 (0.696, 1.000)

*
Assuming no differences among raters: p-value for ψ1 = ψ2 = ψ3 is 0.09.

*
Assuming no differences among raters: p-value for ψ1 = ψ2 = ψ3 is 0.66.

*
Assuming no differences among raters: p-value for ψ1 = ψ2 = ψ3 is 0.46.
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