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Summary
Spatial cluster detection is an important methodology for identifying regions with excessive numbers
of adverse health events without making strong model assumptions on the underlying spatial
dependence structure. Previous work has focused on point or individual-level outcome data and few
advances have been made when the outcome data are reported at an aggregated level, e.g. at the
county- or census tract-level. This paper proposes a new class of spatial cluster detecion methods for
point or aggregate data, comprising of continuous, binary, and count data. Compared with the existing
spatial cluster detection methods it has the following advantages. First, it readily incorporates region-
specific weights, for example, based on a region’s population or a region’s outcome variance, which
is key for aggregate data. Second, the established general framework allows for area-level and
individual-level covariate adjustment. A simulation study is conducted to evaluate the performance
of the method. The proposed method is then applied to assess spatial clustering of high Body Mass
Index in a HMO population in the Seattle, Washington USA area.
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1. Introduction
The increasing prevalence of obese/overweight individuals is a growing public health concern,
causing a tremendous strain on the health care system. Identifying regions or neighborhoods
that have elevated body mass index (BMI) compared to the rest of the area could help direct
the distribution of resources for obesity prevention and treatment programs. Furthermore, if
the elevated BMI regions can be explained by factors, such as area-level socioeconomic status
(SES), walkability, and density of fast food establishments, these may shape an appropriate
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intervention program tailored for the residents in a particular geographic region. Typically
these types of data are not available at the individual’s residence location level, but are
aggregated to census tracts, counties, or states. To be able to conduct such analyses, a spatial
cluster detection method is needed that handles weighted continuous outcomes, while being
able to adjust for area-level covariates.

Currently, numerous spatial cluster detection methods are available for the analysis of
individual level data using a wide variety of outcomes. For example, there are methods for
binary outcomes to identify areas with elevated prevalence of disease and for count outcomes
to identify excess rates of incidence or mortality (Kulldorff et al., 2006; Tango and Takahashi,
2005; Duczmal and Assunção, 2004; Patil and Taillie, 2004; Tango, 2000; Kulldorff, 1997;
Turnball et al., 1990). There are also several methods for censored continuous outcomes, which
explore potential spatial clusters for detection of time to early event (Cook et al., 2007; Huang
et al., 2007). However, the only available method for aggregate continuous data is a recently
accepted spatial scan statistic for weighted normal outcomes (Huang et al., 2009). This latter
method is not able to incorporate covariate adjustment (area or individual-level) and is not a
general approach for any weighted non-continuous outcome, which is key for our application
of interest.

The application of interest is a prospective cohort study evaluating areas of elevated BMI of
adult females from a mixed-model health plan and delivery system located in the Seattle area
in Western Washington USA. The purpose of this analysis is to assess whether there are areas
of elevated BMI and if these elevated areas can be explained by area-level SES predictors.
BMI is measured at the individual-level, but spatial location is measured only at the aggregate,
census-tract, level due to data availability. Furthermore, even though BMI is a continuous
outcome, it is highly skewed with heavier tails at the upward end of the distribution than would
be expected if it was normal distributed, i.e. methods assuming a normal assumption are not
valid. Our proposed spatial cluster detection approach is able to handle aggregate level, skewed
data, while being able to adjust for both individual and area-level covariates, which is critical
for this analysis.

We present in this paper a general statistical approach to quantifying spatial cluster detection
for weighted outcomes that can be continuous, but is applicable for most outcome types. The
new method is presented in Section 2 and a simulation study evaluating its properties can be
found in Section 3. In Section 4, we apply the proposed weighted cumulative geographic
residual method to an analysis assessing elevated areas of BMI for adult females in Western
Washington USA. We conclude with a general discussion in Section 5.

2. Method
2.1 Weighted Geographic Cumulative Residual Method

We exemplify the development of our test statistic in the framework of a continuous outcome,
though the formulation may be easily generalized to any binary/discrete data with proper link
functions (e.g. Poisson data with a log link function). Suppose the outcome for region i(i = 1,
…, n), Yi, is continuous, with a 1 × p vector of population characteristics, Xi, and the geographic
centroid of the region is (si, ri). Under the null hypothesis that the outcome is independent of
geographic location (si, ri), conditional on a given set of area-level covariates, Xi, we assume
that the continuous outcome follows the following model with only the first two moments
specified,

(1)
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where β is a p × 1 vector of unknown regression parameters, σ2 is an unknown variance
parameter, and wi > 0 are the weights assigned to the geographic area i(i = 1, …, n). The error
terms, ei, are independent with mean 0 and variance σ2/wi. The weights, wi, are assumed known
and may represent the (extra) regional variability in the characteristic of interest Yi. It may be
taken to be the inverse of the local variance of Y or the population size, depending on the
application. One can estimate β, by β ̂, and σ2, by σ ̂2, using the following estimating equations,

 and  and
simultaneously solving both equations. These estimating equations are derived assuming

 and therefore are the most efficient estimators if the weighted normal model
assumption is correct, but the theory holds without assuming normality. This makes the
proposed method robust to distributional assumptions. From these estimating equations one
can use the residuals, êi = Yi − Xiβ ̂, to test for spatial cluster patterns by finding areas with
higher than expected sum of residuals. Sum of residuals is a natural test statistic to use because
it has a defined distribution and it has monotonic properties that areas with higher sum of
residuals indicate areas with higher then expected outcomes. Further the sum may be preferred
over a mean because it weights those potential spatial clusters with more observations higher
which have more statistical information. Our approach follows the line of the goodness of fit
testing initially proposed by Su and Wei (1991) for generalized linear models.

We consider a two-dimensional moving block process over location (x1, x2), Zloc(x1, x2|b),
which depends on geographic locations for a fixed block size b as follows,

(2)

where Wi(x1, x2|b) = I (x1 − b < si ≤ x1 + b, x2 − b < ri ≤ x2 + b) wi, a weighted location indicator
function. For given location, (x1, x2),  is the weighted sum of residuals from regions that
are within a box with side length 2b around point (x1, x2). A spatial cluster would occur in areas
with a higher intensity of an outcome which implies a larger value of Zloc(x1, x2|b).

The exact distribution of Zloc(x1, x2|b) cannot be solved analytically so we propose to use an
asymptotic equivalent distribution to approximate the true distribution. We consider the
following pseudo moving block process in (x1, x2), Ẑloc(x1, x2|b), as

(3)

where

I(β) = −∂Uβ/∂β and Gi (i = 1, …, n) are independent mean 0 and variance 1 random variables
that are also independent of (Yi, Xi, si, ri). It follows that the asymptotic conditional distribution
of the pseudo process Ẑloc(x1, x2|b) given the observed data (Yi, Xi, si, ri) (i = 1, …, n) is
equivalent to the limit distribution of Zloc(x1, x2|b) assuming that geographic location, (si, ri),
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is independent of continuous outcome, Yi, after adjusting for covariates, Xi, with the first two
moments (1) being correctly specified. This result can be obtained by using the independence
between the residuals and geographic location under the null hypothesis. Details of the proof
are outlined in the Web-based Appendix.

This asymptotic result immediately allows us to approximate the null distribution of Zloc(x1,
x2|b) with a large number, say, N, realizations of Ẑloc(x1, x2|b), (Ẑ1,loc(x1, x2|b), …, ẐN,,loc(x1,
x2|b)), by repeatedly simulating independent samples of (G1, …, Gn), while fixing the data
(Yi, Xi, si, ri) (i = 1, …, n) at their observed values. However, for the particular purpose of
spatial cluster detection, it is important to allow the data to depict the best cluster size.
Therefore, we consider a finite vector of length M of varying cluster sizes, denoted by b =
(b1, …, bM ), where each bm denotes half of the edge length of the potential square cluster.
Accordingly, we define a cluster detection test statistic to test existence of any spatial clusters,

Continuous mapping theorem will show that Sloc has the same limiting distribution as the
following stochastic process, conditional on the observed data,

Hence, the empirical p-values can be computed as , where Ŝj,loc is the
Ŝloc evaluated at the jth realization of Ẑj,loc. In practice, to obtain the observed test statistic,
Sloc, and simulated test statistics, Ŝj,loc, it is necessary to create a finite grid of values over x1,
x2, and b to approximate the continuous stochastic processes.

This hypothesis test can be inverted to form confidence bands around Zloc(x1, x2|b) to find the
values of (x1, x2, b) that have significantly higher average outcome than expected assuming
the null hypothesis and the first two moments being correctly specified (1). Explicitly, {(x1,
x2, b) : Zloc(x1, x2|b) ≥ Ŝ(.95N)}, where Ŝ(.95N) is the 95th percentile of all Ŝj,loc. Therefore multiple
clusters can be easily detecting utilizing this proposed test statistic.

This overcomes a potential limitation of this method in which potential clusters assume a square
cluster grid instead of a potentially more intuitive circular cluster grid. The square grid indicator
function, Wi(x1, x2|b), was required for the theory to estimate the distribution of the two
dimensional stochastic process, Zloc(·, ·|b), under the null. The theory, presented in detail in
the appendix, requires the component Wi(x1, x2|b) to be a monotone function element-wise, or
independent, on each dimension (x1, x2) and therefore cannot be a circle. Since this approach
readily finds multiple clusters that are significant, it is then able to detect non-square clusters
by defining the final detected cluster as all areas that are significant. So this method is not
restricted to finding only square clusters.

The weighted cumulative geographic residual method can be applied to aggregate data in which
the outcome is continuous, such as mean Body Mass Index (BMI) in a region or 5 year mortality
of breast cancer in a region. We are able to use the population-size or inverse of variance
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weights for parameter estimation through the weighted linear regression model and directly in
our weighting function for spatial cluster detection using the residuals. The method is able to
adjust for area-level covariates, but adjustment for both individual and area-level covariates
has not been incorporated. The next section will propose a simple two-stage approach to extend
the method to general covariate adjustment.

2.2 Incorporating the adjustment of Individual-Level Covariates
Often datasets evaluating spatial clustering only have data available at an aggregate level
including spatial locations, outcomes, and covariates. However, there are situations, such as
the application of this paper for the health care population, in which spatial locations may be
available at the aggregate-level only, but outcomes and covariates are available at both the
individual and aggregate-level. Therefore it is important to extend our method to be able to
address the question of whether spatial clustering exists after adjusting for individual-level
covariates and if it still persists after adjusting for area-level covariates, such as SES.

We propose a simple two-stage approach to account for individual level covariates. The first

stage is the model which regresses individual-level covariates, , on the outcome Yij, while
still allowing for differences across regions,

(4)

where subscript ij denotes individual j(j = 1, …, ni) in region i(i = 1, …, n),  is a pI × 1 vector
of individual-level covariates, Ui is the parameter of interest indicating region specific effect,
and eij is the residual error with mean 0 and variance σ2.

Stage two applies the weighted cumulative residual method discussed in Section 2.1 using
derived outcomes and weights from stage one. The derived outcome from stage one can be
thought of as an individual-level covariate adjusted outcome and we can derive this outcome
using two different approaches; (1) Ui is fixed effect or (2) Ui is a random effect. If the region
effect is fixed then Ui is the mean effect of region i after adjusting for individual-level

covariates, . The individual-level adjusted outcome is, , where Ûi and β ̂I are
estimates from stage one assuming normal distribution estimating equations for eij distribution

and  is the a vector if the mean values of each covariate in the dataset. A potential efficient
weight structure for stage two would be the inverse variance estimates of the fixed effect

estimated parameter, Vi, .

Estimation of Vi and its variance may have issues for regions with small sample sizes.
Therefore, when the fixed effect approach is not estimable we propose an alternate approach
using a random effect framework to obtain individual-level adjusted outcomes. Now assume

that  and . For estimation one can choose any distribution, but it is
most common to assume a normal distribution. Inference can be sensitive to distribution chose
so it may be important to assess several distributions. Given the distribution assumption on
Ui and eij, the empirical Bayes estimates for Ui can be obtained using the standard generalized
linear mixed model (GLMM) estimation framework. Then we propose using the following
individual-level adjusted outcome,
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Assuming no relationship between aggregate spatial location and outcome Yij given  the E
(Bi) = 0 and . Efficient weights to use for stage two would be inverse of
the variance of Bi, .

We have proposed two different approaches for adjusting for individual-level covariates. The
fixed effect approach is preferable since it limits modeling assumptions. Specifically, when
using the random effect approach estimation is sensitive to the random effects distribution
assumed as have been noted by others (Litiere et al., 2008; Heagerty and Kurland, 2001). For
similar reasons we have proposed a two-stage approach instead of a single stage approach, i.e.
using residuals directly from a generalized linear mixed model that adjusts for both area and
individual-level covariates as have been proposed by others for goodness-of-fit tests (Pan and
Lin, 2005). Particularly, since we are in the situation of spatial clustering it may actually be
inappropriate to apply a generalized linear mixed model, which does not take into account
spatial correlation, but only regional correlation, since it may lead to biased parameter estimates
due to residual confounding (Wakefield, 2003). Therefore, the general modeling approach
presented in this paper tries to present methods that limit model assumptions. The next section
evaluates the performance of the proposed cumulative geographic residual method in a
simulation study.

3. Simulation Study
We conducted a simulation study calculating the Type I error and power for the proposed
cumulative geographic residual test for weighted outcomes. For computational efficiency, we
allowed a finite range for half edge length, b, of 0.5 to 3 sequenced by 0.1 and simulated 1000
Ẑloc per dataset. We ran 1000 simulated datasets per calculation.

3.1 Type I error
We first ran Type I error calculations to evaluate the validity of our proposed cluster detection
method. The cumulative residual method is based on how well Ẑloc approximates Zloc which
requires sufficient sample size (e.g. number of regions). Our type I error simulation assumed
a 10×10 unit-less square study area which we broke into 25, 36, 49, 100, and 225 square regions
and varied the weights per region from 1, 20, 40, 60 and 80. The simulated dataset assumed
that Yi ~ N (0, 1) with weight wi. We defined Type I error as the proportion of simulations that
detect a significant (α = 0.05) cluster. See Web-based Table 1 for details, but Type I error
increased to 0.05 as number of regions and weight per region increased and reached the correct
level by 80 regions.

We then ran a simulation evaluating the effect on the Type I error when we assume the weights
are known/fixed, when they actually are variable. For simplicity we assume a 10×10 unit-less
grid with 100 equally sized square regions. We simulate the data assuming Yi ~ N (0, 1) with
weight wi ~ ν + σ* Uniform(0, 1). We varied ν to be 1, 10, 20, and 30 and σ to be 1, 5, 10, 20,
and 30. Results are displayed in Web-based Table 2, but there were no obvious patterns on the
effect of Type I error when assuming the weights are fixed when they are variable (Type I error
ranged form 0.041 to 0.069).
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3.2 Power: No Covariates
The next set of power calculations follow the lines of the simulations performed for the spatial
scan statistic for weighted outcomes presented by Huang et al. (2009). The spatial scan statistic
for weighted outcomes applies a likelihood ratio statistic assuming a weighted normal linear
regression model assessing if the outcome mean inside the potential cluster is greater than the
outcome mean outside the potential cluster, μI > μO. Potential cluster areas are defined as all
circular areas, with varying radius, consuming up to 50% of the study area. To calculate if the
maximum cluster, defined as suprema of the likelihood ratio statistic over all potential clusters,
has a significantly higher outcome mean than the rest of the study population, a permutation
test is performed to hold the overall Type I error level (i.e. handles multiple comparison issue).

For the power calculation we begin by assuming a 10 × 10 unitless study area representing 100
geographic units. The true cluster area Z* is defined as the circular region centered at grid (6,3)
with a radius of 2. All 13 geographic regions that have the center of their region included within
the circle are included in Z*. We defined power as the proportion of simulations that detect a
significant (σ = 0.05) cluster. We define sensitivity as, of those simulations that detect a
significant cluster, the proportion that includes at least one region in Z*. We define accuracy
as, of those simulations that find a significant cluster, the number of detected regions that are
part of Z* out of the total number of regions included in the detected cluster. For both sensitivity
and accuracy we only included the highest significant cluster and not all clusters significant at
0.05 level.

For the first power calculation we generated the dataset assuming that the outcome distribution
outside the cluster area is, Yi|Z*c ~ N(0, 1) with weight wi|Z*c = η0 and within the cluster area
is  with weight wi|Z* = ηZ. We vary the magnitude of c, σZ, η0, and ηZ to
depict the performance of the test for different scenarios. Note that when σZ = 1, the variance
for the difference in means, μZ* − μZ*c, is 1+1=2 with corresponding standard error of .
Therefore c can be interpreted as the number of standard error units of the difference between
means within versus outside Z*.

Table 1 displays the results of the power calculation. As expected, the power increases with
increased effect size and becomes above 90% power after c > 1.3. The proposed cumulative
geographic residual method has lower power compared to the weighted spatial scan statistic,
but this is mainly due to the design of the power calculation. If the true cluster is a circle the
weighted spatial scan statistic will have higher power, sensitivity, and accuracy than the
proposed cumulative residual method since the cumulative geographic residual method detects
square clusters and not circles like the spatial scan statistic. However, the advantage of the
cumulative geographic residual test is that it can find multiple clusters which the spatial scan
statistic cannot. Therefore the clusters detected are not necessarily squares, but can be a
combination of overlapping square areas.

When the weight of the observations within Z* increases while the weight of observations
outside Z* stays constant the power substantially decreases. This is expected since the residual
of the regions within Z* will go to zero since the estimates of the model will give more weight
to the values within Z*. Similarly when the weight of the observations outside Z* increases
while the weight of the observations inside Z* stays constant the power decreases. Now the
estimates of the model give more weight to the values outside Z* so the residuals within Z*

may be larger, but the weighted indicator variable Wi(x1, x2|b) down weights the observations
within Z* making it less likely to find a significant cluster. The power stays relatively constant
with increased weight on all observations. Therefore there is no clear benefit to use weights
unequal to 1 unless there is truly differential weighting throughout the regions of interest.
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The next power calculation evaluates the robustness of the cumulative geographic residual test
when the outcome is not normal and follows the power calculation presented by Huang et al.
(2009). We apply the method assuming a double exponential(DoubleE), logistic, uniform,
lognormal, and Poisson distributions. For the double exponential, logistic, and uniform
distributions we assume a mean 0 and variance 1 outside Z* and mean  and variance 1
inside Z* and equal weights of 1 for all geographic areas. For the lognormal distribution we
assumed the mean outside Z* to be 2 instead of 0 since Yi > 0 and the mean inside Z* to be

 and variance of 1 in both regions. For the Poisson distribution we assumed a mean/
variance outside Z* of 1 and within Z* as .

Table 2 displays the results of the power calculation evaluating the robustness to distribution
assumptions. The power is lower for the double exponential, lognormal, and Poisson
distributions and equivalent for the uniform and logistic distributions compared to the normal
distribution. Overall the power does not seem largely affected by the distribution assumptions,
which is similar to the results of the weighted spatial scan statistic.

3.3 Power: Area-level Covariates
We then conducted a simulation to evaluate the effect of area-level covariate adjustment on
cluster detection. We assumed that  and Var(Yi) = 1 where wi = 1 for
all i(i = 1, …, 100),  is an indicator if region i is within Z* and Xi is a continuous area-level
covariate with  and Var(Xi) = 1, independent of . We ran power calculations
varying β (dependence of Yi on Xi) and γ (dependence of Xi on ). We chose Xi to be a
continuous covariate because often area-level covariates are continuous such as percent white
or median household income. These variables can be standardized to have a variance 1 and a
range of means and therefore the simulation is similar to what may be observed in practice.
The simulation of each dataset was a two step process as follows; Step 1: Simulate

 and Step 2: Simulate  independently for i = 1, …, 100.

The first five columns of Table 3 display the results for when c = 1 and therefore when the
outcome, Yi, and area-level covariate, Xi, both depend on spatial location, . Unadjusted refers
to when the residuals, êi, used for the spatial cluster detection result from a model without
adjusting for  and adjusted refers to when the model is adjusted
for . If unadjusted for the area-level covariate, the power
increases if there is a positive (γ > 0, β > 0) relationship between the area-level covariate and
outcome. This is expected since in this case, , directly depends on the
values of γ and β. If adjusted for Xi, power is decreased with a stronger association between
adjusted area-level covariate, Xi, and . It does not seem to be dependent on the
association between Xi and Yi. The next simulation assessed the key concept of an area-level
covariate explaining away the spatial clustering. Specifically, assume the same distributions
on Xi and  as have been discussed above. If there is no additional relationship between the
outcome and location, c = 0, other than through the dependence of Xi on , defined by γ, the
concept of explaining covariate adjustment is two part. First, a spatial cluster needs to be
detected when not adjusting for Xi since . Second, after adjusting for Xi, there
should be no significant spatial clusters detected .
Given both of these steps are true indicates that the initial spatial cluster detected in Step 1 is,
at least partially, explained by the area-level covariate, Xi.

The next set of simulations evaluates the concept of the spatial cluster being explained by the
area-level covariate. Results are shown in Web-based Table 3, but are briefly summarized here.
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Our first simulation assessed step 1, the unadjusted analyses, when there is spatial clustering
indirectly induced by . We varied β (−2 to 2 sequenced by 1) and γ = 0, .5,
1. When β ≤ 0 and γ = 0.5 or 1.0 there is no power to detect spatial clustering and the power is
approximately the Type I error, 0.05. When we allowed β > 0 the power increased as β increased
with a maximum power of 0.373 when β = 4 and γ = 1. Therefore the power to detect a
significant spatial cluster is relatively low, but it does increase as expected with more positive
dependence between  and Xi (γ > 0, γ → ∞) and stronger positive association between Xi and
Yi (β > 0, β → ∞). For step 2, the adjusted analyses where conditional on Xi there is independence
between Yi and , the power should equal the Type I error rate of 0.05. The
adjusted simulations showed that the second step of explaining away the significant clustering
is working and the power is at approximately 0.05, equal to the Type I error rate. Therefore
the concept of explaining away spatial clustering through covariate adjustment seems to be
viable, but a dependence between location and covariate needs to be strong and positive (γ >
0, γ → ∞).

3.4 Type I error and Power: Individual-Level
The next set of simulations evaluate the performance of the fixed effect individual-level
covariate adjustment approach and compares this method to adjusting for composite area-level
covariates. The simulation of each dataset is a two step process as follows; Step 1: Simulate

 and Step 2: Simulate  independently for i = 1, …, 100

and j = 1, …, ni. We vary the effect of  on , the effect of  on Yij (β), and the number
of individuals in an area (ni). For the composite area-level covariate adjustment we will use

the area-level outcome , the area-level covariate , and the area-
level covariate adjustment method presented in Section 2.1.

The first simulation assessed the scenario when there is no direct relationship between cluster
location, Z*, and individual-level outcome, Yij (c=0) but a relationship between individual-

level covariate, , and Z* and a relationship between  and individual out-come, Yij. Under

this condition if you adjust for  using the fixed effect adjustment presented in Section 2.2,
the detection of spatial clusters should be held at the Type I error level of 0.05. Further if you
use the area-level adjusted approach on the composite area-level outcomes the type I error
should also be 0.05. The Type I error was held at approximately 0.05 (independent adjustment:
range 0.034 to 0.060, area-level adjustment: range 0.036 to 0.070) for a range of β (−2 to 2
sequenced by 1) and γ (0 to 1 sequenced by 0.5). Therefore the proposed method is appropriate
for individual-level covariate adjustment and when only composite area-level covariates and
outcomes are available.

We then assessed the power for the proposed fixed effect individual-level and the composite
area-level covariate adjustment approaches. Results are displayed in the last four columns of
Table 3. The individual-level approach is more powerful then the area-level adjusted approach

and the loss of power increased as the dependence between  and  increased.

The next section will assess the performance of the proposed methods evaluating spatial
clustering of BMI after adjusting for individual and area-level socioeconomic covariates.

4. Application
We applied the proposed weighted cumulative geographic residual method to an observational
study conducted at Group Health Cooperative (GHC), a mixed model health plan and delivery
system serving approximately 300,000 members in western Washington State, USA. Females
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18 years of age and older who had been continuously enrolled in GHC for at least six months
as of July 31, 2006 (with less than a 60 day lapse in membership) and were residents of King
County, WA were eligible for inclusion. Nursing staff and/or medical assistants obtained
weight measurements during routine clinical care and entered these into the electronic medical
record (EMR). We extracted any adult height and the most recent measurement of weight from
the EMR during the preceding two-year period. Among the 57,499 females in our cohort,
19,451(33.8%) did not have a weight and height measurement in the EMR, 2,627(4.6%) did
not have valid address information to identify their US census tract location; these females
were excluded. We also excluded a census tract with only 3 women residing in it due to model
estimation issues giving a total of 35,418 (61.6%) women from 372 census tracts retained for
all subsequent analyses.

Location was only available at the census tract level so using a weighted spatial cluster detection
method was deemed most appropriate for this analysis. The outcome of interest was body mass
index (BMI) which ranged from 15.0 kg/m2 to 99.30 kg/m2 with a median of 26.0 kg/m2 and
a mean of 27.5 kg/m2. Figure 1 Part A shows the variability of the mean BMI within a census
tract across the study region. First, it was of interest to assess if there were any elevated regions
of BMI in the area and then to assess if the spatial clustering persisted after adjusting for
important individual and area-level demographic and socioeconomic status (SES) variables.
For our area-level SES variables we used median household income, percent white race,
percent of adult males with a Bachelors degree or higher, and percent below of household
poverty level all obtained through the 2000 US census. The only available individual-level
covariates were females age and type of insurance (corporate, medicare, or medicaid). Maps
of the spatial distribution of the area-level covariate are shown in the Web-based Figure 1.

The number of observations per census tract varied across the study area and ranged from 12
to 272 with a median of 85 people. For all analyses we used the fixed effect approach for
individual-level covariate adjustment and ranged the half edge length, b, from 1 to 5 miles

sequenced by 0.25 miles and ran 1000 simulations of the s.

The first analysis assessed if there existed any spatial clusters when not adjusting for covariates.
We found significant spatial clusters in the southern western region of the area as displayed in
Figure 1, Part B. We then ran a series of analyses adjusting for individual-level covariates and
then all area-level SES variables. When only adjusting for individual-level covariates the
spatial cluster remained statistically significant in a similar location as without adjusting for
covariates. When further adjusting for area-level covariates there still existed significant spatial
clustering but in a smaller region as shown in Figure 1, Part C. The location moved to the most
southern part of the study area and displays spatial clustering that is not explained away by our
current area-level SES variables.

The final region with persistent clustering of elevated BMI, after adjusting for all individual
and area-level covariates, is a region that is less urban compared to the other areas initially
detected, including Federal Way that is a large suburb to Auburn which is a mixture of suburban
and rural. The region has also a higher mixture of races including more recent immigrants from
South Asia. Therefore there are many possible unmeasured reasons that this area shows
persistent clustering such as walkability of the neighborhood (i.e. sidewalks and safety), fast
food density, and cultural differences. The link to BMI/obesity and SES in the United States
has been well researched in the literature (Dubowitz et al., 2008; King et al., 2005; Wang et
al., 2007), particularly for the Caucasian and African-American populations, but how obesity
relates to neighborhood infrastructure such as walkability and differences between ethnic
groups have been less established (McGinn et al., 2007; Mujahid et al., 2008).
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The results from this analysis may not be directly generalizable to Washington state, or even
King county, since it only includes an insured population that would have had at least one
primary care visit. This is still an important analysis for the healthcare system to try to
understand were BMI is elevated and what are potential explanations for the observed elevated
BMI that could potentially lead to targeted weight reduction programs.

We also applied the unweighted normal spatial scan statistic using the SaTScan™ software
(Kulldorff and Information Management Services, 2006). Software for the weighted normal
spatial scan is not yet available. Results are displayed in Web-based Figure 2. The spatial scan
found a much larger region (≈ 50%) which included the entire souther half of the study area.
It also found several small statistically significant secondary clusters in the rest of the study
area. Some of these regions are based on weights from < 20 females. This example shows the
issues with not incorporating weights and the results are not directly comparable with the results
presented for the weighted cumulative residual method.

5. Discussion
In this paper we have proposed a robust to distributional assumptions spatial cluster detection
method for weighted data that can be applied for a wide variety of outcomes. It was shown to
have good power to detect single spatial clusters even when the outcome is not continuous.
However, the simulation study did show that if interest is in detecting circular spatial clusters
without adjusting for covariates then the weighted spatial scan statistic is more powerful. The
new method is able to handle both individual and aggregate level covariate adjustment easily
and to assess whether covariates are able to explain the detected spatial clusters. There are no
previous methods available for weighted outcomes that can adjust for covariates or detect
multiple clusters.

The proposed method improved upon the method published by Cook et al. (2007) using
cumulative martingale residuals for censored outcome data, as it incorporates weighted
outcomes of any type that can be applied to both point and aggregate data. This new method
is more general than what was previously proposed since only the first two moments of the
outcome are assumed. Further, by flexibly handling differential weighting of observations this
method can be applied to a larger array of applications. The method proposed by Cook et al.
(2007) may be thought of as a special case of the general methodology proposed in this paper.

Throughout most of this paper, including the BMI application, we have assumed the weights
are known and not estimated. We ran a small simulation study assessing the Type I error when
weights were variable and did not find a large effect on the Type I error. However, there may
be more of an effect for certain scenarios including an effect on power and extending the method
to incorporate extra variability from estimating the weights following the framework presented
by Houseman et al. (2006) may be a potential for future work.

Another potential for the development of new statistical methods would be the extension of
this method to handle longitudinal data and to be able to assess if a spatial cluster persists in
the same location over time. This would answer questions such as if a region consistently has
higher mean BMI compared to other regions. This type of method could be used simultaneously
with the proposed method in this paper to assess cross-sectional and longitudinal location of
spatial clusters over time.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Assessing spatial clustering of female BMI cluster in King County WA. Part A displays the
raw mean census tract BMI and Part B and C display displays the areas with statistically
significant spatial clustering from the unadjusted analyses and then adjusting for all individual
and area-level covariates.
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