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Mesothelioma usually leads to death within 8–14 months of diagnosis. To increase the potency of oncolytic measles viruses (MVs)

for mesothelioma therapy, we inserted the interferon b (IFNb) gene alone or with the human thyroidal sodium iodide symporter

(NIS) gene into attenuated MV of the Edmonston lineage. The corresponding mouse IFNb (mIFNb) viruses, MV-mIFNb and MV-

mIFNb-NIS, successfully propagated in human mesothelioma cells, leading to intercellular fusion and cell death. High levels

of mIFNb were detected in the supernatants of the infected cells, and radioiodine uptake was substantial in the cells infected with

MV-mIFNb-NIS. MV with mIFNb expression triggered CD68-positive immune cell infiltration 2–4 times higher than MV-GFP

injected into the tumor site. The numbers of CD31-positive vascular endothelial cells within the tumor were decreased at day 7 after

intratumoral injection of MV-mIFNb or MV-mIFNb-NIS, but not after MV-GFP and PBS administration. Immunohistochemical

analysis showed that MV-mIFNb changed the microenvironment of the mesothelioma by increasing innate immune cell infiltration

and inhibiting tumor angiogenesis. Oncolytic MVs coding for IFNb effectively retarded growth of human mesotheliomas and

prolonged survival time in several mesothelioma tumor models. The results suggest that oncolytic MVs that code for IFNb and NIS

will be potent and versatile agents for the treatment of human mesothelioma.
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Introduction

Malignant pleural mesothelioma occurs in the mesothe-
lium, which normally reduces friction between the lung
and chest wall during breathing.1 Exposure to asbestos
for as little as 1 or 2 months can disable normal pleural
cells and result in mesothelioma years later.2 The
prognosis for malignant pleural mesothelioma is poor
with currently available treatments—surgery, radiother-
apy, and chemotherapy.3,4 The majority of patients die
from the disease within 8–14 months after diagnosis.1

Type I interferons (IFNs) have been shown to elicit an
antitumor response through the immune system.5–7 IFNs
have immunoregulatory effects on antibody production,
natural killer and T-cell activation, macrophage func-
tion,8,9 and antiangiogenic properties.10 Several animal
models have been used to test the antitumor efficacy of
recombinant IFNs delivered by viral vectors.11–13 A phase
1 clinical trial was carried out to determine the safety and
toxicities of intrapleural infusion of human IFNb

expressed by an adenoviral vector to treat malignant
pleural mesothelioma.14 The adenoviral-IFNb vector was
generally well tolerated and impressively antitumor
immune responses were elicited in 7 of the 10 patients
and included the detection of cytotoxic T cells.14

Attenuated measles virus (MV) of the Edmonston
lineage has substantial antitumor activity through cell–
cell fusion (syncytia formation) in multiple tumor cell
types, but spares normal cells.15 The oncolytic specificity
of MV of the Edmonston lineage results from its ability to
discriminate the differential expression of CD46 in
tumor cells and normal cells.16,17 The CD46 receptor is
highly expressed in human mesothelioma cells, which
makes mesothelioma a potentially attractive target for
MV of the Edmonston lineage virotherapy.18 Recent
advances in genetic engineering of MV allow insertion of
therapeutic and diagnostic transgenes as well as complete
retargeting of MV.19 These strategies have resulted in the
generation of recombinant MVs, allowing noninvasive
monitoring of viral replication and viral spread.20–22 In
this study, novel oncolytic MVs coding for mouse
IFNb (mIFNb) were constructed and rescued success-
fully. Our study objectives were to determine the efficacy
of oncolytic MV therapy for the treatment of mesothe-
lioma and to evaluate the influence of mIFNb on
virotherapy.
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Materials and methods

Cell lines and viruses
The engineered cell line 293-3-46 used for rescue was
maintained in Dulbecco’s modified Eagle medium sup-
plemented with 10% fetal bovine serum (FBS) and
Geneticin (1.2mgml–1) (Invitrogen, Carlsbad, California).23

Vero cells were maintained in Dulbecco’s modified Eagle
medium with 5% FBS. Mesothelioma cell lines H2596,
H2373, and H513 were maintained in RPMI 1640 with
10% FBS. Mesothelioma cell lines REN, M30, and
MSTO-211H were maintained in Dulbecco’s modified
Eagle medium with 10% FBS.
The mIFNb was amplified by polymerase chain

reaction using the following primers: 50 ATCCCGAC
GCGTACGCCACCATGAACAACAGGTGGATCCTC
30 (sense) and 50 ACGCGATCGCGAGACGTCAGTT
CATCAGTTTTGGAAGTTTCTGG 30 (antisense). The
MluI and AatII restriction sites used for cloning are
underlined. The template plasmid for mIFNb polymerase
chain reaction was kindly provided by Dr Glen N Barber
from Department of Microbiology and Immunology and
Sylvester Comprehensive Cancer Center, University of
Miami School of Medicine. The plasmids containing MV
backbone were routinely maintained in the laboratory.
The purified polymerase chain reaction product was
subcloned into plasmid p(þ )MV-GFP after digestion
with MluI and AatII (New England Biolabs, Ipswich,
MA), replacing the GFP gene, to generate plasmid
p(þ )MV-mIFNb. The plasmid p(þ )MV-mIFNb and
p(þ )MV-GFP-sodium iodide symporter (NIS) were cut
by the restriction enzymes SacII and NotI. The religated
plasmid pMV-mIFNb-NIS contained the mIFNb gene
upstream of the nucleocapsid gene and the NIS gene
downstream of the H protein gene. MVs were rescued as
described earlier.23 Cell-associated virus was released by
freezing and thawing the cells twice in liquid nitrogen, and
the cell lysates were cleared by centrifugation. For
titration of virus stocks, serial logarithmic dilutions of
the virus were used to infect Vero cells in 96-well plates,
and the 50% tissue-culture infective dose (TCID50 per ml)
was determined 4 days later, as described earlier.19 One-
step growth curves were determined by infecting Vero
cells with MVs at a multiplicity of infection (MOI) of 3.
Vero cells were seeded into six-well plates at a density of
1� 105 cells per well and allowed to attach at 37 1C for
8 h. The medium was aspirated, and the cells were
incubated with the recombinant viruses in 1ml Opti-
MEM (Invitrogen) for 2 h. After infection, the culture
medium was changed to Dulbecco’s modified Eagle
medium with 5% FBS, and the cells were kept at 37 1C.
At selected time points, supernatant and cells were
collected and stored at �80 1C. The mIFN level in the
supernatant was determined by ELISA kit from PBL
Biomedical laboratories (Piscataway, New Jersey) accord-
ing to the product manual.

In vitro 125I uptake studies
Iodide uptake studies were performed as described
earlier.20 Briefly, cells (H513 or H2373; 1.5� 105 cells

per well) were plated into 12-well plates. The next day,
cells were incubated with MVs at an MOI of 0.1 or 1.0.
After 2 h of incubation at 37 1C, cells were washed, and
the medium was replaced with complete RPMI 1640 and
incubated at 37 1C for 48 h before testing for 125I uptake.
All wells were incubated with an activity of 7� 105 counts
per minute 125I. In controls, 100mM KClO4 was added to
inhibit NIS-mediated iodide influx. Plates were incubated
at 37 1C for 45min and were lysed with 1M NaOH, and
the activity in the lysis buffer was determined using a g
counter. All data points were measured in triplicate and
displayed as means.

In vivo studies
C.B-17-SCID or athymic nu/nu mice (Harlan Sprague
Dawley, Indianapolis, Indiana) were used for animal
studies. To establish peritoneal tumors, mice were injected
intraperitoneally with 1� 107 mesothelioma H2373 cells
in 200ml PBS. For subcutaneous tumors, mice were
implanted in the right flank with 1� 107 mesothelioma
H513 cells in 200ml PBS. Subcutaneous tumor growth
was determined by caliper measurements in two dimen-
sions, and the volume estimated using the formula:
(shortest diameter)2� (longest diameter)� 0.52. When
the tumors were palpable (that is reached a mean
diameter 0.3–0.5 cm), the mice were injected intratumo-
rally with MVs (2� 106 TCID50). Tumor imaging was
performed serially at 3, 7, and 14 days post-virus
treatment using a high-resolution micro-SPECT/CT
system (X-SPECT; Gamma Medica-Ideas, Northridge,
California). Before imaging, mice were injected with 125I
100mCi intraperitoneally and imaged 1 h later.21,24 Tumor
responses were determined by serial measurements of
tumor growth. Mice were killed if a tumor grew to 410%
of the weight of a mouse, if a tumor ulcerated, or if a
mouse was unable to eat or drink. All animal studies
were approved by the Mayo Clinic Institutional Animal
Care and Use Committee and performed according to
Assessment and Accreditation of Laboratory Animal
Care-approved guidelines.

Immunohistochemistry and quantitation
The nude mice bearing H513 tumors were killed on days 4
and 7 (n¼ 3/group/time point) after virus administration.
Tumors were harvested and snap frozen. Frozen 6-mm
sections (three sections for each tumor sample) were
stained using primary antibody against CD68 diluted at
1:200 (ab53444; Abcam, Cambridge, Massachusetts) or
primary antibody against CD31 diluted at 1:50 (550300;
BD Biosciences Pharmingen, San Diego, California)
(HRP-AEC Cell and Tissue Staining kits; R&D Systems,
Minneapolis, Minnesota). Briefly, sections were fixed in
cold acetone for 5min, followed by pretreatment with
0.3% hydrogen peroxide for 20min to inhibit endogenous
peroxidase activity. Subsequently, sections were blocked
with 2% horse serum for 30min and incubated with the
primary antibody for 1 h at room temperature. After
rinsing with PBS, the sections were incubated for 30min
with a biotinylated second antibody, and color develop-
ment was performed afterward according to the kit
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manual. Staining intensity was converted into grayscale
values using Image J software (National Institutes of
Health, Bethesda, Maryland).25 For the CD68-positive
staining slides, the spots representing the CD68 cells were
counted and calculated per 0.1mm2. For CD31-positive
staining slides, the total area occupied by CD31-positive
cells were estimated by setting a ‘threshold’ using Image
J’s thresholding tool. The percentage of CD31-positive
area to the tumor covered area was calculated and
subjected to statistical analysis.

Statistical analysis
The GraphPad Prism 4.0 program (GraphPad Software,
San Diego, California) was used for data handling,
analysis, and graphic representation. Survival curves were
plotted according to the Kaplan–Meier method, and
survival fraction across treatment groups was compared
using log-rank test analyses.

Results

Generation and characterization of MV-mIFNb and
MV-mIFNb-NIS
The cDNA encoding mIFNb was inserted as an
additional transcriptional unit into a full-length infectious
molecular clone of MV of the Edmonston lineage
upstream of the nucleocapsid gene. The plasmids
p(þ )MV-mIFNb and p(þ )MV-GFP-NIS were cut by
the same restriction enzymes SacII and NotI. The
religated plasmid p(þ )MV-mIFNb-NIS contained the
mIFNb gene upstream of the nucleocapsid gene and NIS
gene downstream of the H protein gene (Figure 1a). The
corresponding viruses (MV-mIFNb, MV-mIFNb-NIS)
were rescued, using 293-3-46 cells as reported earlier.23

Parallel one-step growth curves of rescued viruses were
made to compare virus replication. Growth kinetics of the
recombinant viruses was scarcely affected by the recom-
binant engineering (Figure 1b). High levels of mIFNb
could be readily detected by quantitative enzyme-linked
immunosorbent assay for IFNb in the culture supernatant
(Figure 1c).
To check the infectivity of MVs on mesothelioma cells,

several mesothelioma cell lines were seeded into 12-well
plates and infected by MVs with one MOI. Pictures were
taken 36 h after infection, and cell death was calculated
after trypan blue staining at 24, 48, and 72 h post-
infection. All the mesothelioma cell lines were susceptible
to MV infection and formed syncytia. The H2596 and
MSTO-211H cells were more sensitive to MV infection;
cell viability decreased dramatically within 48 h.
(Figure 1d).

MV-mIFNb and MV-mIFNb-NIS successfully
propagated in human mesothelioma cells
To test the replication of oncolytic MVs in mesothelioma
cells, M30 (Figures 2a and b) and H513 (Figures 2c and d)
cells were infected with MVs with MOI of 1.0. Cell-
associated progeny viruses were checked at different time
points, and mIFNb levels in the supernatant were

measured (Figures 2b and d). The results showed all the
MVs propagated in the mesothelioma cell lines. High
levels of mIFNb were detected in the supernatant of
mesothelioma cells after MV-mIFNb or MV-mIFNb-NIS
infection. The results indicated that mIFNb expression
did not affect the MVs’ oncolytic ability to the
mesothelioma in vitro.
To study whether the virally expressed NIS protein was

functional in MV-mIFNb-NIS-infected cells, in vitro
iodide uptake assays were performed, as described
earlier.20 Mesothelioma cell lines H513 and H2373 were
infected with MV-mIFNb-NIS or MV-GFP-NIS. After
incubation with 125I, mesothelioma cells showed con-
siderable iodide uptake, increasing with time because
of virus replication and increasing NIS expression
(Figures 3a and b). Iodide uptake was blocked by
potassium perchlorate, a specific inhibitor of NIS. Cells
infected with MV-mIFNb did not express NIS and did
not concentrate radioiodine (Figures 3a and b). These
uptake studies showed proof of virus-driven NIS
protein expression and its proper targeting of the plasma
membrane.

MV-mIFNb changed the mesothelioma tumor
microenvironment
To determine the behavior of MV-mIFNb in the tumor
environment, 1� 107 H513 cells were injected subcuta-
neously into the flank of nude mice. When the tumors
reached 5mm in diameter, MVs were injected intratumo-
rally. Tumor samples from different time points after viral
injection were snap frozen and cut into 6-mm sections.
Anti-CD68 and anti-CD31 antibodies were used to detect
the immune cell infiltration and vascular density changes
after viral administration. Sections from different treat-
ments were compared, and representative changes were
recorded under � 200 magnification (Figure 4a). The
quantitative analyses were performed using ImageJ soft-
ware with the same threshold.25 At day 4, the numbers of
CD68-positive cells were increased in the tumors with
MVs administration. Over time, the CD68-positive cells
increased more in the MV-mIFNb-treated samples than
in the MV-GFP-treated tumors (Figure 4b). MV with
mIFNb expression triggered CD68-positive immune cell
infiltration at a frequency 2–4 times higher than that of
the other MVs at day 7 after MV injection into the tumor
site. Anti-CD31 antibody was used to stain vascular
endothelial cells in the tumor site. The vascular densities
in the MV-mIFNb-treated tumors were significantly
different from the MV-GFP-treated ones at days 4 and7
after the viral injections (Figure 4c). The results showed
the obvious advantage of including IFNb in MV. The
MV-mIFNb changed the mesothelioma tumor microen-
vironment by increased innate immune cell infiltration
and inhibition of tumor angiogenesis.

In vivo 125I update imaging of MV-mIFNb-NIS
The NIS gene has been used to monitor viral replication
in vivo in different tumor models.20–22,24 To determine
whether mIFNb affects NIS expression in vivo, H513
mesotheliomas were established subcutaneously in female
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C.B-17-SCID mice. When the tumors reached a mean
diameter of 0.5 cm, the mice were injected intratumorally
with MVs (2� 106 TCID50). After 3 days, the mice were
injected with 125I (100 mCi) and underwent CT/SPECT
imaging 1 h later. The imaging procedure was repeated on
days 7 and 14 after virus administration. Viral gene
expression and viral replication are tightly coupled. All
images were acquired 1 h after injection of the same dose
of 125I (100mCi) and adjusted for the same image

intensity. Thus, serial iodide uptake by the tumors should
reflect increasing NIS expression and, therefore, serve as a
surrogate for MV replication. As expected, there was no g
photon signal from the mesothelioma xenografts in mice
injected with MV-GFP or MV-mIFNb because no iodide
uptake occurred (Figure 5). MV-GFP-NIS- or MV-
mIFNb-NIS-treated tumors concentrated radioiodine
and MV gene expression were readily visualized by
imaging at day 7 (Figure 5). This imaging study showed

Figure 1 Characterization of MVs in vitro. Schematic construction of MV-mIFNb and MV-mIFNb-NIS is shown in (a). mIFNb gene was cloned to

take place of the GFP gene in MV genome. p(þ )MV-mIFN and p(þ )MV-NIS were cut by the same pair of restriction enzymes and religated to

contain both the mIFN and NIS gene in the MV genome (a). One-step viral growth curves for MV-GFP, MV-mIFNb, MV-GFP-NIS, and MV-

mIFNb-NIS in Vero cells (b). Supernatants from the culture were collected to measure mIFNb secretion (c). Human mesothelioma cells were

infected by MVs. Human mesothelioma cells H2596, H2373, H513, M30, and MSTO-211H were infected with MV-GFP or MV-mIFNb at MOI of

1.0. Pictures were taken 36 h later (d).
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that the human thyroidal NIS could facilitate noninvasive
in vivo monitoring of MV-mIFNb-NIS propagation by
radioiodine imaging.

mIFNb increased the potency of MVs in vivo for killing
xenografted mesotheliomas
The antitumor activity of MV has been demonstrated
against a variety of tumor xenografts in mice.15 However,

MVs have not yet been used to treat mesotheliomas
in vivo. To test the efficacy of MVs, 1� 107 mesothelioma
H513 cells were injected into the flanks of nude mice. Two
weeks later, when the tumors had grown to a diameter of
5mm, MV or PBS was injected intratumorally, and tumor
growth was monitored twice a week. The survival curve
was plotted at the end of the experiments. In control mice,
rapid tumor growth was observed, whereas tumor growth

Figure 2 Virus progeny and mIFNb secretion by human mesothelioma cells after infection with MVs. M30 mesothelioma cells were infected by

MVs at MOI of 1.0. After 24, 48, or 72 h of incubation, cells were harvested for virus titration (a), and supernatant was collected to measure the

mIFNb secretion (b).The same experiments were performed to the human mesothelioma cells H513 for viral progeny (c) and mIFNb (d).

Figure 3 125I uptake by human mesothelioma cells after infection with MVs. Mesothelioma cells were incubated with MVs at MOI of 1.0 or 0.1

for 48 h. Uptake of 125I was assayed in mesothelioma H513 (a) and H2373 (b). Iodide uptake is blocked by perchlorate, a specific inhibitor of NIS.

Without NIS, cells infected with MV-mIFNb do not concentrate iodide.
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was arrested in mice treated with MVs. Both MV-GFP
and MV-GFP-NIS had the similar antitumor efficacy
against H513 and controlled tumor growth (Figure 6a).
The median survival of control animals receiving PBS was
20 days after tumor engraftment, whereas the median
survival was 45 days for mice receiving MV-GFP or MV-
GFP-NIS (Po0.001) and 65 days for those receiving MV-
mIFNb or 60 days for those receiving MV-mIFNb-NIS
(Po.001) (Figure 6b). Thus, MV-mIFNb and MV-
mIFNb-NIS significantly reduced tumor burden and
lengthened survival time.
The mesothelioma cell line H513 was established the

same way in SCID mice. About 2 weeks later, when the
tumor reached a diameter of 5mm, the same treatments
were applied to the mice. The tumor growth curve showed
that administration of MV-mIFNb delayed tumor growth
more than MV-GFP. The survival curve revealed the
increased potency of MV-mIFNb to treat the mesothe-
lioma (Figure 6c). To mimic orthotropic mesothelioma in
human beings, 1� 107 H2373 cells were injected into
peritoneum of nude mice. Four weeks later, MVs (2� 106

TCID50) were injected into the peritoneum. The morbid-
ity and mortality were monitored and survival curves were
plotted. As shown in Figure 6d, MV-mIFNb administra-
tion resulted in long-term protection of mice from the
mesothelioma (Figure 6d).
The in vivo study results suggested that the oncolytic

MVs will be potent and versatile agents for the treatment
of human mesothelioma and the inclusion of IFNb may
increase the efficiency.

Discussion

Several oncolytic viruses have been used experimentally to
treat tumors, such as adenovirus, vesicular stomatitis
virus, herpes simplex virus, Newcastle disease virus, and
vaccinia viruses as well as MV.26–28 MV is representative
of a new generation of safe and effective oncolytic
viruses.15 Spontaneous tumor regression has occurred
during natural measles infection.29 The MVs can be

Figure 4 Administration of MV-mIFNb increased infiltration of CD68-positive immune cells and inhibition of tumor angiogenesis. mIFNb induced

robust CD68-positive cell infiltration and decreased microvessel density (as indicated by CD31 staining) in the tumor. Mesothelioma H513-

bearing nude mice were given PBS, MV-GFP, or MV-mIFNb intratumorally; (a) 4 or 7 days later, tumor sections were stained for CD68þ and

CD31þ cells. Original magnification, �200. Quantitative analysis was carried out to compare CD68þ infiltration into 0.1 mm2 area (b), and the

CD31 coverage rate was calculated (c) as described in Material and methods. *Po0.05; **Po0.01. Scale bar denotes 200mm (a, right corner).
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engineered to enhance their tumor specificity, increase
their antitumor potency, and facilitate noninvasive in vivo
monitoring of their spread.15 Live attenuated MVs have
been used to treat several human tumors such as multiple
myeloma,17 glioma,30 ovarian carcinoma,31 pancreatic

cancer,21 and prostate cancer.32 Recently, a live attenu-
ated MV was evaluated to kill mesothelioma cells in
vitro.18 Together with our results, it is evident that MV
could kill malignant pleural mesothelioma cells and spare
nontransformed mesothelial cells by causing syncytia in
tumor cells. The in vivo data from this study showed
further efficacy of oncolytic MVs for the xenografted
mesothelioma in mice. In addition to the 50-year record of
safe MV use as a vaccine, MVs have the potential to be
applied to mesothelioma therapy in clinic safely and
effectively.
Type I IFNs delivered in the form of proteins have been

explored in cancers.33 The limited efficacy is due to the
short half-life of the protein (o60min) and nonspecific
binding to tissues other than the tumor. To improve type I
IFN therapy, gene transfer methods such as plasmids or
various viral vectors (for example adenovirus) have been
tried in tumor models such as lung cancer, prostate
cancer, and glioma.11,34–36 Adenoviral vector expressing
IFNb has been used extensively to treat mesothelioma in
a mouse model, and a clinical phase 1 trial has proved its
safety and responsiveness in mesothelioma patients.14

Vesicular stomatitis virus was engineered to express
IFNb, which was significantly attenuated compared with
wild-type vesicular stomatitis virus and retained oncolytic
activity against metastatic lung disease in immunocompe-
tent animals.37 To exploit defects in mechanisms of cancer
host defense, the IFN gene was cloned into vaccinia virus
and selective tumor killing was achieved after systemic
delivery.38 This study provides another vector platform

Figure 6 Therapeutic effects of oncolytic MVs for mesothelioma xenografts. Mesothelioma H513 cells were inoculated into the flanks of nude

mice. The efficacy of MVs was compared by tumor growth (a) and survival (b). MV with mIFNb expression arrested tumor growth. The

experiment was repeated in SCID mice bearing mesothelioma H513 cells. Both tumor growth (data not shown) and survival (c) showed the

superiority of MV-mIFNb. Mesothelioma H2373 cells were established in the peritoneum of nude mice to mimic the human conditions. MV-mIFNb
significantly extended the survival of mice (d). *Po0.05; **Po0.01; #Po0.001.

Figure 5 125I uptake images of mesothelioma-bearing mice treated

with MVs intratumorally. Mesothelioma H513-bearing SCID mice

were treated with MVs intratumorally. On day 7, 125I was used to

check iodine uptake. Mice were imaged with CT/SPECT 1 h after 125I

intraperitoneal injection. There was significant uptake of 125I in MV-

GFP-NIS or MV-mIFNb-NIS-treated mesothelioma xenografts (white

arrow). The pictures were taken at the section with the peak 125I

uptake in the tumor. In contrast, MV-GFP, MV-mIFNb, and PBS-

treated tumors had much less signals (green arrow). The different

physiologic uptake in thyroid gland and stomach and excretion into

bladder were observed.
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for type I IFN to treat mesotheliomas. Although type I
IFN has been shown to have great antitumor effect, when
delivered by viral vectors, IFN may also induce a strong
immune response against the vector itself. In this study,
by inclusion of mIFNb, MV-mIFNb showed the in-
creased potency of MVs in vivo. Compared with MV-
GFP-treated tumor samples, MV-mIFNb-treated tumor
sections showed accumulated immune cell infiltration and
decreased vascular density. Imaging studies showed that
NIS expression was not markedly affected by inclusion of
mIFNb in the MV vector in the SCID mice model 7 days
after the viral treatment. Presumably, IFNb will interfere
with MV replication more severely in immune competent
mice. However, the overall outcome in this study is that
MV-mIFNb slows tumor growth and lengthens survival.
The imaging platform using the NIS gene offers a

convenient approach to monitor oncolytic MV replication
noninvasively in vivo. NIS expression within a tumor
could be affected by several factors such as tumor size, the
rate of viral propagation, and the rate of viral clearance in
the host. Serial imaging was performed in SCID mice
bearing subcutaneous mesotheliomas on days 3, 7, and 14
after MV administration. A specific signal was detected in
the mesotheliomas after injection of MV-GFP-NIS or
MV-mIFNb-NIS, but not in the control groups, allowing
us to attribute the tumor-specific signal to virus-driven
expression of the NIS gene. The iodine uptake in the
tumors could be picked up at days 3 and 7 after MV-
GFP-NIS or MV-mIFNb-NIS administration. However,
at day 14, it is weaker in the MV-mIFNb-NIS-treated
tumors than in the MV-GFP-NIS-treated ones. We
speculated that the MV-mIFNb-NIS replicated at the
similar rate as the MV-GFP-NIS within tumor for at least
7 days after viral injection, allowing the MV-mIFNb
enough time to destroy the tumor more effectively than
the MV-GFP. The data also suggest that immune
responses induced by mIFNb not only lead to antitumor
effects, but also cause faster viral clearance. Several
preclinical studies have shown the ablative effects of 131I
in tumor xenografts,20,32,39,40 which suggests that NIS
may be a potent tool to combine with radiotherapy for
treatment of mesothelioma.

Conclusion
In rodent mesothelioma models, we determined that MVs
expressing mIFNb could increase innate immune cell
infiltration and inhibit tumor angiogenesis more effi-
ciently than the parental virus. Therapeutic activity was
enhanced by the IFN transgene, whereas the NIS
transgene permitted noninvasive monitoring of intratu-
moral virus spread by radioiodine imaging.
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